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Abstract: Accurate structural information about forests, including canopy heights and diameters, is
crucial for quantifying tree volume, biomass, and carbon stocks, enabling effective forest ecosystem
management, particularly in response to changing environmental conditions. Since late 2018, NASA’s
Global Ecosystem Dynamics Investigation (GEDI) mission has monitored global canopy structure
using a satellite Light Detection and Ranging (LiDAR) instrument. While GEDI has collected billions
of LiDAR shots across a near-global range (between 51.6◦N and >51.6◦S), their spatial distribution
remains dispersed, posing challenges for achieving complete forest coverage. This study proposes
and evaluates an approach that generates high-resolution canopy height maps by integrating GEDI
data with Sentinel-1, Sentinel-2, and topographical ancillary data through three machine learning
(ML) algorithms: random forests (RF), gradient tree boost (GB), and classification and regression trees
(CART). To achieve this, the secondary aims included the following: (1) to assess the performance of
three ML algorithms, RF, GB, and CART, in predicting canopy heights, (2) to evaluate the performance
of our canopy height maps using reference canopy height from canopy height models (CHMs), and
(3) to compare our canopy height maps with other two existing canopy height maps. RF and GB
were the top-performing algorithms, achieving the best 13.32% and 16% root mean squared error
for broadleaf and coniferous forests, respectively. Validation of the proposed approach revealed that
the 100th and 98th percentile, followed by the average of the 75th, 90th, 95th, and 100th percentiles
(AVG), were the most accurate GEDI metrics for predicting real canopy heights. Comparisons
between predicted and reference CHMs demonstrated accurate predictions for coniferous stands
(R-squared = 0.45, RMSE = 29.16%).

Keywords: Global Ecosystem Dynamics Investigation (GEDI); Sentinel data; NASA; downscaling;
canopy heights; forest structure
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1. Introduction

Forests play a vital role in regulating the carbon and water cycles, supporting biodi-
versity and providing economic benefits to society [1]. However, the stability of forests,
and the ecosystem-services they provide, are increasingly threatened by anthropogenic
change. Consequently, regular monitoring across large spatial scales is needed for effective
forest conservation and management [2]. Forests have been recognised as an important
nature-based solution to climate change, as they remove CO2 from the atmosphere and
store it as biomass. This has led to increased efforts to quantify global forest biomass and
carbon stocks. In particular, remote sensing (RS) technologies have been used to assess
canopy height, a key variable for estimating above-ground biomass and ultimately carbon
stocks, as well as for identifying ecosystems services [3–6]. Satellite-based measurements of
canopy height are now available on an unprecedented global scale [7–10]; however, there
remain certain limitations that hinder the use of these data for localised forest studies.

LiDAR (Light Detection and Ranging) is one of the most useful remote sensing tools for
quantifying forest structure. Different LiDAR instruments have different spatial resolutions
depending on the distance from the sensor to the object, from terrestrial (millimetric) to
airborne (centimetric) to satellite LiDAR systems (metric) [11,12]. Terrestrial LiDAR is by
far the most accurate system for capturing forest structure, but the cost and time required
to complete a survey means that these systems are rarely used [11]. However, airborne
laser scanning (ALS) is a more cost-effective option, capable of surveying forest stands
in a relatively short amount of time [11,13,14]. Consequently, ALS is one of the most
frequently used LiDAR systems for field-based forest surveys in most EU countries. Finally,
satellite LiDAR monitors changes in forest structure on a near-global scale. The Global
Ecosystem Dynamics Investigation (GEDI) NASA mission characterises the structure of
Earth’s forests using a LiDAR instrument onboard the International Space Station (between
51.6◦N and S) [15]. Since its launch, GEDI’s satellite products have been widely adopted
for forest-related research [16–18]. For instance, GEDI’s products have been used to create
forest composition maps [19], quantify carbon stocks [16], investigate the relationship
between biodiversity and forest structure [20], and detect human logging activities, forest
disturbance, and changes in forest structure [21–23].

The GEDI mission has improved our ability to understand and monitor changes
in forest structure, but there are still a number of caveats to the data. The Level-2A
Geolocated Elevation and Height Metrics GEDI Product (GEDI02_A) consists of a hundred
relative height (Rh) metrics with a 25 m pixel spatial resolution (average footprint size) [15]
(https://gedi.umd.edu/data/products/; accessed on 11 September 2023). This large pixel
size can be problematic for stand-level forest monitoring, since a small stand might only
have a few pixels covering the area. Furthermore, relative height averaged within a
25 m pixel loses information on structural heterogeneity. Another key caveat for using
GEDI data is that they are discontinuous, resulting in large quantities of missing data.
This is especially problematic for estimating above ground biomass and carbon stocks,
since it leaves many areas unaccounted. The quality of GEDI’s acquisition accuracy also
depends on various factors, including footprint geolocation and footprint variability [22,24].
Consequently, although GEDI data are appropriate for investigating global patterns in forest
structure, the large spatial resolution of individual pixels and discontinuous acquisitions
pose challenges at smaller geographical scales. Trees are the fundamental building blocks
of forests, and management decisions are ultimately conducted on a tree-by-tree basis.
Therefore, downscaling GEDI data to enhance pixel resolution and extend coverage has
become an area of active research in recent years (Table 1).

