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Abstract: Single Image Super-Resolution (SISR) for image enhancement enables the generation of
high spatial resolution in Remote Sensing (RS) images without incurring additional costs. This
approach offers a practical solution to obtain high-resolution RS images, addressing challenges posed
by the expense of acquisition equipment and unpredictable weather conditions. To address the
over-smoothing of the previous SISR models, the diffusion model has been incorporated into RS
SISR to generate Super-Resolution (SR) images with enhanced textural details. In this paper, we
propose a Diffusion model with Adversarial Learning Strategy (DiffALS) to refine the generative
capability of the diffusion model. DiffALS integrates an additional Noise Discriminator (ND) into
the training process, employing an adversarial learning strategy on the data distribution learning.
This ND guides noise prediction by considering the general correspondence between the noisy
image in each step, thereby enhancing the diversity of generated data and the detailed texture
prediction of the diffusion model. Furthermore, considering that the diffusion model may exhibit
suboptimal performance on traditional pixel-level metrics such as Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity (SSIM), we showcase the effectiveness of DiffALS through downstream
semantic segmentation applications. Extensive experiments demonstrate that the proposed model
achieves remarkable accuracy and notable visual enhancements. Compared to other state-of-the-art
methods, our model establishes an improvement of 189 for Fréchet Inception Distance (FID) and
0.002 for Learned Perceptual Image Patch Similarity (LPIPS) in a SR dataset, namely Alsat, and
achieves improvements of 0.4%, 0.3%, and 0.2% for F1 score, MIoU, and Accuracy, respectively, in a
segmentation dataset, namely Vaihingen.

Keywords: diffusion model; single image super-resolution; remote sensing; adversarial learning
strategy

1. Introduction

Enhancements in satellite technologies have greatly expanded the applications of
Remote Sensing (RS) imagery in areas such as disaster relief, geology, environment, and
engineering construction [1–4]. Despite these advancements, challenges persist due to
limitations in imaging instruments and long-range shooting, resulting in RS satellite images
with resolutions that cannot fully meet the requirements for downstream applications,
especially on semantic segmentation tasks [5,6]. In contrast to focusing solely on equipment
improvement, the Single-Image Super-Resolution (SISR) [7–10] technique at the sub-pixel
level is a more cost-effective strategy. It could improve the resolution by accurately rep-
resenting the information already present in the images. In contrast to natural images,
satellite images capture surface details across wide areas with lower resolution and often
contain multispectral data. Consequently, Super-Resolution (SR) models tailored for re-
mote sensing prioritize effectively handling minor objects based on optical or multispectral
information. Recent advancements in deep-learning (DL) methods [11–13] for SISR have
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demonstrated superior performance compared to traditional approaches. These DL meth-
ods can be categorized into three groups: Convolutional Neural Network (CNN)-based
models, Generative Adversarial Network (GAN)-based methods [14], and diffusion-based
methods [15].

As the pioneering models in DL, CNN-based models [16–20] serve as baseline models
that generate SR images in an end-to-end manner. They are trained by minimizing the
difference between the SR and High-Resolution (HR) images. Notably, VDSR [21] was
groundbreaking in utilizing deep networks for effective feature expansion. Given the
potency of deep networks, several models incorporating residual learning [22,23] and
multiscale architecture [24,25] have been introduced to address the challenges associated
with training exceptionally deep networks. In the realm of RS, Feng et al. [26] developed
a lightweight CNN structure to enhance hierarchical feature learning and extract feature
representations. More recently, with the advent of the Transformer architecture, several
CNN-based models have integrated self-attention modules to facilitate global information
extraction. Both ESRT [27] and Interactformer [28] have adopted a hybrid model structure,
incorporating a CNN branch and a Transformer branch. This design aims to extract deep
features and address long-distance dependencies between similar local regions. Despite
these advancements, a notable limitation of CNN-based models arises from their primary
training strategy, which minimizes differences between SR and HR images with metrics
such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) at the pixel
level. This limitation becomes evident in the persistent issue of over-smoothing, as metrics
like PSNR and SSIM tend to favor images with high smoothness, lacking detailed texture,
over sharper images with more texture predictions.

To address the limitations of CNN-based models, GAN-based models, a kind of
generative model, have been introduced with a novel generator-discriminator training
approach. This approach enables GAN-based models to improve the SR image quality with
the additional loss function determined by the discriminator instead of merely minimizing
pixel differences between SR and HR images. The RS methods like MA-GAN [29] and
RRSGAN [30] have demonstrated quality improvements in the human judgment of GAN-
based models. However, it is crucial to note that the GAN-based models still heavily rely on
pixel-level loss, and the perceptual loss is only one aspect of the models’ training guidance,
limiting their advantages. Additionally, GAN-based models continue to face challenges [31],
including instability and model collapse issues, as highlighted in previous studies.

