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Abstract: The Arctic-Boreal zone (ABZ) covers over 26 million km2 and is home to numerous duck
species; however, understanding the spatiotemporal distribution of their populations across this vast
landscape is challenging, in part due to extent and data scarcity. Species abundance models for ducks
in the ABZ commonly use static (time invariant) habitat covariates to inform predictions, such as
wetland type and extent maps. For the first time in this region, we developed species abundance
models using high-resolution, time-varying wetland inundation data produced using satellite remote
sensing methods. This data captured metrics of surface water extent and inundated vegetation in the
Peace Athabasca Delta, Canada, which is within the NASA Arctic Boreal Vulnerability Experiment
core domain. We used generalized additive mixed models to demonstrate the improved predictive
value of this novel data set over time-invariant data. Our findings highlight both the potential
complementarity and efficacy of dynamic wetland inundation information for improving estimation
of duck abundance and distribution at high latitudes. Further, these data can be an asset to spatial
targeting of biodiversity conservation efforts and developing model-based metrics of their success
under rapidly changing climatic conditions.

Keywords: arctic; boreal; Google Earth Engine; NASA AboVE; remote sensing; ducks; wetlands

1. Introduction

Recent estimates suggest that 14% of the Arctic-Boreal Zone (ABZ) is occupied by wet-
lands [1], which are critical to biodiversity there [2]. These northern wetlands are especially
at risk [3–5] because high latitudes are warming twice as fast as the planetary average,
a phenomenon referred to as arctic amplification [6]. Accelerated warming is already
driving intense changes to the hydrological cycle [7,8], impacting critical wetland prop-
erties through modified runoff regimes, causing changes to evapotranspiration patterns,
and thawing permafrost [9,10]. These changes are expected to alter the phenology and
distribution of ABZ plants and animals, many which rely on wetlands for food, water, and
shelter [11,12]. Better understanding how ABZ wetland processes are shifting, particularly
their hydrologic regimes and fluctuations in flood extent, can provide valuable insight into
biota responses to climate change.

Wetlands in the ABZ support millions of breeding and molting ducks [13,14] and
act as refuge for drought-displaced ducks when conditions are dry in the Prairie Pothole
Region [15,16]. Accurately identifying factors influencing spatiotemporal variation in abun-
dance and distribution of ducks across vast landscapes with limited data like the ABZ is
a challenging task [17] yet is critical to conservation and is particularly critical in regions
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such as the ABZ where waterfowl are central components of Indigenous people’s liveli-
hoods [18]. When modelling spatiotemporal distribution of wetland-associated species in
more data rich landscapes, such as the Prairie Pothole Region (PPR), scientists frequently
use time-varying hydrological data sets detailing the surface water extent and/or inunda-
tion regime [19–21]. For example, the United States Fish and Wildlife Service’s/Canadian
Wildlife Service (USFWS and CWS) annual pond index [22] has formed the basis of several
previous studies on PPR duck population trends [23–27]. Timely surface water extent maps
historically have not existed across much of the north, and for those that do, they are limited
in their ability to fully characterize wetland flooding characteristics [28]. This is because in
northern landscapes, unlike the sparsely vegetated landscapes of the PPR, many wetland
types support water tolerant vegetation (e.g., peatlands and swamps; [29]), resulting in
canopies that conceal the full flooding extent below. Optical satellite sensors, which have
formed much of the earlier basis for ABZ inundation maps [30,31], lack canopy-penetrating
capabilities, limiting their applicability for this task. Optical sensors are also impeded by
cloud cover, and as such their ability to collect timely, repeated, and consistent imagery
for high-latitude flood frequency mapping is challenging [32,33]. In contrast, synthetic
aperture radar (SAR) active microwave sensing is insensitive to clouds, is available without
sunlight, and can penetrate vegetation canopies, making SAR a valuable tool for wetland
ecosystem monitoring at high latitudes [34].