In order to achieve high-resolution, full-coverage canopy height maps, numerous
studies have used machine learning (ML) for downscaling and spatializing satellite-LiDAR
data. These studies often combine satellite LiDAR with satellite imagery to reduce the
original footprint size and extend coverage for entire forest ecosystems [25–29] (Table 1).
ML algorithms have proven effective in interpreting complex patterns within RS datasets,
adjusting for overfitting biases, and efficiently handling large volumes of data [30]. Cur-
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rently, the most widely used ML methods include random forests (RF), deep learning (DL),
and gradient tree boost (GB) (Table 1). Despite the prevalence of RF and DL algorithms,
there remains a gap in utilizing classification and regression trees (CART) algorithms for
downscaling purposes (Table 1).

Table 1. Canopy height assessment studies using satellite LiDAR (light detection and ranging)
data. The accuracy measurements from these studies are mean absolute error (MAE), coefficient of
correlation (r) and determination (R-squared), bias, root mean square error (RMSE), overall accuracy
(OA), and mean error (ME). Deep learning (DL), random forests (RF), linear model (LM), gradient
tree boost (GB), ordinary least squares (OLS), convolutional neural network (CNN), NA for unknown
methodology, Landsat (LDT), Sentinel-1 (S1), Sentinel-2 (S2), the ice, cloud, and land elevation satellite
(ICESat), Global Ecosystem Dynamics Investigation (GEDI), and the National Terrestrial Ecosystem
Monitoring System (NTEMS).

Site Year Methods
Dependent
Variables

Independent
Variables

Map Accuracy
StudyOutput

Pixel-Based Statistic Measurements

Global map 2000–2017 NA ICESat LDT 30 m MAE = 3.7 m; R-squared
= 0.85–0.92 [31]

China’s
forest 2017–2019 DL and RF ICESat-2 S1, S2 and

LDT8

10 m−30
m−250
m−500

m−1000 m

R-squared = 0.68−0.78;
bias = −1.46 m [29]

USA 2019–2021 RF GEDI S1 and S2 30 m r = 0.58; RMSE = 4.46 m [32]

Canada 2019 LM (i.e.,
OLS) ICESat-2 NTEMS

(validation)
100 m

segments
r = 0.61; mean difference

= 0.55 m [8]

Global map April–
October 2019 RF GEDI LDT 30 m RMSE = 6.6 m; MAE =

4.45 m, R-squared = 0.62 [27]

China,
France, and
the United

States

2019 RF GEDI S2 10 m
OA China = 0.89; OA

France = 0.85; OA US =
0.91

[26]

Global map 2020 DL (I.e.,
CNN) GEDI S2 10 m RMSE = 9.6 m; MAE =

7.4 m; ME = −4.8 m [28]

Australia
and the
United
States

2020 GB GEDI S1 and S2 100 m–200 m R-squared of 0.66–0.74;
RMSE of 41–77% [25]

Google Earth Engine (GEE) is widely used for remote sensing analyses due to its
cloud-based computing architecture and easy access to multi-temporal global satellite data,
removing the computational limitations associated with local analysis [23,33–35]. This
capability has empowered researchers to use a cloud-based platform to analyse petabytes of
RS images and generate canopy height raster data, predominantly leveraging Sentinel-1 (S1),
Sentinel-2 (S2), and Landsat (LDT) as data sources (Table 1). For instance, Potapov et al. [27]
used a bagged regression trees ensemble method to merge GEDI data with multi-temporal
Landsat images, to produce a global canopy height map with a spatial resolution of
30 m (hereafter CH-Potapov2019). However, they observed that the low resolution of
Landsat prompted an overestimation in measurements of forest canopy height in temperate
forests. A comparable map was produced by Lang et al. [28] using multi-temporal S2
images and a deep learning method (hereafter CH-Lang2020) without considering locally
calibrated models.

However, none of the previous studies include topographic characteristics as in-
dependent variables for predicting canopy heights, despite the demonstrated signifi-



Remote Sens. 2024, 16, 1281 4 of 22

cance of topography in enhancing the accuracy of GEDI footprint measurements in forest
canopies [25,26].

Although the downscaling method is quite similar across the previously mentioned
studies, a significant difference lies in the metric used as a proxy to predict the top-of-
canopies. For instance, the 90th, 95th, and 98th percentiles were most frequently used
as Rh metrics (from 90th to Rh90) [27,28,36,37]. Interestingly, Potapov et al. [27] revealed
that Rh90 tended to underestimate canopy height, whilst Rh100 tended to overestimate
canopy height. Furthermore, to the best of our knowledge, most of the developed canopy
height maps using locally calibrated models were focused on specific areas [8,25,32]. By
contrast, global canopy height maps were year-specific (i.e., 2019 and 2020) and utilized
GEDI footprints at the national or continental level [27,28]. Given these lacks (i.e., absence
of topographic predictors, adoption of single ML models, and individual relative height
without locally calibrations), there is a pressing need to investigate the effect of different
Rh metrics on predicting canopy height, using locally calibrated ML models to investigate
the influence of additional RS and topographic data on model outcomes.

In response to these gaps, this study proposes and evaluates an approach to generate
high-resolution canopy height maps (10 m) by combining GEDI with S1, S2, and topograph-
ical data using different locally calibrated ML algorithms. To reach this aim, this study
dealt with the following three specific research objectives:

(1) To assess the performance of three ML algorithms, RF, GB, and CART, in predicting
canopy heights from the most commonly used GEDI metrics.

(2) To evaluate the performance of our canopy height maps using reference ALS-based CHMs.
(3) To compare our canopy height maps with two existing canopy height maps,

CH-Potapov2019 [27] and CH-Lang2020 [28].

