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Abstract: Test-time adaptation (TTA) has been proven to effectively improve the adaptability of
deep learning semantic segmentation models facing continuous changeable scenes. However, most
of the existing TTA algorithms lack an explicit exploration of domain gaps, especially those based
on visual domain prompts. To address these issues, this paper proposes a self-prompt strategy
based on uncertainty, guiding the model to continuously focus on regions with high uncertainty
(i.e., regions with a larger domain gap). Specifically, we still use the Mean-Teacher architecture with
the predicted entropy from the teacher network serving as the input to the prompt module. The
prompt module processes uncertain maps and guides the student network to focus on regions with
higher entropy, enabling continuous adaptation to new scenes. This is a self-prompting strategy
that requires no prior knowledge and is tested on widely used benchmarks. In terms of the average
performance, our method outperformed the baseline algorithm in TTA and continual TTA settings of
Cityscapes-to-ACDC by 3.3% and 3.9%, respectively. Our method also outperformed the baseline
algorithm by 4.1% and 3.1% on the more difficult Cityscapes-to-(Foggy and Rainy) Cityscapes setting,
which also surpasses six other current TTA methods.

Keywords: uncertainty-based self-prompt; test-time domain adaptation; semantic segmentation

1. Introduction

In the actual operation of intelligent vehicles, it is necessary to establish a high-level
understanding of the environment to assist decision making [1,2]. There is a need to build
the real-time and accurate perception capability through effective data management and
processing methods [3,4]. Among various perception methods, machine vision-based
methods have become an important part due to their comprehensive, intuitive, and cost-
effective advantages [5]. Semantic segmentation [6], in particular, can directly determine
the positions and occupancy of various entities in the scene, thereby effectively aiding
intelligent vehicles. Real-world scenes are often complex and diverse, varying in city styles
and weather (such as rain, fog, snow, and nighttime) [7–9]. However, segmentation models
trained offline and based on a fully supervised paradigm often lack generalization in these
unseen or adverse conditions. Therefore, a lot of works adopted Domain Adaptation
(DA) [10–18] to train, attempting to transfer the knowledge from existing datasets to unla-
beled environments. Although DA effectively improves the model’s generalization, it still
follows an offline training approach, which fixes the model’s performance in real-world sce-
narios once training is complete, making it difficult to adapt to other more complex scenes.
Considering that some acronyms will be used frequently, we have listed the acronyms at
the end for facilitating reading and understanding the paper.

Another direction is to explore the commonalities between data with different distri-
butions, which is called Domain Generalization (DG, or OpenDA) [19–25]. This strategy
aims to extract domain-invariant knowledge from a wide range of data, hoping to achieve
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better performance on unseen target domains. In addition to using real data, synthetic
datasets [24,25] are also widely used in DG. Various training augmentation [20,21] and
test augmentation methods [22,23] also fall into this category. Although DG attempts to
address the generalization problem from a more macro-perspective, the common features
extracted by DG are often weak to capture the variations in real-world scenes.

Test-time adaptation (TTA) [26–31] aims to make models adapt different conditions
during testing. TTA can deal with newly arriving data, thereby updating the knowledge
stored in the model. According to the trend of changes in the test data, TTA can be divided
into continuous TTA [32] and non-continuous TTA. Continuous TTA is specifically designed
to handle scenarios with continuous changes, making it particularly suitable for automated
vehicle perception. However, continuous TTA faces two challenges: (1) how to effectively
extract knowledge from unlabeled data, and (2) how to avoid or mitigate catastrophic
forgetting. This is because the model can be easily affected by wrong predictions and noise
during long-time adaptation.

Previous TTA approaches can be categorized into distribution alignment strategies [28–31]
and consistency learning strategies [27,32]. Distribution alignment strategies assume that
the distribution differences between two domains can be characterized by the parameters
of normalization layers. Therefore, continuous domain discrepancy alignment can be
achieved by adjusting normalization layers such as Batch Normalization (BN) [33]. How-
ever, it should be noted that not every neural network has BN layers, and fine-tuning BN
layers usually cannot accurately capture domain differences in most cases. On the other
hand, consistency learning employs semi-supervised learning by using a Mean-Teacher
architecture [34] to generate pseudo-labels for multiple augmented images based on the
teacher model and calculate the consistency loss between the student model and the teacher
model. Here, the motivation for this adaptation method is not clear, and the introduction
of test-time augmentation [22] significantly slows down the training speed. To address
catastrophic forgetting [35], stochastic parameter restore [32] and regularization [27] are
commonly used. Random parameter recovery periodically reassigns a portion of the origi-
nal model’s parameters to the current model to counteract forgetting, while regularization
attempts to constrain the model to make it less sensitive to domain changes. Although
these two methods effectively alleviate forgetting, they also conservatively limit the model.

With the rise of large-scale models [36–38], the use of prompt tuning [36] techniques
in Natural Language Processing (NLP) has been introduced to computer vision as a highly
promising direction. Prompt allows for the preservation of the original model while using
additional learnable parameters to handle the features of newly encountered data [39].
Recently, some studies have proposed the concept of Visual Domain Prompt to address
domain gaps [40–42], but they often focus on classification tasks. There is also the problem
that domain prompts lack clear meaning (as is shown in Figure 1). It is worth noting that
the prompt holds great potential for building domain cues for models, which will help
acquire knowledge from unlabeled data, and persistent prompts with additional learnable
parameters are expected to alleviate the forgetting.

We believe that the domain gap is the fundamental reason for increased uncertainty in
model predictions. The role of the prompt should be to guide the model’s attention to areas
of high uncertainty, thereby helping the model achieve stability during testing. To address
this problem, we propose a Uncertainty-based Self-Prompting (USP) method to assist the
model to adapt during testing. The method still utilizes the Mean-Teacher architecture,
where the teacher model not only generates pseudo-labels but also produces uncertainty
maps. Then, the testing images, uncertainty maps and the prompt module are collectively
used as visual prompts for the student model’s computation. This method effectively guides
the model to focus on regions with high uncertainty (i.e., areas with significant domain
differences) and helps the model explore cross-domain information. Regarding alleviating
forgetting, we do not follow VPT [39] (this method freezes the backbone and only trains the
prompt and segmentation heads) and adjust all the parameters. Additionally, after each
adaptation, the prompt module updates the next prediction’s prompt using the exponential
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moving average (EMA) technique. We compared our algorithm with six other online
TTA algorithms, one continuous TTA algorithm [32] as well as five applied on intelligent
vehicle segmentation methods. Specifically, we conduct experiments on three benchmarks
(Cityscapes [43], Foggy and Rainy-Cityscapes [7], and ACDC [9]) and demonstrate its
superiority in terms of accuracy and efficiency. The structure of the paper is as follows.
In Section 3, we describe the detail of our method, including an uncertainty prompt and
domain prompt update strategy, etc. In Section 4, we set TTA and CTTA experiments to
compare the performance of our method with other state-of-the-art methods; then, the
ablation studies and discussion are conducted in Section 5.