Since efficient SAR-based methods for inundation mapping are not fully developed,
scientists have relied on static, time-invariant (i.e., one point in time) wetland and/or land
cover habitat data to predict duck species distributions in remote and more data-poor
regions [35–39]. One such data source is the thematically rich wetland type maps produced
by Ducks Unlimited Canada (DUC; [40]), which are developed through extensive aerial
surveys, ground truthing, and satellite remote sensing [41,42]. This spatial data layer
identifies several detailed wetland types, covering a sizable portion of the boreal biome
and parts of the southern arctic, and as such represents a unique data set for large-scale
species modelling. These wetland type maps have been valuable for predicting habitat
use by wetland-associated birds to inform conservation decisions [43,44]. But they lack
ability to assess temporal variation in wetland abundance and size, factors which are strong
predictors of duck abundance and distribution [45], hence offer limited ability to predict
impact of climate change on ducks. Data that capture the dynamic conditions of ABZ
wetlands at higher spatial resolutions and sub-seasonal time steps could better advance
our understanding of how these wetlands, and their associated biodiversity, are changing.

Our objective was to assess the potential value of novel SAR-based, time-varying
wetland data for predicting changes in duck abundance and distribution in remote regions
such as the ABZ. Ducks represent one of the few taxa in the ABZ on which to perform this
test because of the relatively large amount of long-term and systematically collected survey
data [22]. We hypothesized that multi-temporal maps of wetland inundation conditions
would capture the spatio-temporal variability in duck breeding habitats, resulting in an
improved understanding of how duck pairs distribute themselves across ABZ landscapes.
Specifically, we tested whether the inclusion of variables that described changes in wetland
inundation improved our ability to map duck populations. The findings of this study
will help advance large-scale and timely predictions of changes in abundance and dis-
tribution for numerous wetland-associated species in a region undergoing rapid habitat
transformations from a warming climate.

2. Materials and Methods
2.1. Study Area

In 2013, NASA commenced the Arctic Boreal Vulnerability Experiment (AboVE)
research and field campaign to help address questions related to environmental change
in North America’s ABZ [46]. The AboVE campaign provides motivation for studies
seeking to leverage remote sensing technologies to better understand the ABZ, particularly
under changing climatic conditions. The primary area of interest for our research was the
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Peace-Athabasca Delta (PAD), Alberta, Canada, located within the core region of the NASA
AboVE domain (Figure 1). The PAD has an abundance of hydrologically dynamic lakes
and wetlands [34] and is recognized as a Ramsar wetland of international importance. This
area also has high duck use and long temporal records of duck survey data, remote sensing
information (e.g., both satellite and aerial, including several AboVE airborne campaigns
with multiple flight lines; [46]), and current partnerships with indigenous communities.
However, we also had available wetland habitat maps over an adjacent region, stretching
from the north–south corridor of the PAD to the Slave River Delta (SRD; herein referred
to as the PAD to SRD corridor). Our intent was to capitalize on these adjacent data sets
to inform some of the preliminary analysis in this study, particularly around the spatial
relationships of wetlands at different scales. The duck species abundance models (SAMs)
were developed solely over the PAD, as that is where we focused on evaluating the value
of our innovative inundation mapping techniques for improving duck models.
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Figure 1. Study area maps. (a) NASA AboVE study domain core and extended regions, which
cover parts of Alaska and western Canada. (b) Our primary area of interest, the Peace-Athabasca
Delta (PAD), located in Alberta, Canada. The Slave River Delta (SRD) corridor was an area of
secondary interest.

2.2. Wetland Type Mapping

Multi-temporal, multi-source remote sensing data were used to generate a wetland
type map representing conditions in the PAD circa 2017. Following Bourgeau-Chavez
et al. [47], we used extensive field data to train a Random Forests model [48] on a combi-
nation of electro-optical, SAR imagery, and topographic derivatives. For this study, we
incorporated electro-optical imagery from Landsat 8, C-band SAR data from Sentinel-1,
and L-band SAR data from ALOS-2/PALSAR-2. We also included Height Above Nearest
Drainage (HAND) and Topographic Position Indices (TPI) derived from the JAXA ALOS
global digital surface model (GDSM) product. The study area was divided into four areas
of interest (AOI) for the classification procedure, two covering the PAD, and another two
covering a portion of the extended corridor region that connects the Slave River Delta (SRD)
to the north that required gap filling. These regions were defined by the frame extents of
the available satellite image data. Two ALOS-2/PALSAR-2 images were used for each AOI
and collected in dual polarization which transmits horizontally (H) polarized microwave
signals and receives both horizontally and vertically (V) polarized backscatter energy (e.g.,
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HH and HV). These images were acquired in Stripmap mode. When possible, we used
one image from the beginning of the growing season and another from the end of the
growing season, though this was not possible for each AOI due to limited data availability.
Two Landsat 8 images representing the early and late growing season were also used in each
data stack. Sentinel-1 data are collected more frequently over the ABoVE domain, so mean
and standard deviation composites for images collected in the dual-polarization (VV + VH)
Interferometric Wide (IW) mode during the growing season were created and incorporated
into the data stacks. A table of image types and dates can be found in Appendix A.