A cutting-edge generative model, diffusion model [15], has garnered significant atten-
tion, particularly in various computer vision tasks, with a notable emphasis on conditional
image generation. This model excels in producing images of high perceptual quality with
detailed texture generation, aligning well with the requirements of the SISR field. Diverging
from CNN-based and GAN-based models, the diffusion model focuses on learning the
data distribution rather than the feature mapping between LR and HR images. This unique
approach enables the diffusion model to restore images based on specified conditions
from random Gaussian noise images, showcasing its flexibility and effectiveness. Early
achievements in the SR task, such as SR3 [32] and SRDiff [33], represent notable applica-
tions of the diffusion model. In the domain of RS, EDiffSR [34] leveraged the diffusion
architecture and achieved commendable noise prediction performance through simplified
channel attention and straightforward gate operations, significantly reducing computa-
tional costs. EHC-DMSR [35] introduced a Fourier high-frequency spatial constraint to
emphasize high-frequency spatial loss and optimize the reverse diffusion direction.

In this paper, as the adversarial learning strategy has demonstrated the ability to
enhance data diversity and texture prediction in GAN-based models, we propose a novel
diffusion model with Adversarial Learning Strategy (DiffALS) to RS SISR. With the highly
detailed texture requirement of the RS SR task, DiffALS integrates an adversarial learning
strategy into the diffusion framework to further stimulate the detailed texture generation
capability of the diffusion model. Specifically, we employ a Noise Discriminator (ND) to
introduce an additional adversarial loss by evaluating whether the given xt−1 is real or
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fake during the training process. The pairs of real xt, real xt−1 and real xt, fake x′t−1 are
input into the discriminator for training and loss generation. The fake x′t−1 is calculated
through the real xt and the predicted noise, while the real xt−1 and xt are sampled from
{x1, · · ·, xT}, which are real noising images, where T is the total number of diffusion steps.
This adversarial learning strategy improves the data diversity generated by the diffusion
model and contributes to a more nuanced and detailed texture generation by considering
the general correspondence between the whole noising image contents, xt−1 and xt. In
addition, recognizing the limitations of traditional metrics like PSNR and SSIM, particularly
when dealing with SR tasks with high magnification factors, we adopt a novel evaluation
approach. To demonstrate that our method truly improves the image quality and accuracy
instead of just a hallucination for human perception, we leverage the downstream semantic
segmentation task, utilizing SR images’ performance in semantic segmentation to evaluate
the models. This work provides a more meaningful evaluation metric to prove that our
model surpasses its baseline SRDiff method and other comparable methods in terms of
visual quality and performance in semantic segmentation. The main contributions of this
work can be summarized as follows.

1. We introduce a novel approach named Diffusion model with Adversarial Learning
Strategy (DiffALS), which integrates the ND network into the diffusion training pro-
cess. The additional adversarial loss generated by the ND network takes into account
the relationship between adjacent noisy images, thereby guiding the training of the
CNP and fully leveraging image content information. This guidance from the ND
network enhances the detailed texture generation capability in the diffusion model;

2. To assess the model’s performance fairly, the experiment results on semantic segmen-
tation are introduced to evaluate the model performance. We utilize a pre-trained
model to perform semantic segmentation on the enhanced SR images generated by
different models. The model’s effectiveness can be further demonstrated by its supe-
rior suitability in image-related applications, considering the diverse feedback from
existing matrices;

3. Extensive experiments on three RS datasets, including two SR datasets, namely
OLI2MSI, Alsat, and a segmentation dataset, namely Vaihingen, confirm the superior
performance of the proposed method on the SR task and its downstream application
as compared to the state-of-the-art methods.

The rest of the paper is organized as follows: Section 2 describes the architecture and
training process of DiffALS, while the performance of DiffALS and other state-of-the-art
SR methods is discussed in Section 3 and Section 4. Finally, Section 5 concludes this article.