The proposed approach is tested in two structurally contrasting Mediterranean conif-
erous and broadleaved forest sites, as they represent two of the most important European
forest ecosystems with contrasting forest stand structures [2].

2. Study Area

Two Mediterranean forest test sites were selected, based on their contrasting struc-
tural and demographic profiles. Both sites are located in central Italy, known locally as
Pennataro (41◦44′5.97′′N, 14◦12′0.79′′W) and Lago di Occhito (41◦37′17′′N, 14◦58′19′′W).
Under the European Forest Type classification, Pennataro is an oak–hornbeam forest, and
Lago di Occhito is a Mediterranean pine forest [38,39]. Lago di Occhito is characterized by
approximately 997 ha of structurally homogenous forests, whilst Pennataro is covered by
approximately 270 ha of structurally heterogeneous forests (Figure 1) [40,41]. Pennataro
is a mixed broadleaved tree species, dominated by Turkey oak (Quercus cerris, 40%) and
including European beech (Fagus sylvatica, 21%) and Italian maple (Acer opalus, 9.6%) [42].
In Lago di Occhito, forest plantation is characterized by Aleppo pine (Pinus halepensis,
61%), which is the dominant species, and Arizona cypress (Cupressus arizonica, 20%), plus a
limited number of other coniferous tree species.
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stand). (c) The diametric class distribution of trees in Lago di Occhito (coniferous stand). The 
diametric class distribution of trees in Pennataro is positively skewed, indicating higher structural 
heterogeneity, compared to Lago di Occhito, which follows a normal distribution, indicating 
structural homogeneity. 
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spectral Sentinel-1 and Sentinel-2 satellite imagery for canopy height prediction (Section 
3.3); and (4) topographical features such as elevation, slope, and aspect, as additional 
predictors for canopy height (Section 3.4). In addition, we used two existing GEDI-derived 
canopy height maps for further validation (Section 3.5). 
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were used and mounted on a helicopter for flying over a broadleaf forest site and on a 

Figure 1. Study site locations and diametric class distribution of trees. (a) Locations visualised
using a single RBG Sentinel − 2 image. (b) The diametric class distribution of trees in Pennataro
(broadleaf stand). (c) The diametric class distribution of trees in Lago di Occhito (coniferous stand).
The diametric class distribution of trees in Pennataro is positively skewed, indicating higher struc-
tural heterogeneity, compared to Lago di Occhito, which follows a normal distribution, indicating
structural homogeneity.

3. Data

The following four main data sources were used in this study for model develop-
ment and validation: (1) ALS data collection and processing for canopy height validation
(Section 3.1); (2) GEDI relative height metrics to be downscaled (Section 3.2); (3) multi-
spectral Sentinel-1 and Sentinel-2 satellite imagery for canopy height prediction (Section 3.3);
and (4) topographical features such as elevation, slope, and aspect, as additional predictors
for canopy height (Section 3.4). In addition, we used two existing GEDI-derived canopy
height maps for further validation (Section 3.5).

3.1. Airborne Laser Scanning Data Collection and Processing

ALS data were acquired for both the broadleaf and coniferous forest sites. ALS data
for the broadleaf forest site were collected in June 2016 during the leaf-on season, while
data for the coniferous forest site were collected in July 2021. YellowScan Mapper+ sensors
were used and mounted on a helicopter for flying over a broadleaf forest site and on a
Matrice 300 RTK unmanned aerial vehicle (UAV) for flying over a coniferous forest site. In
the broadleaf site, the sensor was configured with a maximum scan angle of ±50◦ and a
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pulse frequency of 20 kHz, resulting in an average point density of 60/m2. In the coniferous
site, a most recent version of YellowScan Mapper+ sensor was used, mounted on a UAV
flying at an altitude of 70 m above the canopy. This resulted in a higher scanning frequency
of 10 Hz, generating a denser point cloud with an average density of 300 points/m2

(https://www.yellowscan-lidar.com/products/mapper-3/, accessed on 3 March 2024).
ALS data collection covered 90% of the broadleaf forest site and 16% of the coniferous
forest site.

The following four main steps were used for generating a canopy height map from the
ALS data: (1) point classification as ground/non-ground; (2) outlier removal; (3) Z-point
normalization; and (4) CHM generation. The ‘lidR’ package [42] and ‘rlas’ package [43]
(R version 4.3.0) were used to create CHMs [44]. The final CHMs (.tiff) with a spatial
resolution of 1 m, for broadleaf and coniferous forest sites, were obtained. Hence, we
standardized the spatial resolution of the CHMs of the study areas to 1 m, to ensure
consistency in the validation approach and outputs.

3.2. Global Ecosystem Dynamics Investigation (GEDI) Level-2A Data

GEDI footprint and gridded datasets come in different spatial resolutions for 3D
Earth observation [45]. Since we were focused on canopy height, we used the GEDI—L2A
(Level-2A) top-of-canopy and relative height metrics. This dataset has high geolocation
accuracy, equivalent to a horizontal error of 10.3 m [46], and comprises 25 m footprints,
acquired at 60 m intervals along the track and 600 m intervals across the track [15].