Our contributions can be summarized as follows:

• We propose a self-prompted test-time adaptation method based on uncertainty, which
does not require any prior knowledge, and effectively directs the model’s attention
to domain gap adaptation. At the same time, our method effectively improves the
anti-forgetting ability and maintains effective performance over multiple rounds of
continuous adaptation.

• Our proposed method surpasses six previous online TTA methods and one continuous
TTA semantic segmentation method, demonstrating its effectiveness in cross-domain
learning.

Figure 1. The main idea of proposed method. In The different colors here represent different types
of prompt modules and the distribution of prompt values in the image. The original Visual Domain
Prompt method shown in (a), the prompt does not provide explicit location information and meaning,
making it difficult to interpret. We proposes a self-prompting strategy based on uncertainty shown
in (b). It utilizes regions with high uncertainty as prompts for identifying domain gaps and guides
the model to cross the domain. Thus, the domain prompt possess explicit regional meanings and
domain cues.

2. Related Work
2.1. Road Scene Semantic Segmentation

There have been numerous studies on understanding road scenes using deep learning
methods. A survey [6] highlights the importance of semantic segmentation in autonomous
driving scene understanding. DSiV [4] and [44] integrate visual data into the field of
autonomous driving data science. Building upon these works, [45] proposes a hierarchical
and interpretable approach to autonomous driving, providing a multi-scale perspective
for future research. FCIS [46] introduces an instance-level pixel inference method for
more accurate contour detection, while [47] presents a scene-adaptive multi-scale semantic
perception framework for 3D semantic segmentation, estimating spatial occupancy in the
scene. MPCNet [48] proposed a multi-pool contextual segmentation network with high
speed. FT-Net [49] tries to use few-shot learning to improve segmentation results. However,
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these methods do not consider the segmentation performance under adverse imaging
conditions and need to improve adaptability to scene variations.

2.2. Domain Adaptation

Domain adaptation aims to transfer knowledge from one (source) domain to another
(target domain). Typically, labels in the source domain are easily obtained, such as synthetic
data (e.g., GTA5 [50] and SYNTHIA [51]) and annotated real data (e.g., Cityscapes [43]),
while labels in the target domain are difficult to acquire. This leads to a poor generalization
of models trained on the source domain datasets [52]. Early domain adaptation methods
primarily used generative adversarial networks [53], treating the domain gap as perturba-
tions or noise, trying to align the two domains through regularization [11,12,54]. However,
this approach was too coarse in computing discriminative probabilities. Subsequently,
many works attempted contrastive learning for domain adaptation, using the source do-
main as a reference to guide model learning in the target domain. DISE [55] separates
image features into domain-invariant and domain-specific features. ProDA [56] utilizes
prototypes for learning. DAFormer [10] is the first to introduce the Transformer [57] into
domain adaptation tasks and adaptively adjusts the target domain loss weights during
training to guide capability transfer. HRDA [17], built upon DAFormer, integrates high-
resolution attention prediction. MIC [18] introduces masked learning [58], aiming to let
the student model recover the masked spatial structure and enhance spatial consistency in
domain adaptation. ALST [59] summarizes the domain adaptive segmentation algorithms
applied to intelligent vehicles. However, domain adaptation still relies on offline learning
and struggles with the contradiction between unlimited test data and limited training data.

2.3. Test-Time Adaptation

Test-time adaptation (TTA) aims to make models adapt to newly coming data during
testing. Theoretically, TTA enables infinite testing data be used for training, achieving
lifelong learning [60]. During TTA, no source domain data are needed, forcing the TTA
algorithm to self-supervised train entirely in the target domain. The initial challenge
for TTA is how to acquire knowledge from unlabeled test data. Some approaches use
generative models for feature alignment [61], while others utilize regularization methods
to fine-tune existing models [28,29]. For instance, TENT [28] adjusts the BN layer through
entropy minimization. Another problem in TTA is overcoming the forgetting [35] caused by
continuous training. Some approaches employ periodic replay-based correction [62], while
most methods adopt regularization techniques [27,30,31] aiming to constrain the model’s
attention to domain-invariant robust features, reducing interference from erroneous details.
CoTTA [32] tackles the scenario of continuous domain changes by developing a domain
adaptation architecture suitable for any model. It mitigates forgetting by utilizing random
parameter restoration and improves performance on the testing set through test-time
augmentation and weight-averaged teacher knowledge collection. Nonetheless, these
methods lack an explicit handling of domain discrepancy in their motivations, resulting in
weakness when address the difficult challenges posed by domain gaps.

2.4. Visual Domain Prompt

Prompt originated from large-scale natural language processing models [36] and
has been introduced to the computer vision domain. In NLP, prompts are commonly
presented as questions or fill-in-the-blank forms, aiming to guide the model to recover
the missing parts. Therefore, early applications of prompts in computer vision with large
models were primarily task prompts [38,63], attempting to guide the models to complete
the desired tasks through task examples. Subsequently, some works attempted to tune
the models using prompts. VPT [39] introduced learnable parameters into prompts and
achieved good optimization results with freezing the backbone network. Later, DePT [41]
incorporated the idea of VPT into TTA by adding prompts to the memory pool for feature
aggregation. VDP [40] first proposed the concept of Visual Domain Prompt, which froze
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the model’s backbone, utilized learnable parameters to randomly mask the model, and
set domain-specific and domain-agnostic prompts. However, this kind of prompt still
lacks interpretable domain specificity. SVDP [64] employed uncertainty maps generated by
MC-Dropout to guide the model to focus on areas with significant domain discrepancies
sparsely. SVDP [64] enables prompts to possess domain-aware properties for the first time.
In this paper, we use entropy to represent uncertainty, with the predicted image, entropy
map and learnable parameters as components of the Visual Domain Prompt, enhancing the
model’s ability to fuse global domain discrepancy features.

3. Method
3.1. Preliminaries
3.1.1. Test-Time Adaptation (TTA)

TTA aims to utilize a pretrained model on the source domain (XS, YS) to adapt to
unlabeled and potentially differently distributed, XT1 , XT2 ... XTn during testing, where

XTi =
{

xT
i
}Nt

i=1, Nt represent the scale of the target domain. The overall training only has
access to target domain data once and cannot access the source domain. The target domain
for TTA can be a single one or multiple continually changing unknown domains (CTTA)
with the latter more in line with that of the real world.