2. Methods
2.1. DiffALS Architecture

As shown in Figure 1, the architecture of DiffALS is built upon the diffusion model,
which can be partitioned into two Markovian processes: the forward process and the
reverse process.
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Figure 1. The forward and reverse process of DiffALS.
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2.1.1. Forward Process

During the forward process, Gaussian noise is applied to the HR images, transforming
the data distribution into the latent variable distribution.

q(x1, . . . , xT |x0) =
T

∏
t−1

q(xt|xt−1), (1)

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βt I), (2)

where N and I are the Gaussian distribution and the identity matrix, respectively.
{β1, . . . , βT} ∈ (1, 0) is a set of hyper-parameters that determine the strength of the noise
added at each iteration. For simplicity, we denote αt = 1 − βt and ᾱt = ∏t

n=1 αn. The
conditional distribution of xt based on x0 is

q(xt|x0) = N (xt;
√

ᾱx0, (1 − ᾱt)I). (3)

As a result, each xt can be calculated based on x0 directly with the following formula:

xt =
√

ātx0 +
√

1 − ātϵ, ϵ ∼ N (0, I), (4)

where 0 means an all-zero matrix.

2.1.2. Reverse Process

The reverse process involves eliminating noise from a noisy image and reverting the
latent variable distribution back to the data distribution. A network parameterized by θ is
trained to approximate the reverse process distribution.

pθ(x0, . . . , xT − 1|xT) =
T

∏
t=1

pθ(xt−1|xt), (5)

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), σθ(xt, t)2 I), (6)

where µθ(xt, t) and σθ(xt, t) are the mean and variance of the distribution on t step.
In order to determine the mean and variance, the evidence lower bound (ELBO) on

the log-likelihood, KL divergence, and variance reduction are applied.

E[−logpθ(x0)] ≤ KL(pθ(x0, . . . , xT), q(x0, . . . , xT)) (7)

= Eq

[
DKL(q(xT |x0)||p(xT)) + ∑

t>1
DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))− logpθ(xo |x1)

]
. (8)

For simplicity, the loss function of the diffusion process minimizes the difference
between the random initiated noise ϵ and the predicted noise ϵθ(xt, t):

Ldi f f = Ext ,t

[
||ϵ − ϵθ(xt, t)||2

]
, (9)

where ϵθ(xt, t) is the predicted noise generated by the network. As a result, the network is
named Conditional Noise Predictor (CNP).

Finally, the formula of xt−1 calculated based on xt and ϵθ(xt, t) is given by

xt−1 =
1√
αt
(xt −

βt√
1 − ᾱt

ϵθ(xt, t)) + β̃tz, z ∼ N (0, I), (10)

where β̃t is the variance of the Gaussian distribution in t diffusion step.

2.2. Conditional Noise Predictor (CNP)

CNP produces the noise that needs to be eliminated from the noisy image, serving as
the central component of the diffusion model. The process initiates with the input noise
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undergoing a convolution head, incorporating a convolution layer and Mish activation
to augment channel numbers. Subsequently, it enters the core U-Net of the CNP, where
it undergoes processing alongside the output of a pre-trained feature extraction model
and diffusion timesteps t ∈ {1, 2, · · ·, T}. The diffusion timesteps are transformed using
a positional encoding into a timestep embedding and guide the generated noise strength
of the CNP. As depicted in Figure 2, the CNP comprises three segments: the contracting
step, the middle step, and the expansive step. In the contracting step, four blocks focus on
enhancing channels, each containing two residual blocks and a downsampling layer. LR
features are fused with the hidden state output by the first two residual blocks in the initial
block of the contracting step. Conversely, the expansive steps consist of blocks containing
two residual blocks and an upsampling layer to reduce the channel number. To optimize
the model size, the channel size only doubles in the second and fourth blocks, while the
spatial size of the feature maps is halved in each block. Additionally, the middle step
between them comprises only two residual blocks. Furthermore, the output of each block
in the contracting step is added to the corresponding output of the expansive steps. After
traversing the U-Net, a convolution tail is applied to generate the final predicted noise.

2.3. Noise Discriminator (ND)

To distinguish between the real xt−1 and the generated x′t−1, we introduce a Noise
Discriminator (ND) designed to learn the overall correspondence between xt and xt−1. The
architecture, depicted in Figure 2, follows the structure of [36]. The pair of xt and xt−1 are
initially concatenated along the channel axis and processed through a convolution operation.
Convolutional groups incorporating Relu activation functions and convolutional layers
are applied to down-sample the features. Following the down-sampling, an interpolation
operation is introduced before the convolutional group to facilitate up-sampling. This up-
sampling involves a skip connection that adds features with the same channels generated
during both the down-sampling and up-sampling processes, promoting effective feature
reuse. Finally, two convolutional groups are employed to integrate the features and generate
the probability of whether xt−1 in this pair is true.