Three quality control filters, “sensitivity”, “quality”, and “degrade flags”, were used
to filter the GEDI—L2A data. These flags indicate waveform reliability for measuring 3D
surface structure [46,47]. Waveforms unsuitable for measuring potential top canopy height
(quality flag = 1) were excluded, and only non-degraded samples (degrade flag = 0) were
selected. Subsequently, four metrics, Rh90, Rh95, Rh98, and Rh100, were chosen due to
their potential to accurately measure the top-of-canopy height [27,28,35,36]. Additionally, a
metric based on the average of Rh75, Rh90, Rh95, and Rh100 (hereafter the AVG metric)
was incorporated into this study. Rh75 is an effective metric for characterizing forest
structure [48], but it is rarely used in deriving top-of-canopy heights. We hypothesize
that integrating the Rh75 metric into an AVG metric will allow us to mitigate under- and
over-estimations associated with Rh90 and Rh100 metrics [27].

3.3. Sentinel Mission Data

GEE was used to access harmonised Sentinel-2 Level-2A data and Sentinel-1 ground
range detected (GRD) data between 1 July and 31 August 2023. To reduce leaf canopy oc-
clusion, leaf-off canopy conditions were selected for the study period [49]. Sentinel-1 bands,
with both ascending and descending orbits, were selected using the IW (interferometric
wide) mode, including single (“VV” and “HH”) and dual polarization (“VH”) signals [50].
The Sentinel-1 bands were pre-processed using border noise correction, speckle filtering,
and radiometric terrain normalization [51]. For the broadleaf forest site, 116 multi-temporal
images were available, and 125 multi-temporal images for the broadleaf and coniferous
forest sites, respectively, from S1 during the setting period. Each available image contained
three channels, including the incident angle range (“Angle”), as well as single and dual
polarizations (“VV”–“VH”) bands. As preprocessing, a spatial filtering operation that com-
putes the median value within a neighbourhood around each pixel in an image was applied
to the previously acquired multi-temporal images. This process performed a composite
band [51].

For the study period, 25 Sentinel-2 images were available for the broadleaf site and
13 for the coniferous site, after ensuring all images had less than 70% cloud cover. Images
were masked using the QA60 band to limit the presence of opaque and cirrus clouds [23,52].
A final median composite image was then generated for each study site, excluding clouds
and shadows [52–54].

https://www.yellowscan-lidar.com/products/mapper-3/
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3.4. Topographical Data

Three topographical variables were included (elevation, slope, and aspect) since they
have been demonstrated to significantly impact forest structure [22,55–57]. The Global
Multi-Resolution Terrain Elevation Data (GMTE)-2010 dataset, available from GEE, was
used to compute slope and aspect in addition to elevation [58].

3.5. Existing Global Ecosystem Dynamics Investigation (GEDI)-Derived Canopy Height Maps

Two previously published global canopy height maps are readily accessible through
GEE [28] and the Earth Map platform [59]. Both maps integrate 3D GEDI data with
multi-spectral and multi-temporal satellite imagery for downscaling, making them ideal
candidates for benchmarking future canopy height maps. The first canopy height map,
referred to as CH-Lang2020 [28], predicts canopy height with a spatial resolution of 10 m. The
second map, referred to as CH-Potapov2019 [27], predicts canopy height with a spatial
resolution of 30 m. The CH-Potapov2019 map uses Rh95 to represent top-of-canopy, whilst
CH-Lang2020 uses Rh98. Landsat satellite imagery and land surface elevation were used
in CH-Potapov2019, whereas Sentinel-2 imagery and land surface elevation was in CH-
Lang2020, resulting in a higher resolution of 10 m. For both studies, map accuracy was
validated using ALS data, with CH-Potapov2019 achieving a RMSE of 9.07 m (Mean
Absolute Error “MAE” = 6.36 m) and an RMSE of 6 m (MAE = 4 m) for CH-Lang2020 [28].

4. Methods

In this study we leveraged the readily available data and computational tools in
GEE to develop canopy height maps for two distinct Mediterranean forest types [33].
The main steps of the workflow are as follows (Figure 2): (1) feature selection, model
construction, and performance evaluation (Section 4.1); (2) map validation with ALS-
based CHMs (Section 4.2); and (3) benchmarking with existing canopy height maps from
CH-Potapov2019 and CH-Lang2020 (Section 4.3).

4.1. Canopy Height Map Prediction

GEE offers a number of built-in machine learning tools for supervised classification,
unsupervised classification, and regression. To predict canopy heights from different
GEDI Rh metrics, we used 18 predictors in total, including multi-spectral Sentinel-1 (three
predictors) and Sentinel-2 (twelve predictors) imagery and ancillary topographical data
(three predictors). The dataset was split into training (70% corresponding to 2586 and
2464 samples in broadleaf and coniferous forests, respectively) and testing (30% corre-
sponding to 1108 and 1056 samples in broadleaf and coniferous forests, respectively) data
[53,60–62], using a random sampling strategy within the masked forest sites. To downscale
and spatialize GEDI data, three ML algorithms from the GEE Classifier were used: RF,
GB, and classification and regression (CART). These algorithms were selected based on
their demonstrated suitability for predicting canopy height and robustness to overfitting,
due to their potential in applying decision tree analysis, enabling regression analysis for
large datasets, assessing feature importance across variables (thus reducing overfitting),
and replicating human reasoning in data processing [17,60,61]. The number of trees was
set to 500 for the RF and GB models, with other hyperparameters set to default values
(see Table 2) [63–65]. The CART models were run with default hyperparameters [66]. In
total, 30 ML models were trained: five GEDI metrics (Rh90, Rh95, Rh98, Rh100, and AVG)
were analysed using the RF, GB, and CART algorithms to obtain 15 canopy height maps,
with 10 m pixel resolution, for each study area (i.e., the coniferous site and the broadleaf
site). The testing data were used to validate the performance of the ML models through the
coefficient of determination (R-squared, ranging from zero to one) and root mean squared
error (RMSE, %). R-squared was used to gauge the extent to which ML models explain
variability, whilst RMSE was used to assess the predictive accuracy of each model and map
(lower RMSE values indicate more precise and reliable predicted outcomes).
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Figure 2. Canopy height map workflow. Random forests, gradient tree boost, and classification and
regression trees were used to generate canopy height maps. The resulting canopy height map was
validated using canopy height models from airborne laser scanning (ALS-based CHM) data through
root mean square error (RMSE) and coefficient determination (R-squared).