Wetland type definitions used for the classification procedure were based on DUC’s
Enhanced Wetland Classification (EWC; [40]) system. Minor modifications were made to
the EWC classification to better align with the capabilities of the sensors used, for example
we did not distinguish between rich and poor fens because they were not separable with the
available imagery. We identified 14 wetland types defined by their ecological characteristics
(Figure 2). Training and validation polygons representing the 14 wetland types and 4 upland
categories (conifer forest, deciduous forest, shrub, and barren land) were generated using
field data collected by DUC. A total of 473 polygons were used for the wetland type map,
which were randomly divided between training (80%) and validation (20% [49]).
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Figure 2. Wetland classification schema used in this study. Wetland classes conform to the Canadian
Wetland Classification System (CWCS), and wetland types are more detailed subclasses used in
this study.

2.3. Wetland Inundation Mapping

Inundation maps were generated over the PAD for each available image collected by
Sentinel-1 from late May to the end of August for 2017 to 2019 to create a time-varying
product for each year, corresponding to available duck survey data collections. Our method
was based on earlier studies using Otsu thresholding techniques applied to RADARSAT-2
(operated by the Canadian Space Agency) C-band SAR data to distinguish open water
and flooded vegetation in coastal wetlands in the Laurentian Great Lakes region [50,51].
However, because dense time series data from RADARSAT-2 data was not available for the
study region, we instead utilised Sentinel-1 data in the cloud-computing platform Google
Earth Engine (GEE). Sentinel-1 data available over Boreal Canada is primarily collected
in IW mode, a dual-polarimetric mode consisting of VV and VH bands. Sentinel-1 data
in GEE is not radiometrically terrain corrected; however, because the PAD is relatively
flat, we proceeded without application of additional corrections to the available data.
Before ingestion to the surface water and flooded vegetation detection algorithm, Sentinel-1
images were converted from decibel to linear scale, and speckle filtered using a refined Lee
filter with a 7 by 7 window size. The refined Lee filter was used because it preserves edges
better than boxcar or median filters. Each image (co-polarized VV and VH cross-polarized
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components) was then segmented using the Simple Non-Iterative Clustering algorithm [52].
Mean values of VV, VH and their ratio (VV/VH) were calculated for each image segment.

The cross-polarized component (VH) was used to extract surface water because radar
scattered off small surface waves of inland lakes is not typically depolarized, resulting in
a very low cross-polarized backscatter [33]. To distinguish open water from other cover
types, automated Otsu thresholding was applied to a histogram created from a random
sample of mean VH backscatter for 10,000 image segments. Image segments with mean
values less than the selected threshold were classified as open water.

The ratio of the co-polarized and cross-polarized (VV/VH) backscatter was used to
identify flooded vegetation. This metric was used because it tends to be a strong indicator of
double-bounce scattering, which is associated with flooded vegetation as incident radiation
is reflected off water and then the vertical stem of wetland vegetation (or vice versa) before
returning to the sensor. For image segments not categorized as open water, a histogram
was generated from a random sample of the mean VV/VH ratio for 10,000 image segments.
An Otsu threshold was then selected, with segments greater than the threshold classified
as flooded vegetation, and all other segments classified as non-inundated (Figure 3). This
type of three-class product was created for all available Sentinel-1 images from the period
of study, 2017 to 2019, providing information on sub-seasonal inundation change, the
time-variant information used for modelling.
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2.4. Duck Abundance Modelling
2.4.1. Duck Survey Data from the WBPHS