2.4. Hybrid Loss Function for CNP

To enhance the capabilities of DiffALS, we introduce an extra adversarial loss function
to facilitate the convergence of the CNP. Consequently, the loss function of DiffALS can be
partitioned into two distinct components.

L = Ldi f f + w · Ladv, (11)

where Ldi f f is the loss function of the diffusion model mentioned in Equation (9), Ladv is
our proposed adversarial loss of the ND and w is the weight hyper-parameter to balance
the two loss functions.

2.4.1. Adversarial Loss

In conventional diffusion models, the CNP learns the data distribution by minimizing
the disparity between actual noise and predicted noise during training. The supplementary
adversarial loss prompts our CNP to prioritize solutions aligned with the manifold of
real pairs xt and xt−1 by attempting to fool the ND. ND discerns the relationship between
adjacent noisy images, which encompass diverse information related to the image contents.
Compared to conventional loss functions based on predicted noise, the adversarial loss
enhances the detailed texture generation capability of the diffusion model by providing
guidance based on image contents present in the training set. The loss value is determined
by the probabilities generated by the ND across all samples and is defined as follows:

Ladv = − log
(

ND(xt, x′t−1)
)
, (12)
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where ND refers to the discriminator and the output of ND, denoted as ND(a, b), represents
the probability that the discriminator categorizes the pair (a, b) as real. If the ND can easily
distinguish the fake pair with a low score of ND(xt, x′t−1), it will incur a substantial loss
function, thereby impacting the training of the CNP.

2.4.2. Loss for ND

The ND undergoes training with the CNP, fostering mutual improvement during
the training process. The objective of the ND’s loss function is to enhance its ability to
discriminate between genuine pairs of xt and xt−1 and fake pairs xt and x′t−1. If the ND
assigns a high score to fake pairs or a low score to real pairs, the loss function imposes
a significant penalty. The formal expression for the loss function pertaining to the ND is
as follows:

LND = −Ext−1[log ND(xt, xt−1)]−E
[
log(1 − ND(xt, x′t−1))

]
. (13)
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Figure 2. The architecture of the CNP and ND. Up and Down represent upsampling and downsam-
pling, respectively.

2.5. Training and Inference

As depicted in Figure 1, in the training process, we first randomly initialize the
CNP. Afterward, the residual results computed between the upsampled LR images and
HR images are fused with a random noise ϵ to xt and fed into the CNP with t and the
LR features extracted by the LR encoder. The ϵ and t are sampled from the standard
Gaussian distribution and the integer set {1, · · ·, T}. Finally, the CNP is optimized with
the hybrid loss function Equation (11). The noise discriminator also updates during the
training process.

In the inference process, the LR images and the number of diffusion steps T are
input. Firstly, a random noise following the Gaussian distribution is fed into the reverse
process as xT . In each timestep, xt is sampled and then fed into the CNP with the features
extracted from the LR encoder. After the CNP, the predicted noise and xt go through the
Equation (10) to generate xt−1 if t > 1. Finally, the outputs of the final results are fused
with the upsampled LR images to get the SR images.
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3. Results and Analysis
3.1. Datasets and Metrics

Our model underwent training and testing using three satellite RS datasets, namely,
OLI2MSI [37], Alsat [38], and Vaihingen [39]. OLI2MSI comprises 5225 pairs of Landsat8-
OLI (30 m) and Sentinel2-MSI (10 m) images as LR and HR images for training and 100 pairs
for testing. In the Alsat dataset, the training set consists of 2182 pairs of LR (10 m) and HR
(2.5 m) images. The test set is divided into three parts, including agriculture, urban, and
special, with a total of 577 pairs. For the SR datasets, we aim to produce the HR image
based on its corresponding LR image. Vaihingen is a segmentation dataset comprising
33 images with a ground sampling distance of 9 cm, which is utilized to assess the SR
model’s performance in real-image applications. The segmentation labels encompass six
classes: roads, buildings, cars, low vegetation, trees, and clutter. The effectiveness of our
model in SR tasks is demonstrated through the utilization of OLI2MSI and Alsat datasets.
Additionally, the Vaihingen dataset serves as a platform to showcase the effectiveness of
our model in downstream applications such as segmentation. Detailed implementation
of our model on the Vaihingen dataset is elaborated in Section 3.4. For model evaluation,
we employ various metrics, including Peak Signal-to-Noise Ratio (PSNR) [9], Structural
Similarity (SSIM) [9], Fréchet Inception Distance (FID) [40], and Learned Perceptual Image
Patch Similarity (LPIPS) [41], to assess the quality of the restored images. PSNR emphasizes
pixel-level differences between two images, while SSIM calculates structural similarity.
LPIPS evaluates images in a manner that approximates human judgment. Lower LPIPS
values signify greater similarity, whereas higher values indicate greater dissimilarity. FID,
designed for evaluating generative models, measures the Fréchet distance between two
distributions in the activation space of a pre-trained image classification model to assess the
similarity between image sets. Additionally, visual comparisons are presented to illustrate
the significant improvements achieved by our method.