4.2. Comparison of Predicted Canopy Height Maps with Reference Airborne Laser Scanning
(ALS)-Based Canopy Height Models (CHMs)

To evaluate the performance of the resulting canopy height maps, we compared the
predicted heights with a reference ALS-based CHM map. The maps were resampled and
aligned using a nearest neighbour method, as we relied on the assumption that near point
data tend to be more similar than far point data. As it is considered suitable for continuous
data populations and forestry studies [67], the nearest neighbour method was applied
to complete the following tasks: (1) to resample our canopy height maps (10 m) to the
resolution of ALS-based CHM map (1 m); and (2) to check errors in raster alignment and
adjust alignment using ALS-based CHM map as snap raster. Subsequently, we applied
Cook’s distance method to remove influential values (outliers) from pixel values from
the predicted and reference maps [68–70]. Then, the predicted and reference data were
compared using the linear regression model. Finally, we assessed map accuracy using
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RMSE (%) and the variability explained by the regression models using R-squared (which
ranged from zero to one) [71].

Table 2. Machine learning algorithms and their parameter settings to predict GEDI canopy height Rh
metrics, based on Sentinel-1, Sentinel-2, and topographical data. Random Forests (RF), Gradient Tree
Boost (GB), and Classification and Regression Trees (CART) are configurated.

Machine Learning
Algorithms Parameter Name Parameter Description Parameter Setting

RF

numberOfTrees Decision tree number 500
variablesPerSplit Number of variables per split (mtry) 4

minLeafPopulation Minimum number of training samples in each
leaf node 1

bagFraction Input fraction to bag per tree 0.5
maxNodes Maximum number of leaf nodes in each tree no limit

GB

numberOfTrees Decision tree number 500
shrinkage Learning rate 0.005

samplingRate Sampling rate for stochastic tree boosting 0.7
maxNodes Maximum number of leaf nodes in each tree no limit

loss Loss function for regression LeastAbsoluteDeviation

CART
maxNodes Maximum number of leaf nodes in each tree no limit

minLeafPopulation Minimum number of training samples in each
leaf node 1

4.3. Comparison of Predicted Canopy Height Maps with Other Existing Global Ecosystem
Dynamics Investigation (GEDI)-Derived Canopy Height Maps

To further evaluate the robustness of the predicted canopy height maps, we compared
map accuracy statistics with those of CH-Potapov2019 and CH-Lang2020 for the same
ALS-based reference CHM. The existing CH-Potapov2019 and CH-Lang2020 maps were
processed using the same method outlined in Section 4.2 to allow for fair comparisons.
The overall evaluations were made using the R-squared (which ranged from zero to one),
RMSE (%), and pixel frequency distribution [27,28].

5. Results
5.1. Canopy Heights Map Prediction

A single canopy height map was constructed for each of the study sites with 10 m
pixel resolution. Contrasting results were obtained for the coniferous and broadleaf sites,
with R-squared values ranging from 0.61 to 0.93 (RMSE % = 16.35–26.58) in the coniferous
site and from 0.64 to 0.78 (RMSE % = 13.32–17.79) in the broadleaf site (Figure 3). Notably,
the RF and GB models achieved better predictive performance than the CART models. In
fact, the CART models exhibited low accuracy, with the highest RMSE reaching 17.79% in
the broadleaf site and 26.58% in the coniferous site. Some variation was observed in the
suitability of different GEDI Rh metrics for predicting canopy heights. We found that, in
the study sites, the Rh98, Rh100, and AVG performed slightly better than Rh90 and Rh95,
but no significant difference was found overall.

In the coniferous site, the RF and GB models produced the most accurate canopy
height maps compared to the CART models (Figure 4). The maps derived from CART
models exhibited pixelation, blurriness, and inconsistencies in brightness (see Figure 4).

In the broadleaf site, the RF and GB models also outperformed the CART models.
However, the difference between the RF (RMSE = 2.61%) and GB (RMSE = 3.32%) models
was minimal in terms of RMSE % (see Figures 3 and 5). CART-derived maps exhibited
greater pixelation, blurriness, and brightness inconsistencies compared to RF and GB maps
(Figure 5).
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Figure 5. The predicted canopy height maps for all GEDI relative height metrics and ML algorithms
for the broadleaf forest site.

The results revealed contrasting patterns in variable importance across the models
and forest types. The most influential predictors in RF models developed for predicting
canopy height in the broadleaf site were topographic data (slope, aspect, and DEM—digital
elevation model) and Sentinel-2 band B1 (Figure S1). In contrast, RF models trained in
the coniferous site relied more heavily on a combination of Sentinel-1, Sentinel-2, and
topographic data (VH, band B11, aspect, and slope) (Figure S2). Conversely, the most
important variable in training GB models for both forest sites was the B1 Sentinel-2 band.