3.1.2. Visual Domain Prompt

VDP [40] first introduced Visual Domain Prompt to serve the continual adaptation of
classification tasks. Specifically, VDP(p) is a dense set of learnable parameters added to the
input image:

x̃ = x + p (1)

3.2. Overview

We try to let the model handle the domain gap according to uncertainty by itself.
The overall framework is shown in Figure 2, which still adopts the Mean-Teacher [34]
architecture, in which a robust weighted-averaged teacher model fθT generates prompts by
the uncertainty, thus guiding the student model (main model) fθS to reinforce learning in
regions with significant domain differences. Our approach is a compromise between the
Dense Rectangular Prompt (VDP) [40] and the Sparse Prompt (SVDP) [64]. To mitigate the
overconfidence of the model (where high uncertainty does not necessarily mean wrong
predictions), prompts are randomly dropped, referred to as Prompt Dropout. After each
testing adaptation, the parameters of the current prompt are transferred next time using an
Exponential Moving Average (EMA) [65], which is shown in Figure 3. Following previous
work [32,64], the loss function still employs consistency loss between the student output
and pseudo-labels generated by the teacher model. Concretely, the original target images
will undergo strong augmentation to obtain a pseudo-label, and the entropy of teacher’s
prediction will be the original hint. Next, the uncertainty-based prompt module will
process the prompt features, which are then randomly dropped. Finally, the prompt will
be added on the original image. During the test-time adaptation, the prompt module will
be updated by a historical version of the last iteration. After being prompted, the student
model will pay more attention to high-entropy regions and attempts to restore the original
image features compared to the pseudo-label, achieving similar effects to Masked Image
Learning.



Remote Sens. 2024, 16, 1239 6 of 23

Figure 2. The overall pipeline. (a) The training TTA with uncertainty-based self-prompt. (b) The
testing TTA pipeline. The prompt module will process the entropy of the segmentor and re-input the
prompted image. The blue lines represent the data flows and modules related to the teacher model,
the green lines represent the data flows and modules related to the student model, and the yellow
lines indicate the data flows of the modules.

Figure 3. Domain prompt updating.

3.3. Uncertainty Prompted and Dropout

For single test data xt, we adopt Shannon entropy [66] H(ŷ) of the teacher prediction
H(ŷ) = −∑c fθT (ŷ) log fθT (ŷ) as a measure of uncertainty. During the adaptation process,
the weighted-averaged teacher model fθt accumulates knowledge, allowing its entropy
distribution to express the model’s adaptability to the current target domain. In sparse
(or image-level) tasks such as classification, optimizing the loss function with respect to
entropy may result in the model assigning probability to all classes [28]. However, in dense
(or pixel-level) tasks like semantic segmentation, the distribution of entropy possesses clear
spatial properties. Furthermore, our method treats entropy merely as a prompt without
considering its specific semantic information, thereby facilitating the model to conduct
more targeted optimization.

After obtaining the entropy map H(ŷ), we employ a prompt module E consisting of
convolutional layers to jointly process with the image xt. Specifically, we concatenate the
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entropy map as the fourth channel of xt and then encode the image and the entropy map to
the prompt feature f:

f = E([xt, H(ŷ)]) (2)

Although the entropy indicates where the model should pay more attention, high
entropy cannot confirm the model’s predictions here are incorrect. To avoid over-fitting,
we employ random dropout, which proposed stochastic abandon uncertain features in f.
Specifically, we generate a mask M using the Bernoulli distribution with probability p and
randomly drop out features from f that exceed a certain threshold τ.

M ∼ Bernoulli(p) (3)

pr,c =

{
fr,c Mr,c = 1 ∪ fr,c < τ
0 Mr,c = 0 ∩ fr,c > τ

(4)

where the r and c are the row and column number of H(ŷ), respectively. The processed
prompts are added to the image, constituting the final image which will be fed into the
main model. Thus, the domain information will be encoded:

x̃T = xT + p (5)

3.4. Domain Prompt Updating

We follow prior works [10,34,64] to perform exponential moving average (EMA) [65]
parameter updates between teacher–student networks and the prompt module, which
is shown in Figure 3. We believe that the knowledge in the prompt module should be
temporally updated, and the degree depends on the current mean entropy value. If it is
small, the prompt should be relatively stable, and more weights from previous iterations
should be reserved. The parameters θt

T of teacher model are updated by θt
S of the student

model by Equation (6):

θt+1
T = αθt

T + (1 − α)θt
S (6)

For the prompt module E, we hope it can accumulate temporal information and not
be limited to encode the domain information of the current image; thus, more domain-
invariant features can be encoded as well as the relationship underlying the uncertainty
map H(ŷ) and the original image xT . Therefore, we follow SVDP [64] to update the prompt
module based on the image-level uncertainty. We assume that if the uncertainty π(xT) is
low, there is a higher probability of accurate predictions, and thus minimal modifications
are needed for the prompt module and vice versa. Here, we use Equation (8) to define the
EMA hyper-parameter in Equation (7), which is also shown in Figure 3.

Et = λEt−1 + (1 − λ)Et (7)

λ = 1 − (π(xT))× 0.01 (8)

3.5. Loss Function

Like previous TTA methods [32,64], we utilize the teacher model fθT to generate
pseudo-labels ŷT which are then refined through test-time augmentation [23] and confi-
dence filtering. Subsequently, we employ the pixel-wise cross-entropy consistency loss as
the objective function for optimization.

Lcon(x̃T) = −
W,H

∑
w,h

C

∑
c=1

ŷT(w, h, c) log ỹT(w, h, c) (9)
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where C means the number of categories and ỹT is the output of the student model fθS .
When applying test-time augmentation, this function will execute multiple times to com-
plete the consistency training between the original image and several augmented images.

4. Results
4.1. Task Settings
4.1.1. TTA and CTTA

Both tasks aim to make the pretrained model on the source domain adapt the unseen
target domains. During adaptation, the source domain is inaccessible, and the data from
the target domain can only be accessed once. The basic setting of continual test-time
adaptation (CTTA) is similar to TTA, but it involves a continuously changing target domain
sequence, which introduces additional challenges. For facilitating reading, the design of all
the experiments is shown in Figure 4.