3.2. Implementation Details

Our experiments are conducted with the PyTorch framework and executed on a
single NVIDIA GeForce RTX 4090 GPU with 24G RAM. The number of channels is set to
{64, 128, 192, 256} and {64, 128, 256, 512} in CNP and ND, respectively, while the kernel
size for CNP and the up-sampling process in ND are both fixed at 3. The LR encoder
adopts the architecture of RRDB [36]. Furthermore, the weight of the adversarial loss w is
designated as 0.5. Throughout the training and testing of the diffusion model, the number
of diffusion steps for each image is configured to be 100. The noise schedules, denoted as
{β1, · · ·, βT}, adhere to the settings employed in SRDiff [33].

Our network is trained using L1 loss in the CNP and MSE loss in the ND, employing
a batch size of 16 and a learning rate of 10−4. For the two SR datasets, LR and HR image
pairs are randomly extracted as 32 × 32 patches and 96 × 96 patches in OLI2MSI, and
32 × 32 patches and 128 × 128 patches in Alsat, with a scaling factor of 3 or 4 during the
training step. In testing, the images are centrally cropped to match the size of the training
data. As for the segmentation dataset, since each image in the Vaihingen dataset is a size
of about 2000 × 2500, we divide each image into HR images of a size of 128 × 128 and
bicubically resized to LR images of 32 × 32. In total, 8478 images are utilized in training,
while 2187 images are employed in testing. Each model is trained and tested on each
dataset separately.

3.3. Performance

In order to validate our proposed model, we compare it with seven different types
of state-of-the-art models, including four CNN-based models EFDN [42], DBPN [43],
ESRT [27], NLSN [44], three generative models SRGAN [45], ESRGAN [36] and our baseline
SRDiff [33]. The experimental results on OLI2MSI and Alsat are shown in Table 1 and
Table 2, respectively. The visual comparisons of the SISR are presented in Figures 3 and 4.
Additional visual results are available in Appendix A.
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Table 1. The quantitative experimental results on the OLI2MSI. The best is bolded. ↑ and ↓ represent
higher better and lower better, respectively.

Method OLI2MSI
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

EFDN 35.019 0.90108 0.04950 432.123
DBPN 34.747 0.89460 0.05344 473.033
ESRT 34.531 0.89038 0.06027 524.447
NLSN 34.944 0.89933 0.05050 428.363

SRGAN 34.727 0.89794 0.04954 413.629
ESRGAN 34.295 0.88486 0.02928 194.771

SRDiff 33.800 0.89038 0.02435 115.716

Proposed DiffALS 33.629 0.88081 0.02227 92.280

Table 2. The quantitative experimental results on the Alsat. The best is bolded. ↑ and ↓ represent
higher better and lower better, respectively.

Method Alsat
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

EFDN 15.895 0.26518 0.40640 6697.073
DBPN 15.792 0.26450 0.42638 7083.796
ESRT 15.851 0.26160 0.38588 6028.724
NLSN 15.862 0.26682 0.42173 6924.580

SRGAN 15.879 0.26578 0.39684 6769.798
ESRGAN 15.839 0.26830 0.34638 5949.684

SRDiff 14.159 0.35932 0.16600 634.909

Proposed DiffALS 14.139 0.24330 0.16366 445.606

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. The visual comparisons on the OLI2MSI. (a) LR. (b) HR. (c) EFDN. (d) DBPN. (e) ESRT.
(f) NLSN. (g) SRGAN. (h) ESRGAN. (i) SRDiff. (j) DiffALS.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. The visual comparisons on the Alsat. (a) LR. (b) HR. (c) EFDN. (d) DBPN. (e) ESRT.
(f) NLSN. (g) SRGAN. (h) ESRGAN. (i) SRDiff. (j) DiffALS.