CART models exhibited the most significant disparity in key predictors between forest
types; Sentinel-2 bands (B1, B9) and topographic data (slope, DEM) held the most weight
in broadleaf stands (Figure S1), whereas, in the coniferous site, Sentinel-1/2 bands (i.e., B1,
B11, VH, and VV) and slope/aspect emerged as the most influential predictors of canopy
heights (Figure S2).

5.2. Comparison of Predicted Canopy Height Map with Reference Airborne Laser Scanning-Based
Canopy Height Models

When we compared the predicted canopy heights against the site-specific ALS-based
CHMs, we found a better fit with coniferous (best model: a RMSE of 29.16% with an R-
squared of 0.45; Figure 6) than for broadleaf forest sites (best model: a RMSE of 20.94% with
an R-squared of 0.14) (Figure 7). We observed that the RF and GB models outperformed
the CART models in the coniferous forest (see Figure 6). The Rh90 and AVG GEDI metrics
enabled us to derive more accurate canopy heights in coniferous stands, as indicated by the
lower RMSE values, ranging between 29.16% and 37.42% for Rh90 and 30.15% and 38.69%
for AVG GEDI, respectively.

Our findings highlighted that the RF and GB models outperformed the CART models
when predicting canopy height in the broadleaf site (Figure 7). Leveraging the AVG GEDI
metric allowed us to obtain more accurate canopy heights in broadleaf stands, as evidenced
by the low RMSE values ranging between 20.94% and 26.54%.
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Figure 6. Scatter plots comparing predicted and reference canopy heights in the coniferous site. Five
GEDI metrics (Rh90, Rh95, Rh98, Rh100, and the average of Rh75, Rh90, Rh95, and Rh100—AVG)
were processed through RF (Random Forests), GB (Gradient Tree Boost), and CART (Classification
and Regression Trees) algorithms. Root mean square error (RMSE in meter and percentage) and
R-squared values are presented.
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Figure 7. Scatter plots comparing predicted and reference canopy heights in the broadleaf site. Five
GEDI metrics (Rh90, Rh95, Rh98, Rh100, and the average of Rh75, Rh90, Rh95, and Rh100—AVG)
were processed through RF (Random Forests), GB (Gradient Tree Boost), and CART (Classification
and Regression Trees) algorithms. Root mean square error (RMSE in meter and percentage) and
R-squared values are presented.

5.3. Comparison of Predicted Canopy Height Maps with Other Existing Global Ecosystem
Dynamics Investigation (GEDI)-Derived Canopy Height Maps

Our canopy height predictions were a better fit with the ALS-based CHM in both
forest sites than those obtained using the CH-Potapov2019 and CH-Lang2020 maps (see
Figures 8 and 9). Contrasting findings emerged for the two available maps across forest
sites. For instance, when using canopy heights obtained from the coniferous site, the
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CH-Potapov2019 demonstrated a more accurate estimation (RMSE = 49.68%; Figure 8),
compared to the CH-Lang2020 (RMSE = 75.67%; Figure 8). In contrast, somewhat similar
results were obtained for broadleaf trees using the CH-Lang2020 map (RMSE = 22.54%;
Figure 8) and the CH-Potapov2019 map (RMSE = 22.91%; Figure 8). In the coniferous site,
both existing maps have a low explanatory power for variability, with R-squared values
below 0.19.
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Figure 9. Scatter plot and horizontal pixel frequency distribution comparing predicted canopy heights
with reference data in a broadleaf forest site. Canopy heights from ALS, RF_Rh90, CH-Potapov2019,
and CH-Lang2020 were utilized. Root mean square error (RMSE in m and %) and R-squared values
are presented.

When using canopy heights obtained from the broadleaf site, somewhat similar results
were obtained for broadleaf trees using the CH-Lang2020 map (RMSE = 22.54%; Figure 9)
and the CH-Potapov2019 map (RMSE = 22.91%; Figure 9). Similarly to the results for the
coniferous site, the broadleaf site also showed low explanatory power for the existing maps,
with R-squared values falling below 0.11.

6. Discussion

In this study we introduce a novel approach for generating localised high-resolution
canopy height maps (10 m) using widely available satellite data and machine learning in
GEE. GEDI metrics, considered to represent the top-of-canopy height (Rh90, Rh95, Rh98,
Rh100, and AVG), were downscaled and spatialized for two Mediterranean forest sites,
using Sentinel-1, Sentinel-2, and topographical data. Three different ML models were
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tested (RF, GB, and CART) in structurally and demographically contrasting study sites,
and the resulting maps were compared with ALS-based CHMs for validation. We further
tested the robustness of the predicted canopy height maps by comparing their performance
with that of the global GEDI-derived canopy height maps: CH-Potapov2019 [27] and
CH-Lang2020 [28].

6.1. Canopy Heights Map Prediction

Our findings revealed that Rh98, Rh100, and AVG were the most accurate GEDI metrics
for predicting real canopy heights derived from ALS-based CHM in both Mediterranean
forest sites. However, when comparing the top-performing GEDI metrics (AVG, Rh98,
and Rh100) among the ML models, both RF and GB models provided similarly accurate
predictions in both Mediterranean forest types (see RMSE % in Figure 3), with only marginal
improvements observed in coniferous forest sites.