4.1.2. Cityscapes-to-ACDC

In all the TTA scenarios, we use Cityscapes [43] as the source domain to pretrain
the model. ACDC [9] is a semantic segmentation benchmark specifically designed for
cross-domain learning tasks. It comprises four challenging conditions: fog, rain, snow, and
night. For the TTA task, our approach will make each pretrained model individually adapt
to each scene. In case of CTTA, we follow previous work [32,64] and simulate real-world
variations by repeating the same sequence of target domains (Fog→Night→Rain→Snow)
multiple times. As the ACDC dataset is constructed by extracting video frames, it inherently
possesses the attribute of temporal continuity.

4.1.3. Citsycapes-to-(Foggy and Rainy) Citsycapes

These two datasets [7] apply synthetic fog and rain to Cityscapes [43] images. Com-
pared to ACDC [9], Foggy and Rainy Cityscapes are more difficult due to the larger density
of adverse condition factors. Following the previously mentioned TTA configuration, we
adapt the model to each scene individually.

4.2. Dataset and Metrics

The datasets are listed in Table 1. Cityscapes is only used to train the source domain
model and does not participate in the adaptation process. The remaining datasets serve
as benchmarks for evaluating the performance. TTA tasks differ from other tasks in that
all images in its training set will be passed in once as “test data”, so the model needs
to be evaluated on its training set images. The Foggy and Rainy Cityscapes dataset
contained images with various levels of synthetic adverse conditions, and only the lightest
2975 training images were selected for evaluation. The ACDC dataset is divided into
subsets of four weather types, each of which includes about 400 and 100 labeled images
in the training and validation set, respectively. We use the mIoU (mean Intersection over
Union) and mAcc (mean accuracy) as the evaluation metrics. Assuming there are a total of
k + 1 classes, in which 1 is the background class, and pij represents the number of pixels
labeled as class i and predicted as class j; then, mIoU and mAcc can be calculated as follows:

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(10)

mAcc =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij

(11)
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Table 1. The datasets used.

Dataset Scenario Labelled Images Number of Label Used Experiment Purpose

Cityscapes Autonomous Driving in clear scene 2975(train)/500(val) 2975(for train source) not involved in testing
Foggy Cityscapes Autonomous Driving in synthetic foggy scene 2975(train)/500(val) 0(TTA)/2975(for evaluation) Test the performance of TTA
Rainy Cityscapes Autonomous Driving in synthetic rainy scene 2975(train)/500(val) 0(TTA)/2975(for evaluation) Test the performance of TTA

ACDC-Fog Autonomous Driving in real foggy scene 400(train)/100(val) 0(TTA)/400(for evaluation) Test the performance of TTA
ACDC-Rain Autonomous Driving in real rainy scene 400(train)/100(val) 0(TTA)/400(for evaluation) Test the performance of TTA

ACDC-Night Autonomous Driving in real nighttime scene 400(train)/106(val) 0(TTA)/400(for evaluation) Test the performance of TTA
ACDC-Snow Autonomous Driving in real snowy scene 400(train)/100(val) 0(TTA)/400(for evaluation) Test the performance of TTA

4.3. Experiment Workflow

In Figure 4, we show the idea of the whole experiment. In order to explore the
USP proposed in this paper, we divided the experiment into two parts. The first part
includes the Verification experiment, which compares the performance of our USP with
other methods, including the performance comparison results under three experimen-
tal settings. This section corresponds to Tables 2–5 and Figure 5. The second part in-
cludes the Exploration experiment, which mainly explores the function of each subcom-
ponent (Table 6), and the influence of hyper-parameters (Figures 6 and 7) and prompt
module structure on the performance (Table 7). We then highlight the visualizations of
the prompt module (Figures 8 and 9), show the influence of augmentation (Table 8 and
Figure 10) and explain the reasons for not using the existing large-scale segmentation model
(Figure 11 and Table 9). Finally, we show some drawbacks of our methods (Figure 12) and
analyze the possible reasons. All acronyms are shown in Nomenclature section.

Figure 4. Experiment workflow.
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Table 2. Performance comparison of Cityscapes-to-ACDC TTA. We use Cityscape as the source
domain and ACDC as the four target domains in this setting. Source domain data are unavailable,
while target domain data are only accessed once during testing. The best performance data is shown
in bold.

Test-Time Adaptation Source2Fog Source2Night Source2Rain Source2Snow
Mean-mIoU↑

Method REF mIoU↑ mAcc↑ mIoU↑ mAcc↑ mIoU↑ mAcc↑ mIoU↑ mAcc↑

ERFNet TITS2018 [67] 61.3 71.1 28.4 41.6 47.6 61.0 51.8 62.7 47.3
IAL TITS2019 [68] 64.0 74.8 34.5 46.3 52.8 67.2 54.0 66.4 51.3

SegFormer NeurIPS2021 [57] 69.1 79.4 40.3 55.6 59.7 74.4 57.8 69.9 56.7
TENT ICLR2021 [28] 69.0 79.5 40.3 55.5 59.9 73.2 57.7 69.7 56.7

CoTTA CVPR2022 [32] 70.9 80.2 41.2 55.5 62.6 75.4 59.8 70.7 58.6
MLFNet TIV2023 [69] 68.4 77.3 39.2 54.1 60.8 72.3 56.3 68.2 56.2

EIE TITS2023 [70] 70.2 79.1 40.5 55.0 60.2 72.1 58.6 70.3 57.4
DePT ICLR2023 [41] 71.0 80.2 40.9 55.8 61.3 74.4 59.5 70.0 58.2
VDP AAAI2023 [40] 70.9 80.3 41.2 55.6 62.3 75.5 59.7 70.7 58.5

SVDP ICCV2023 [64] 72.5 81.4 45.3 58.9 65.7 76.7 62.2 72.4 61.4
USP Ours 73.2 82.1 44.9 59.4 66.4 77.0 63.2 72.8 61.9

Table 3. Performance comparison for Cityscape-to-ACDC CTTA. We take the Cityscape as the
source domain and ACDC as the fourtarget domains. During testing, we sequentially evaluate the
four target domains multiple times. Mean is the average score of mIoU for all times. Gain refers to
the improvement achieved by the method compared to the source model. The best performance data
is shown in bold.