Our model demonstrates substantial improvement in perceptual quality, as indicated
by FID and LPIPS gains of 23 and 0.002 in the OLI2MSI dataset, and 189 and 0.002 in
the Alsat dataset, compared to our baseline SRDiff. Regarding PSNR and SSIM, DiffALS
achieves results comparable to SRDiff, indicating that the introduction of the ND enhances
perceptual quality without compromising accuracy. This notable enhancement positions
DiffALS as a viable solution for high-scale SISR tasks, showcasing considerable devel-
opmental potential. Diffusion-based models outperform previous methods in terms of
visual evaluation metrics, highlighting their effectiveness in generating superior SR images
based on human judgment. Nevertheless, they exhibit lower PSNR and SSIM compared to
GAN-based and CNN-based models, indicating lower accuracy at the pixel level. To sub-
stantiate that the images generated by our DiffALS indeed achieve superior accuracy and
perceptual quality, rather than merely inducing human perception, we conduct additional
experiments applying the SR images to broader applications. The forthcoming section
will showcase that our model indeed yields superior SR images that are more suitable for
downstream applications.

Concerning perceptual quality, SR images restored by conventional CNN-based mod-
els exhibit over-smoothing and blurriness due to their reliance solely on corresponding LR
images for generation. This lack of detailed LR information limits the performance of CNN-
based models, particularly in high-scale SISR tasks. EFDN, DBPN, ESRT, and NLSN show
minimal improvement in terms of clarity compared to LR images. The perceptual quality
of SR images produced by GAN-based models appears superior to that of CNN-based
models. However, GAN-based models commonly encounter challenges such as model
collapse, unstable training, and vanishing gradients, negatively impacting their representa-
tion. Notably, GAN-based models still primarily rely on pixel-level content loss, explaining
why SRGAN and ESRGAN exhibit slight improvement compared to CNN-based models.

Comparing SRDiff and DiffALS results, both of them generate SR images that outper-
form GAN-based and CNN-based models in terms of sharpness and detail. Nevertheless,
our model excels over SRDiff in providing more detailed and reliable texture information.
For instance, in visual comparisons of Figure 4, the texture on the left side of the SR image
generated by DiffALS is richer than SRDiff. Moreover, on the right side of the SR image,
SRDiff fails to generate the outline of the building accurately.
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The iteration curve for our DiffALS model on OLI2MSI is depicted in Figure 5. Since
the noise added to images in the training process is randomly sampled from the Gaussian
distribution, the loss function exhibits significant fluctuations. The training process of
the diffusion model exhibits considerable instability. Ultimately, we train the model for
40,000 epochs to achieve optimal results.

0.5
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0.54

0.55

0.56

0.57

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
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ss
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Figure 5. The iteration curve of our DiffALS on OLI2MSI.

3.4. Extension Experiment

To further validate the efficacy of our proposed DiffALS, we conduct additional
experiments on a segmentation dataset called Vaihingen. Initially, we partition and resize
the images using bicubic interpolation to 1/4 of their original size, resulting in ground
sampling distances of 9 cm for HR images and 36 cm for LR images. Subsequently, we
utilize a variety of SISR models to produce the corresponding SR images. We compare these
SR images with the HR images and evaluate the segmentation results using a pre-trained
Unetformer [46]. The SISR and segmentation outcomes are presented in Tables 3–5, while
visualizations are depicted in Figure 6.

Table 3. The quantitative experimental results on the Vaihingen. The best is bolded. ↑ and ↓ represent
higher better and lower better, respectively.

Method Vaihingen
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

EFDN 30.182 0.84915 0.12396 524.358
DBPN 29.367 0.81777 0.13734 598.967
ESRT 28.871 0.81636 0.14499 596.925
NLSN 30.051 0.85004 0.12842 500.429

SRGAN 28.908 0.79967 0.13494 499.840
ESRGAN 30.119 0.83960 0.09960 452.122

SRDiff 29.221 0.81901 0.04920 168.288

Proposed DiffALS 29.199 0.81852 0.04398 115.451

Table 4. The quantitative experimental results on the Vaihingen. The best is bolded.

Method Vaihingen
F1 Score (%) MIoU (%) Accuracy (%)

EFDN 86.23 76.52 88.42
DBPN 84.03 73.06 86.88
ESRT 82.41 70.81 86.23
NLSN 86.43 77.23 88.56

SRGAN 83.17 72.74 87.14
ESRGAN 87.01 77.35 88.74

SRDiff 87.52 78.72 90.01

Proposed DiffALS 87.99 79.07 90.28
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Table 5. The quantitative experimental results for five main classes on the Vaihingen. The best
is bolded.