In line with previous studies, theRh95 metric was a good predictor of realistic canopy
heights [32,72,73]. The AVG metric (the average of Rh75, Rh90, Rh95, and Rh100) emerged
as a promising GEDI metric for predicting real canopy heights. Rh95–Rh100 and Rh90
tended to either overestimate or underestimate GEDI canopy height predictions. Accord-
ingly, the Rh75 metric (representing 75% of returned energy between the top of the canopy
and the ground surface) was crucial in regulating the overestimations of GEDI metrics
higher than Rh90. Despite these considerations, several other factors can influence the
effectiveness of Rh95 and AVG. These include the quality of laser pulses, forest canopy
structure, topography, and the time difference between GEDI and Sentinel data acquisition.
Our study aimed to mitigate the impact of these factors by standardizing the acquisition
time of Copernicus data and using power laser shots [32,35].

The quality of raw GEDI data quality is a significant source of uncertainty when
estimating canopy height. It can be influenced by factors such as tree density, slope, the
type of laser shots used, and canopy heterogeneity [74]. This is reflected in the lower map
accuracy of the broadleaf forest site, characterized by its heterogenous structure, compared
to the higher map accuracy of the homogenous coniferous forest site. Furthermore, even
the 10 m pixel resolution of the final downscaled maps is much larger than individual
tree crowns, leading to a loss of canopy height data in heterogeneous forest types. Thus,
predicting canopy height from GEDI data might be more suitable for forestry purposes,
because forestry stands are typically homogeneous and evenly aged. Therefore, it is
essential to carefully consider the forest stand structure of the test area when using GEDI
data for canopy height prediction, in addition to other secondary factors.

In all cases, the RF and GB models outperformed the CART models (Figure 3). As
expected, the RF algorithm performed well in both regression and classification approaches,
while GB emerged as one of the most versatile algorithms for regression analysis [60,61].
The superior performance of RF and GB models can be attributed to their capacity to
regulate overfitting by employing decision tree techniques [61]. In this regard, the decision
tree learning approach increased the efficiency of processing large datasets, as it employs
a boosting technique to incorporate random sampling with replacement across weighted
data [60]. On the contrary, the reduced predictive potential of the CART models for
predicting GEDI metrics can be attributed to their sensitivity to outliers and the influence
of numerous observations on the decision tree analysis [75].

Notably, the RF and GB models were more computationally intensive than the CART
models, which are known for their lower computational requirements [75]. Moreover, our
findings aligned with or exceeded those reported in other studies (Figure 3). For instance,
Lang et al. [28] reported an RMSE value equal to 6 m (RMSE = 13%) for global forests
and Mediterranean forest class; Potapov et al. [27] reached an accuracy equal to 6.6 m
for RMSE and 0.62 for R-squared for global forests. Matasci et al. [36] reported accurate
values equal to 2.72 m for RMSE and 0.5 for R-squared for the Canadian boreal zone,
and Schwartz et al. [73] indicated a map accuracy equal to 2.98 m for RMSE and 0.73 for
R-squared for French coniferous forests.
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6.2. Comparison of Predicted Canopy Height Maps with Reference Airborne Laser Scanning
(ALS)-Based Canopy Height Model Results

The best-performing RF and GB models achieved an R-squared accuracy of 0.46 in the
coniferous site and 0.14 in the broadleaf site, when compared to the ‘realistic’ canopy height
derived from the ALS-based CHMs. ALS-based CHMs were selected for this investigation
as a proxy for true canopy height because ALS LiDAR is highly correlated with ground
truth canopy height [42].

Nevertheless, several hindering factors may have influenced the results obtained
for the coniferous and broadleaf study sites. For example, Dubayah et al. [14] note that
forests covered by “power beam” GEDI data types are twice as precise as “coverage
beams”. This is because power beams can penetrate dense canopies more effectively,
thus reducing saturation at high tree densities [14,76,77]. Consequently, if the “power
beam” GEDI data are unavailable, this can lead to greater uncertainty in the GEDI Rh
metrics for broadleaf stands [47]. Moreover, different species have different canopy ar-
chitectures: in general, coniferous canopies grow straight and symmetrically in a conical
shape, whereas broadleaf canopies frequently display plagiotropic development [78–80].
Although our models used both full power and coverage beam data, we recommend that
future studies consider the beam-type data when investigating broadleaf forests. Topo-
graphical features are another secondary factor influencing GEDI Rh measurements [81].
However, we integrated topographic ancillary data from 2010 (GMTE-2010) in the pre-
dictor’s dataset. Nevertheless, recent land changes may have not been accounted for,
potentially affecting the map accuracy in disturbed zones. Further research using recently
acquired ALS data in broadleaved forests could help to detect occlusion in this forest
type and evaluate the robustness of canopy height maps. Studies indicate that seasonal
differences in leaf cover can significantly impact the consistency of canopy height measure-
ments, particularly for trees with thick, crooked, and spreading branches [8,10,49]. Natural
processes such as growing, regeneration, fragmentation, and disturbance can provoke
variable canopy heights and structure over time, particularly through forest gaps [82,83],
which affects the accuracy of forest maps [41,52]. In our studied forests, human-induced
disturbance likely affected only coniferous forests, as broadleaf sites were managed for
conservation purposes.