Time t————————————————————————————————->

Round 1 2 3
Mean Gain

Method REF Fog Night Rain Snow Mean Fog Night Rain Snow Mean Fog Night Rain Snow Mean

ERFNet TITS2018 [67] 61.2 28.4 47.5 51.8 47.2 61.2 28.4 47.5 51.8 47.2 61.2 28.4 47.5 51.8 47.2 47.2 -
IAL TITS2019 [68] 64.0 34.4 52.8 54.0 51.3 64.0 34.4 52.8 54.0 51.3 64.0 34.4 52.8 54.0 51.3 51.3 -

MLFNet TIV2023 [69] 68.4 39.3 60.9 56.3 56.2 68.4 39.3 60.9 56.3 56.2 68.4 39.3 60.9 56.3 56.2 56.2 -
EIE TITS2023 [70] 70.1 40.3 60.3 58.5 57.3 70.1 40.3 60.3 58.5 57.3 70.1 40.3 60.3 58.5 57.3 57.3 -

SegFormer NeurIPS2021 [57] 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 56.7 -
TENT ICLR2021 [28] 69.0 40.2 60.1 57.3 56.7 68.3 39.0 60.1 56.3 55.9 67.5 37.8 59.6 55.0 55.0 55.7 -1.0

CoTTA CVPR2022 [32] 70.9 41.2 62.4 59.7 58.6 70.9 41.1 62.6 59.7 58.6 70.9 41.0 62.7 59.7 58.6 58.6 +1.9
DePT ICLR2023 [41] 71.0 40.8 58.2 56.8 56.5 68.2 40.0 55.4 53.7 54.3 66.4 38.0 47.3 47.2 49.7 53.4 -3.3
VDP AAAI2023 [40] 70.5 41.1 62.1 59.5 58.3 70.4 41.1 62.2 59.4 58.2 70.4 41.0 62.2 59.4 58.2 58.2 +1.5

SVDP ICCV2023 [64] 72.5 45.9 67.0 64.1 62.4 72.2 44.8 67.3 64.1 62.1 72.0 44.5 67.6 64.2 62.1 62.2 +5.5
USP Ours 74.2 44.6 67.4 64.5 62.7 74.1 44.6 67.3 64.2 62.5 74.1 44.6 67.0 63.8 62.3 62.5 +5.8

Table 4. Comparison of performance between models trained with USP and without USP on the four
target domains. The best performance data is shown in bold.

Sky Road Build Veget. Train Car Terrain Truck S.walk Rider Tr.Sing Tr.Light Bus M.Bike Wall Person Pole Bike Fence mIoU

S2Fog

w/o
USP 98.1 90.6 88.3 84.3 82.6 89.4 73.5 77.9 80.4 76.9 79.3 69.4 78.6 55.8 60.1 59.9 49.3 30.3 23.3 70.9

w/
USP 98.8 93.5 87.2 81.4 88.9 92.6 77.4 80.1 79.5 81.2 80.1 75.2 77.1 56.9 63.4 60.2 44.7 40.8 32.5 73.2

S2Night

w/o
USP 37.9 76.4 68.3 65.7 32.9 72.1 38.4 15.3 50.3 20.3 56.7 35.4 42.9 26.4 6.60 54.4 38.3 33.8 10.2 41.2

w/
USP 44.6 75.1 79.2 48.3 50.3 68.9 41.2 26.4 50.1 25.2 37.0 15.8 40.3 31.5 29.4 55.9 37.1 47.6 18.3 44.9

S2Rain

w/o
USP 96.4 83.1 85.4 92.6 76.5 84.3 41.8 65.9 45.4 22.1 67.3 62.4 58.7 49.7 44.7 57.7 52.1 56.3 47.5 62.6

w/
USP 97.9 88.2 90.4 91.0 79.4 88.9 43.0 61.0 55.4 45.3 62.1 62.4 82.3 42.8 60.3 58.9 51.8 57.0 41.0 66.3

S2Snow

w/o
USP 94.7 81.3 83.7 89.4 78.3 87.8 10.3 54.9 49.8 43.1 64.2 65.4 51.9 37.5 35.3 64.1 47.0 57.1 40.8 59.8

w/
USP 96.9 84.1 84.2 85.3 87.1 88.9 25.6 53.5 37.4 55.3 62.4 70.3 74.1 39.2 28.5 61.6 51.3 61.7 53.2 63.2
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Table 5. Cityscapes to (Foggy and Rainy) Cityscapes TTA performance comparison. The best
performance data is shown in bold.

Foggy SegFormer TENT CoTTA DePT VDP SVDP USP

mIoU 69.2 69.3 72.1 71.9 71.8 74.5 76.2

mAcc 79.1 79.0 79.4 80.2 80.0 82.3 84.3

Rainy SegFormer TENT CoTTA DePT VDP SVDP USP

mIoU 58.4 58.7 62.4 61.2 63.7 65.3 65.3

mAcc 71.5 71.4 74.0 72.4 73.1 75.6 77.7

Table 6. Ablation: ✓ indicates that the component is being used in the current experiment. Contribu-
tion of each component.

TS 1 USP 2 DPU 3 P-Drop 4 mIoU mAcc

Ex1 69.1 79.4
Ex2 ✓ 69.4 79.6
Ex3 ✓ ✓ 72.4 81.2
Ex4 ✓ ✓ ✓ 72.9 81.2
Ex5 ✓ ✓ ✓ 73.0 81.8
Ex6 ✓ ✓ ✓ ✓ 73.2 82.1

1 teacher–student framework. 2 uncertainty-based prompt. 3 domain prompt updating. 4 prompt dropout.

Table 7. The effect of different prompt module architecture. We design four prompt modules with
different number of parameters.

Prompt Module

City-to-ACDC(fog) TTA

Architecture

Prompt|S Prompt|M Prompt|L Prompt|H

Encoder

 Conv 3 × 3 8

Conv 3 × 3 32




Conv 3 × 3 8

Conv 3 × 3 32

Conv 3 × 3 64




Conv 3 × 3 8

Conv 3 × 3 32

Conv 3 × 3 64

Conv 3 × 3 96




Conv 3 × 3 8

Conv 3 × 3 32

Conv 3 × 3 64

Conv 3 × 3 128



Decoder



Conv 3 × 3 8

Conv 3 × 3 32

Dropout

Sigmoid

ReLU





Conv 3 × 3 32

Conv 3 × 3 8

Conv 3 × 3 3

Dropout

Sigmoid

ReLU





Conv 3 × 3 64

Conv 3 × 3 32

Conv 3 × 3 8

Conv 3 × 3 3

Dropout

Sigmoid

ReLU





Conv 3 × 3 96

Conv 3 × 3 64

Conv 3 × 3 32

Conv 3 × 3 3

Dropout

Sigmoid

ReLU


mIoU 73.9 73.2 73.2 73.8

mAcc 81.4 82.1 82.0 81.8
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Table 8. Impact of various data augmentation methods on TTA performance (evaluated by mIoU).