Method IoU (%)
Roads Buildings Low Veg Trees Cars

EFDN 80.90 87.43 63.35 80.34 70.57
DBPN 78.80 84.34 61.48 78.69 62.01
ESRT 78.22 83.13 59.34 78.48 54.88
NLSN 81.48 88.02 63.96 80.78 71.93

SRGAN 79.67 85.39 61.54 79.43 57.65
ESRGAN 82.05 88.44 63.89 80.52 71.83

SRDiff 84.06 91.26 65.18 81.93 71.17

Proposed DiffALS 84.78 91.62 65.49 82.11 71.37

(b)

(h)(g) (i)(f)

(a)

(d)(c) (e)

Figure 6. The visual comparisons on the Vaihingen. The main difference between those models is
circled with red boxes. (a) HR. (b) EFDN. (c) DBPN. (d) ESRT. (e) NLSN. (f) SRGAN. (g) ESRGAN.
(h) SRDiff. (i) DiffALS.
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As shown in Table 3, our DiffALS also demonstrates superior results in terms of
human perception, with improvements of approximately 53 and 0.006 in FID and LPIPS,
respectively, compared to our baseline SRDiff. Despite the fact that CNN-based and GAN-
based models exhibit higher PSNR and SSIM values than diffusion-based models, SRDiff
and DiffALS outperform them in visual effects and segmentation tasks. As shown in
Table 4, SRDiff achieves an increase of approximately 0.5% in F1 score, 1.4% in MIoU,
and 1.3% in Accuracy compared to the best result among GAN-based models, ESRGAN.
Additionally, SRDiff outperforms the best CNN-based model, NLSN, with an increase of
approximately 1.1% in F1 score, 1.5% in MIoU, and 1.5% in Accuracy. In comparison to our
baseline SRDiff, DiffALS significantly surpasses it by margins of 0.4%, 0.3%, and 0.2% in F1
score, MIoU, and Accuracy, respectively. These results underscore the effectiveness of our
model in real-world applications.

We also provide comprehensive IoU values for each class, excluding clutter in our
experiments. As indicated in Table 5, our DiffALS consistently achieves the best results,
maintaining advantages in per-class IoU. Specifically, DiffALS outperforms SRDiff by
0.7%, 0.4%, 0.3%, 0.2%, and 0.2% in the roads, buildings, low vegetation, trees, and cars.
The richly detailed textures generated by our models appear to enhance the segmentation
network’s ability to distinguish between different object types. Notably, our diffusion-based
models outperform CNN-based and GAN-based models across almost all classes.

3.5. Parameter Analysis

To assess the impact of the ND, we perform experiments with different weights w for
the adversarial loss in {0.1, 0.3, 0.5, 0.7, 0.9}, on the OLI2MSI dataset as depicted in Table 6.
We note that the image quality exhibits low sensitivity to the weight of the adversarial
loss from 0.1 to 0.7. Notably, all weights surpass the performance of our baseline model,
SRDiff, in terms of FID and LPIPS. These findings underscore the stability and efficacy of
our model.

Table 6. The quantitative experimental results on the Vaihingen. ↑ and ↓ represent higher better and
lower better, respectively.

Weight OLI2MSI
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

0.1 33.617 0.88002 0.02175 103.019
0.3 33.638 0.87816 0.02352 113.918
0.5 33.629 0.88081 0.02227 92.280
0.7 33.667 0.88160 0.02234 104.631
0.9 33.728 0.88307 0.02339 134.201

3.6. Running Time Comparison

In Table 7, we present a comparison of the computational cost across all methods,
considering model complexity, memory usage, parameters, and inference speed. Model
complexity is assessed in Giga Floating-point Operations Per Second (GFLOPs), where
1 GFLOPs = 109 FLOPs. Memory usage is measured in megabytes (MB), while the
number of parameters is denoted in millions (M). Finally, the inference speed is indicated
in frames per second (FPS). The complexity, memory usage, and speed collectively reflect
the efficiency of the models in the inference process. All the experiments are implemented
on a single NVIDIA GeForce RTX 4090 GPU with 24G RAM.
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Table 7. Running time comparison of all methods.