6.3. Comparison of Predicted Canopy Height Maps with Other Existing Canopy Height Maps

Our findings demonstrate that locally calibrated canopy height maps are a better fit
to the reference ALS-based CHMs, when compared with the global canopy height maps
from CH-Potapov2019 and CH-Lang2020. This is expected, since global maps predict
canopy height for a wide range of forested biomes. Global maps must deal with a higher
degree of variation in satellite data availability, terrain, and canopy structure, in addition
to greater uncertainty in raw GEDI data [84]. Consequently, both CH-Potapov2019 and
CH-Lang2020 use machine learning techniques. The existing maps use convolutional
neural networks (CNNs) and bagged regression trees methods to overcome the issues
associated with predicting canopy height at a global scale, which enable contextual learning
comparable with the capability of the RF, GB, and CART algorithms. However, it is
important to highlight that enhanced model complexity comes with greater computational
and programmatic demands. For example, GEE does not offer a freely available package
for deep learning with CNNs and, despite the GEE cloud computing infrastructure, model
construction is not possible on a global scale. This requires users to have both the skill and
hardware to construct a model outside the GEE ecosystem, when for many forest-based
research questions this is neither practical nor feasible. This challenge, however, can be
overcome through collaboration with qualified coding experts, potentially facilitated by
Internation projects. Notably, we found that estimated canopy heights using the simpler
RF and GB models were roughly twice as accurate as CH-Potapov2019 and CH-Lang2020
for the coniferous forest site (see Figures 8 and 9). This highlights the value of using
simple but effective machine learning algorithms at smaller spatial scales. The lower
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computational burdens of RF, GBs and CART also allow for the inclusion of additional
meaningful predictors, i.e., Sentinel-1 and topographical predictors, compared to only
Sentinel-2 as in CH-Lang2020 or Landsat in CH-Potapov2019. Our proposed approach
differs from CH-Lang2020’s in several aspects, including the following: (1) input data
predictors (S2 vs. S1, S2, and topographical data); (2) input data target (country-level
GEDI shoots vs. local-level GEDI shoots); and (3) forest mask (no-forest mask vs. global
forest/non-forest mask (2017–2020) [44], (4) modelling (deep learning vs. RF/GB or CART),
and (5) validation (country-level vs. local-level).

The results reveal that the CH-lang2020 map better fits the ALS-based CHM than
CH-Potapov2019, with the best R-squared achieved in the coniferous forest sites. Accord-
ingly, the comparison of canopy height maps from CH-Potapov 2019 and CH-Lang2020 to
ALS-based CHMs can be sensitive to noise, lack, and registration errors [82]. In addition
to most hindering factors affecting the mapping (Section 4.2), secondary factors, such as
the following, may have influenced the comparison pixel-by-pixel approach: (1) ALS point
density (60 vs. 300 points/m2); (2) number of GEDI shots (acquired from late 2018 to
2019 vs. 2020); (3) mismatch between GEDI shot dates (2019 vs. 2020) and ALS acquisi-
tion date (2016 vs. 2021); (4) forest management plan (anthropic forestry interventions
>50 past years vs. 2022); (5) tree species composition (mixed-species vs. unique); (6). forest
structural complexity (multi-layered and mono-layered; and (7) canopy conditions. Among
the previously listed factors, we believe that the number of GEDI shots considered for
constructing those maps was lower than what has been collected up to now, considering
that NASA’s GEDI mission started collecting data in late 2018. Our forest sites data revealed
a time discrepancy between GEDI (acquisitions from 2018 to 2023) and ALS (acquisitions
from 2016 to 2021). This gap ranges from 2 to 7 years for broadleaf species and from 2
to 3 years for coniferous species. This difference in acquisition times could significantly
impact the agreement between our developed map and CHMs due to potential changes in
vegetation structure and species composition [85], particularly for broadleaf trees.

7. Conclusions

This study presents a novel and robust methodology for producing high-resolution
canopy height maps at a 10m resolution by integrating GEDI relative height (Rh) metrics
with Copernicus and topographical data using machine learning (ML) algorithms. Seven
key conclusions emerge from our research.

Firstly, our approach combines GEDI data with Sentinel-1, Sentinel-2, and topograph-
ical variables to generate canopy height maps employing random forest (RF), gradient
boosting (GB), and classification and regression trees (CART) algorithms. Secondly, RF
and GB models consistently outperformed CART models in predicting canopy heights
across various GEDI metrics and forest types. Thirdly, the influential predictors for canopy
height prediction varied by forest type, with the B1 band from Sentinel-2 and topographical
variables being more significant in broadleaf forests, while a combination of Sentinel-1,
Sentinel-2, and topographical predictors played a vital role in coniferous forests. Fourthly,
the choice of GEDI metric can enhance prediction accuracy, with Rh90 and AVG metrics
yielding slightly better results, particularly for coniferous trees. Fifthly, the generated maps
exhibited higher accuracy compared to existing ones. Sixthly, our proposed method offers
advantages over existing approaches by locally calibrating GEDI footprints, ensuring better
fit for predicting canopy heights, and identifying patterns resembling canopy height models
(CHMs) derived from airborne laser scanning (ALS). Seventhly, our methodology holds
global applicability, and a web-based application leveraging cloud computing platforms
could facilitate its widespread adoption.

Additionally, while our approach was validated in two structurally contrasting Mediter-
ranean forest types using a pixel-by-pixel approach, further comprehensive studies focused
on similar forest types are warranted to ascertain its potential, particularly in complex
broadleaved forests. Nonetheless, our findings hold promise for applications in forest
management and environmental monitoring.
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