Augmentation TTA

Configuation

M-S 1 R.H 2 R.B 3 R.S 4 R.C 5 Fog Night Rain Snow

✓ 70.9 41.2 62.6 59.8

✓ 71.4 41.9 63.0 61.1

✓ 71.2 42.3 62.8 60.3

✓ 71.5 42.1 63.1 61.5

✓ 71.8 42.0 62.9 60.7

✓ ✓ ✓ ✓ ✓ 73.2 44.9 66.4 63.2
1 multi-scale resizing. 2 random hue. 3 random brightness. 4 random saturation. 5 random contrast.

Table 9. Comparison of performance and running speed between SegFormer-based models and
SAM-based models.

SegFormer-Based SAM-PT 1 SAM-FT 2

Memory (Bs = 1, GB) 6–8 15–20

Speed (FPS) 6–7 1–2

mIoU (City|40,000 3) 80.2 18.3 16.4

1 prompt tune SAM by VPT [39]. 2 fine-tune SAM by traditional ways. 3 after training 40,000 iterations on
Cityscapes [43] dataset.

Image CoTTA IAL MLF SVDP USP (ours) GT

Figure 5. Performance comparison. We conduct test-time adaptation on the ACDC [9] dataset. Color
blocks are assigned according to Cityscapes benchmark. The scenes from top to bottom are foggy,
rainy, snowy, and nighttime, respectively. Intuitively, our method can better recognize sidewalks in
the images, which is valuable for autonomous driving. Additionally, in the rain images with more
noise, our method exhibits stronger anti-interference capability and produces less uncertainty in the
segmentation results.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Dropout probability p

70.5

71.0

71.5

72.0

72.5

73.0

73.5

m
Io

U 
%

Figure 6. Ablation of dropout probability p. Here, the performance will peak when p = 0.5. When
p → 0 or p → 1, the performance degrades to baseline.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Dropout threshold (fix p=0.5)

70.5

71.0

71.5

72.0

72.5

73.0

73.5

m
Io

U 
%

Figure 7. Ablation of dropout threshold τ. When fixing p = 0.5, the performance will peak at 0.85.
When τ → 1, the performance still remains high.

Figure 8. Visual effect of prompt. After the entropy map generated by the teacher model, the prompt
module will process and attach it to the input. The yellow box line marks the change of attention
of the prompt module to entropy processing, while the red box line marks the visual effect of the
prompt module combined with the original image.
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Figure 9. Impact of USP to attention of model. The predictive entropy and attention maps output by
models trained with and without the USP method. The model trained using USP has lower entropy
and a more even distribution of attention, thereby indicating the model has better generalization.

Figure 10. Augmentation examples. We set six scaling parameters to produce images of various
sizes and randomly applied four types of data augmentation techniques at each scale.

Input SAM-PT GT

Figure 11. Performance of prompt-tuning SAM.
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Figure 12. Failure case in the three round of continuous TTA process. Color blocks are assigned
according to Cityscapes benchmark. For the entropy maps, the brighter the color, the higher the value
at that pixel.

4.4. Implementation Details

We followed the basic implementation details in [32,64] to set up our semantic seg-
mentation TTA experiment based on a segmentation framework [71]. Specifically, we
used the SegFormer-B5 [57] model pretrained on Cityscapes [43] as our source model.
In terms of data, we down-sampled the 1920 × 1080 images to 960 × 540 as input. We
also used the Adam optimizer [72] with (β1, β2) = (0.9, 0.999), set the learning rate to
3 × 10−4 and set the batch size to 1. During the TTA process, we employed the same
test-time augmentation strategy as SVDP [64]. The prompt module is designed with an
Encoder–Decoder architecture consisting of eight convolutional layers (will be explained in
detail in Section 5.2), producing neural prompt points with three channels as output. We
set the hyper-parameters: EMA update coefficient α = 0.99 (in Equation (6)), randomly
dropout probability p = 0.5 (in Equation (3)) and high entropy threshold τ = 0.85 (in
Equation (4)). The ablation study will be shown in Section 5.3. All experiments were
conducted on NVIDIA Tesla V100 GPUs.

4.5. Performance Comparison
4.5.1. Cityscapes-to-ACDC TTA

We evaluate our TTA method on the four individual adverse-condition subdatasets of
ACDC [9], as shown in Table 2. The original ERFNet [67], IAL [68], MLFNet [69], EIE [70]
and SegFormer [57] were only trained on the source domain and exhibited its inherent
generalization across the four scenarios. The above algorithms, which are already suitable
for intelligent vehicles, show a performance decline in each of these adverse scenarios.
TENT [28] employed a relatively simple domain alignment approach, leading to some
degree of under-fitting. CoTTA [32] achieved performance improvement due to the strongly
augmented contrast learning during testing. Compared with CoTTA, our method achieved
a 2.3% and 1.9% increase in mIoU and mAcc under Fog weather, indicating our method’s
stronger ability to handle the domain gap. In night, rain, and snow conditions, our method
also outperformed CoTTA by 3.7%, 3.8% and 3.4%, respectively. Although SDVP [64] is a
formidable competitor in this study, it had a slight deficiency in the night scene due to the
entropy distribution not being as accurate as in the day scene, especially sky and vegetable
categories.

4.5.2. Citsycapes-to-(Foggy and Rainy) Citsycapes TTA

We also evaluate our method on more challenging Foggy and Rainy Cityscapes [7],
as shown in Table 5. We no longer compare ERFNet [67] and similar algorithms; only the
strongest SegFormer is represented. We observe a similar trend to Cityscapes-to-ACDC
TTA. Our approach significantly outperforms the baseline method CoTTA by 4.1% and
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3.1% in Foggy and Rainy scenes, respectively, demonstrating its ability to generalize well
in rainy and snowy scenes.

4.5.3. Cityscapes-to-ACDC CTTA

Finally, we repeate the four adverse-condition scenarios of ACDC multiple times to
simulate continuous change and evaluate the forgetting resistance, as shown in Table 3. In
the three rounds, “Source” freezes the original ERFNet [67], IAL [68], MLFNet [69], EIE [70]
and SegFormer [57] pretrained weight, so the performance remained consistent. TENT [28]
and DePT [41] showed noticeable degradation because their parameters were continuously
influenced and perturbed by the new data. It is worth noting that the structure of DePT [41]
is not very suitable for the dense prediction task of TTA because the memory pool cannot
meet the requirements. With the benefit of stochastic parameter restoration, CoTTA [32]
maintained stable performance without obvious degradation. VDP [40], which completely
froze the original model and only modified the prompt, also maintained good performance.
However, it was not specifically designed for dense prediction tasks, so its performance
was not as good as CoTTA. SVDP [64] has good performance by sparse prompts, but it also
experienced obvious degradation (such as “fog”, mIoU from 72.5 to 72.0). On one hand, our
method improved by 5.6% over the CoTTA baseline during the three adaptation rounds.
On the other hand, our method has surpassed SVDP comprehensively (including night
scenes) from the third adaptation round, demonstrating its good adaptability and stability.