Method Models Complexity Memory Parameters Speed
(GFLOPs) (MB) (M) (FPS)

CNN-based

EFDN 109.420 2474 7.24 0.893
DBPN 142.281 3238 1.70 0.787
ESRT 13.610 1906 0.77 0.884
NLSN 733.69 5778 44.75 0.844

GAN-based SRGAN 14.69 992 0.73 0.839
ESRGAN 9.97 828 5.95 1.029

Diffusion-based SRDiff 186.08 2842 11.66 0.012
DiffALS 186.08 2842 16.04 0.012

The models in our study are categorized into three groups: CNN-based, GAN-based,
and diffusion-based models. If a model utilizes a discriminator during training, such
as SRGAN, ESRGAN, and DiffALS, the parameters of the discriminator are included
in the total model parameters. It is notable that the complexity, memory usage, and
speed of our proposed DiffALS are similar to SRDiff since their inference processes are
identical. The adversarial learning strategy of our DiffALS is exclusively effective during
the training phase. The results in Table 7 reveal that diffusion-based models demonstrate
higher computational complexity, resulting in notably slower inference speeds compared
to other models. The complexity, memory usage, and parameters are comparable to that of
other models.

4. Discussion

It is worth noting that although diffusion-based models exhibit lower PSNR and
SSIM scores compared to CNN-based and GAN-based models, they excel in segmentation
results. This observation supports that our model genuinely produces high-quality SR
images that not only perform better under human perception but also genuinely benefit
the downstream application. Consequently, the improved performance in both visual
results and downstream applications serves as evidence of the effectiveness of our model.
These results still underscore the limitations of relying on PSNR and SSIM as metrics for
evaluating model performance in SR applications.

5. Conclusions

In this study, we present a diffusion model incorporating an adversarial learning
strategy for achieving clear and detailed SR image reconstruction, particularly tailored for
RS applications. The DiffALS model incorporates ND into the data distribution learning of
the diffusion model, providing supplementary guidance in the noise prediction process
by taking into account the inherent correlation between adjacent noisy images. The ad-
versarial loss derived from ND enhances both the detailed texture generation capability
and the diversity of generated data in the diffusion model, utilizing image contents from
the entire training set. Furthermore, a distinctive metric derived from real-world semantic
segmentation outcomes has been utilized to illustrate that our SR images exhibit superior
performance in human perception and downstream applications. These results still high-
light the limitations of the conventional metrics, such as PSNR and SSIM, which previous
researchers have predominantly focused on. Experiments on three satellite RS datasets,
namely Alsat, OLO2MSI, and Vaihingen, validate the effectiveness and generalizability of
our proposed DiffALS model. Though it exhibits slower inference speeds, the complexity,
memory usage, and parameter counts of our DiffALS align with the state-of-the-art models.

Acknowledging the need for further research, particularly in optimizing the balance
between diffusion and adversarial losses, we anticipate improvements in the overall per-
formance of the model. And it is still worth further investigation on the performance of
the diffusion model endowed with other noise distributions besides the Gaussian noise
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commonly used in the diffusion model [15]. Moreover, it is of great practical importance
to establish new strategies to expedite the training process of the diffusion model. For
example, LR images can be processed into various forms to facilitate the convergence of
the diffusion model.
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Additional examples of the visual comparisons on the OLI2MSI and Alsat.
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Figure A1. The visual comparisons on the OLI2MSI dataset. (a) LR. (b) HR. (c) EFDN. (d) DBPN.
(e) ESRT. (f) NLSN. (g) SRGAN. (h) ESRGAN. (i) SRDiff. (j) DiffALS.
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Figure A2. The visual comparisons on the Alsat “special” set. (a) LR. (b) HR. (c) EFDN. (d) DBPN.
(e) ESRT. (f) NLSN. (g) SRGAN. (h) ESRGAN. (i) SRDiff. (j) DiffALS.
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(2-a) (2-b) (2-c) (2-d) (2-e)

(2-f) (2-g) (2-h) (2-i) (2-j)

Figure A3. The visual comparisons on the Alsat “agriculture” set. (a) LR. (b) HR. (c) EFDN. (d) DBPN.
(e) ESRT. (f) NLSN. (g) SRGAN. (h) ESRGAN. (i) SRDiff. (j) DiffALS.
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(1-a) (1-b) (1-c) (1-d) (1-e)

(1-f) (1-g) (1-h) (1-i) (1-j)

(2-a) (2-b) (2-c) (2-d) (2-e)

(2-f) (2-g) (2-h) (2-i) (2-j)

Figure A4. The visual comparisons on the Alsat “urban” set. (a) LR. (b) HR. (c) EFDN. (d) DBPN.
(e) ESRT. (f) NLSN. (g) SRGAN. (h) ESRGAN. (i) SRDiff. (j) DiffALS.
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