5. Discussion
5.1. Effectiveness of Each Component

In Table 6, we design six experiments to explore the contributions of each component.
They are conducted in the Cityscapes-to-ACDC (fog) TTA scenario. TS, USP, DPU, and
P-Drop represent the adoption of teacher–student architecture [34], uncertainty-based
prompt, domain prompt updating, and prompt dropout, respectively. Ex1 does not em-
ploy any TTA strategy, meaning it uses the pretrained model of SegFormer. Ex2 utilizes
the teacher–student mode, which refers to weight-averaged teacher [34]. Ex3 adds the
uncertainty-based prompt on top of Ex2, and Ex4 includes domain prompt updating. Ex5
randomly applies dropout to USP. Ex6 represents the complete configuration. It can be
seen that after the adoption of USP, the model’s performance improves the most, reaching
up to 3.0%, compared to using only TS. Furthermore, the model’s performance increases by
0.5% and 0.1% when DPU and P-Drop are employed. This indicates that USP, as the core
innovation, effectively utilizes uncertainty to guide the model toward better generalization.
Since the ACDC [9] dataset exhibits a relatively uniform distribution with smooth change,
the uncertainty within the same subset fluctuates within a certain range. Therefore, the
knowledge provided by the previous prompt module has limited impact. After all con-
figurations are added, no interference between modules happened, resulting in optimal
performance.

5.2. How Does Prompt Architecture Affect the Performance?

We have explored the effect of prompt’s architecture. The experiments were conducted
on the Cityscapes-to-ACDC (fog) TTA dataset. We have also observed similar phenomena
in other scenes. The prompt module mainly includes convolutional layers and is divided
into four architectures: small, medium, large, and huge, based on the number of parameters.
The meanings in Table 7 represent the size of the convolutional kernel and the number of
output channels. The prompt module will process the entropy map and target image to
output three-channel images that can be compatible to input. As shown in Table 7, the
best results are achieved by Prompt_M, which only contains 0.04 M parameters, indicating
that prompt generation can be accomplished using parameters by adding 1–2%. The table
also demonstrates that more parameters do not necessarily lead to better performance.
Excessive parameters may result in over-fitting to the image information. Additionally,



Remote Sens. 2024, 16, 1239 17 of 23

due to the weak gradient propagation, it is not advisable to use a deep architecture for the
prompt module.

5.3. How Do the Hyper-Parameters Affect the Performance

In our USP framework, there are two hyper-parameters, which are included in
Equations (3) and (4): the probability p for randomly dropout prompts and the proba-
bility τ for retaining prompt features. Both these parameters have a certain peak-like
property, meaning that being set too small will affect the regularization, while be set too
large can render the prompt module almost ineffective. We conducted experiments on the
Cityscapes-to-ACDC (night) dataset, as shown in Figures 6 and 7, to explore the effects
of these two hyper-parameters. For p, the range is (0, 1). For τ, we considered (0.5, 1) as
a reasonable range based on statistical analysis of tensor values. Firstly, we fix τ at 0.75
and test different p values. We found that p = 0.5 yielded the best results. Similarly, by
fixing p = 0.5 and testing different τ values, we found that τ = 0.85 yielded the best results.
When p → 0 or p → 1, the performance of the model tends to degrade toward the baseline
CoTTA [32].

5.4. The Visual Effect of Prompt

In Figure 8, we illustrate the visual effect of the prompt. Since the prompt module
outputs a three-channel image that is difficult to distinguish after merging with the original
image, we applied some enhancement methods for visual representation. Here, the visual
domain prompt mostly preserves the distribution of entropy, placing some cues in regions
with higher uncertainty. However, the prompt module also produced some different
interpretations, such as the parts framed by the yellow boxes in the Figure 8. We believe
that these different outputs are the combined integration of entropy and image information,
which will help to produce more comprehensive judgement. For example, in the foggy
scene (1st row in Figure 8), the entropy is higher in the sky area, but the prompt module
considers it more important to focus on the ground after learning. Similarly, in the rainy
image of the second row, the entropy is high in the lawn area, but the prompt module
deems it unnecessary to pay much attention there, whereas in the snowy image of the
fourth row, the prompt module considers the nearby wall surface to be more critical. Thus,
the added prompt tries to introduce regularization to specific areas (with a larger domain
gap). In SVDP [64], this regularization is more sparse, resulting in there not being enough
cues. In VDP [40], the cues are too dense with their placement, and their meaning is unclear.
Our proposed USP applies a continuous and dense prompt, allowing the model to make
smoother predictions with considering contextual information. On the other hand, the role
of the prompt is somewhat similar to masked image modeling [58]. The teacher receives
the complete target image as input; hence, the generated pseudo-labels can be considered
complete. By adding the prompt, the image is perturbed (like being masked), and then
the student network needs to learn how to “restore” the original information, thereby
enhancing robustness.

5.5. Attention and Specific Performance Affected by USP

To further explore the impact of entropy self-prompting, we added a decoding head
to the segmentor for collecting attention information. As is shown in Figure 9, we test two
models (one that had undergone USP and one without USP) and display their predicted
entropy with attention values. The higher the attention value, the deeper the color. We can
see that the model without USP training outputs higher prediction entropy and experiences
more dramatic attention changes, reflecting the model’s sensitivity to textures, shapes, and
other information (which are easily affected by the domain gap) in the image. On the other
hand, the model has lower entropy with the attention being more evenly distributed after
the USP training, indicating the model has good adaptability to various parts, thereby
suggesting better generalization.
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In Table 4, we present the recognition performance of models trained with and without
USP across four different scenarios for each category. Corresponding to the TTA section
in Table 2, w/o USP refers to the baseline method COTTA [32]. We found that in foggy
conditions, the “road” and “train” categories achieved accuracy rates of 93.5% and 88.9%,
respectively, which are 10.5% and 8.2% higher than the baseline COTTA on the “Bike”
and “Fence” categories. In the night scene, the improvement was slightly less, with the
“Building”, “Terrain”, and “Truck” categories reaching 79.2%, 41.2%, and 26.4%, respectively.
Some declines appears, indicating that nighttime poses significant interference, which
is also reflected in other TTA methods. In the rainy condition, our method effectively
overcomes the presence of water on the ground, achieving recognition rates of 88.2% for
the “road” category, 90.4% for the “building” category, and 60.3% for the “wall” category,
which confirms the effectiveness in adjusting the model’s attention. In the snowy condition,
our method also achieved improvements in some difficult categories (such as “train” and
“bus”). Therefore, our approach is adaptable to challenging categories in the test scenarios.

5.6. The Impact of Augmentation

We use five data augmentation techniques to generate test images at different scales
for consistency learning in Section 3.5, which assists the model to better adapt the domain
gap. The first method is multi-scale image resizing, where we set six image scaling ratios of
[0.5, 0.75, 1.0, 1.25, 1.5, 1.75]. At each scale, we apply four types of transformation with a
probability of 0.5, namely random brightness, random contrast, random saturation, and
random hue. In Figure 10, we demonstrate some augmentation examples. It is shown
that some augmentation can even simulate domain gaps, which may effectively help the
model’s learning.

In Table 8, we analyzed the effects of different data augmentation methods. Permuting
and combining five different data augmentation methods is excessive and unnecessary.
Thus, we have only conducted validations on the individual effects and their combined
results. The original CoTTA [32] only employed multi-scale scaling. We achieve im-
provements by applying all the different augmentation schemes, indicating that data
augmentation methods indeed help the model achieve better adaptability.

5.7. The Case against Prompt-Tuning Large Models

Nowadays, large-scale models for computer vision (CV) are emerging one after an-
other. The prominent models in the segmentation field are the Segment Anything Model
(SAM) [37] and Painter [38] (or SegGPT [73]). SAM benefits from its extremely large training
dataset SA-1B, which leads to astonishing segmentation performance. Painter, on the other
hand, effectively utilizes in-context learning [36] and realizes high-level tasks (including
semantic segmentation, instance segmentation, depth estimation, and pose estimation) as
well as low-level tasks (rain removal, denoising, low-light enhancement) within one model.
Painter demonstrates the potential of in-context learning, and its task prompt provides
valuable insights for unifying different CV tasks in the future.

However, SAM’s segmentation results lack semantic information, and its performance
is not strong enough in adverse-condition environments [74]. Painter [38] suffers from
severe over-fitting. We attempted to use the semantic segmentation labels from the ACDC
dataset as the task prompt, but Painter produced an output for the depth estimation instead.
Therefore, it is challenging for large-scale models to surpass those specialized domain
models in a short period. Moreover, transferring large-scale models to proprietary task label
systems is both time consuming and difficult. Taking SAM as an example, it is trained using
the ViT [75] series framework (because ViT is naturally suitable for pretraining in masked
image modeling [58]). We tried both fine-tuning and prompt tuning [39] for adapting to
Citsycapes, but it was difficult (it only reached 18% mIoU after 40,000 iterations, while
SegFormer [57] easily achieves 75%+), and SAM’s fine-tuning was easily bottlenecked
due to the limited volume of Cityscapes. This indicates that the built-in segmentation
knowledge in SAM does not help the model smoothly migrate to the current high-level
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domain. On the other hand, ViT-based models are inferior to SegFormer in terms of
speed and memory consumption (as shown in Table 9). SegFormer only requires 6–8 GB of
memory for testing, while ViT-based models require 15–20 GB (batch_size = 1). Additionally,
SegFormer-based models significantly outperform ViT-based models in testing speed
(6–7 FPS vs. 1–2 FPS). Therefore, we have decided to use a SegFormer-based model instead
of fine-tuning (or prompt tuning) a large-scale model.

5.8. Limitations

Although the USP method proposed in this paper achieves good performance in the
adaptation task during testing, there are also some failure cases. The most typical example
of them comes in the dark. As shown in Figure 12, we give the test results from the first
round to the third round of adaptation. It can be seen that the test results of these three
rounds gradually deteriorate, and the overall entropy distribution becomes worse and
worse. This is because the segmentation of the night scene has already brought higher
entropy even in the initial state (T = 0), while USP is directly dependent on entropy to
explore the domain gap, which leads to the inevitable error accumulation in the exploration
process of the model. This problem is also due to the inherent difficulty of the semantic
segmentation during nighttime, needing to be further processed.

6. Conclusions

We propose a test-time adaptation framework based on uncertainty, named USP, which
utilizes a teacher–student paradigm along with separating the consistency learning process
to achieve better robustness. USP employs entropy as a measure of uncertainty to capture
areas within consecutive images that exhibit domain gaps, and then self-prompts the model,
guiding the latter to explore new knowledge. In the prompt process, we designed a prompt
module and a random dropout strategy to mitigate model over-fitting and catastrophic
forgetting. To capture temporal information, we also devised an uncertainty-based prompt
module updating method that relies on total entropy.

Experimental results demonstrate that the prompt module can effectively integrate
information from the entropy and raw images, making reasonable adjustments to the
model’s attention. Our approach outperforms current TTA algorithms on mainstream
datasets like ACDC and Foggy and Rainy Cityscapes. Ablation studies confirm that the
teacher–student module, uncertainty self-prompt module, domain prompt update strategy,
and random dropout strategy all contribute to the model’s robustness. We further explored
the hyper-parameters of dropout probability and threshold through ablation experiments
to ascertain their optimal values. In addition, we analyzed the role of test-time data
augmentation strategies, showing that data augmentation could simulate real domain
discrepancies to some extent. Lastly, we compared our method with currently popular
large-scale pretrained semantic segmentation networks, elucidating the reasons for not
fine-tuning these models. Our method is capable of mining information from unlabeled
data and combating forgetting, exhibiting good robustness and adaptability. In the future
research, we will pay more attention to the knowledge related to large models and better
utilize prompt techniques in TTA.

There are still some limitations in this study. Our research is still within the TTA
framework, requiring complex test-time augmentation operation, which greatly slows
down the running speed. Our method is also less effective when dealing with scenes with
high initial entropy, such as night. In future studies, we will try to improve the running
speed of the algorithm.
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Nomenclature
Acronyms list:

Nomenclature

DA Domain Adaptation DPU Domain Prompt Updating
DG Domain Generalization USP Uncertainty-based Self-Prompt
TTA Test-Time Adaptation VPT Visual Prompt Tuning
CTTA Continual Test-Time Adaptation GT Ground Truth

VDP Visual Domain Prompt ACDC Adverse Condition Datasets with
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