Waterfowl Breeding Population and Habitat Survey (WBPHS; [22]) data collected over
the PAD for the years 2017–2019 were used to develop duck SAMs. This survey, which
has been conducted annually since 1955, represents a large, long-term, and consistent
data set collected collaboratively between the U.S. Fish and Wildlife Service (USFWS) and
Canadian Wildlife Service (CWS), and has been used extensively for waterfowl modelling
(e.g., [21,35,38,39,53]). Aerial transects are flown by the USFWS in fixed-wing aircraft with
observers recording the number of waterfowl and ponds. WBPHS survey segments and
their spatial extent relative to our general (i.e., the PAD to SRD corridor) and primary area
of interest (i.e., the PAD) can be seen in Figure 4. The WBPHS segments typically run
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east–west and are spaced north–south in varying distances from the southern United States
PPR up into Alaska. We partitioned the WBPHS data into two foraging guilds of ducks,
diving and dabbling, as these feeding preferences could potentially drive ducks to utilize
different depths of water and/or respond differently to inundation conditions. We then
used the total count of pairs per segment for diving and dabbling ducks (not adjusted for
visibility) as our response variables in SAMs. The total pairs were not adjusted for visibility.
The cumulative duck breeding pair count data for each segment over the PAD can be found
in Table 1.
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Table 1. Cumulative breeding pair counts for the seven WBPHS segments over the PAD.

Total Pair Counts

Survey Year Diving Ducks Dabbling Ducks

2017 102 107
2018 155 117
2019 124 151

2.4.2. Calculation of Spatial Statistics

Habitat characteristics were calculated for the seven WBPHS segments based on the
underlying land cover and inundation raster layers over the PAD. These values were
then used as covariates for predicting duck pair abundance. The WBPHS segments are
represented as polyline features (i.e., rather than as polygons), and so we applied a range
of spatial buffers around each segment (200 m, 500 m, 1000 m, and 5000 m) to calculate
habitat characteristics at multiple spatial scales (Figure 5). This allowed us to assess the
scale dependence of our SAMs.
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2.4.3. Covariates Used for SAMs

Our duck modelling approach incorporated multiple spatial scales [54], in part to
account for the scale-dependent habitat selection processes (e.g., [44]). Key predictors (i.e.,
covariates) used for duck SAMs were wetland type (time invariant) and inundation (time
variant) data. To simplify analyses, some wetland types were collapsed into their higher
order wetland classes. Meanwhile, inundation data collected closest but prior to the date to
each waterfowl survey were selected for analyses. We also incorporated a more broadly
applicable, but coarser and time-invariant wetland habitat layer into SAM analyses, DUC’s
Hybrid Wetland Layer (HWL; [55]), which has been used in previous avian modelling
studies (e.g., [35]). The HWL is a multi-source mosaicked product that identifies general
locations of water and wetlands across Canada, minus the Arctic. As such, this data layer
is not robust in determining wetland classes. The HWL was summarized at the 200 m and
1000 m spatial scales, whereas the wetland type, wetland class, and inundation layers were
summarized at the 200–5000 m spatial scales. Summaries for each covariate were calculated
as the percent (%) area intersecting each WBPHS segment buffer size (Table 2).

We also wanted to control for the variation in ABZ duck population size potentially
driven by factors occurring outside the region. Specifically, in dry years in the PPR, ducks
are believed to overfly the PPR and settle in the boreal forest [15,16], inflating boreal
population sizes independent of boreal habitat conditions. To do this, our SAMs included
annual pond count data (i.e., basins which were observed to have water) collected from the
US and Canadian prairies during WBPHS surveys (Table 2).
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Table 2. Source, layer type, spatial scale, spatiotemporal characterization, and application of each
predictor variable used in analyses. Units are percent of Waterfowl Breeding Population and Habitat
Survey (WBPHS) segment buffers comprised of each habitat type, except annual pond index.

Predictor Variables and
Description Source Layer Type Scales Spatiotemporal

Characterization Application

open water, aquatic bed,
emergent marsh, meadow

marsh, open fen, shrubby fen,
treed fen, tree bog, shrub

swamp, hardwood swamp,
conifer swamp

This study Wetland type 200 m, 500 m,
1000 m, 5000 m

Spatially varying and
time invariant

Baseline and
enhanced modelling

shallow open water, marsh,
fen, bog, swamp This study Wetland class 200 m, 500 m,

1000 m, 5000 m

Spatially varying and time
invariant

Baseline and
enhanced modelling

open water, wetland HWL Wetland extent 200 m, 1000 m Spatially varying and
time invariant

Baseline and
enhanced modelling

open water, inundated
vegetation, not inundated This study Inundation 200 m, 500 m,

1000 m, 5000 m
Spatially and time

varying Enhanced modelling

2.4.4. Development of Duck SAMs

Prior to developing SAMs, we performed pairwise correlation (Pearson correlation
coefficient; r) analyses on the percent wetland type and class covariates across all spatial
scales. This allowed us to explore differences in wetland composition across buffer scales.
We used both the PAD and SRD corridor for these analyses (n = 43 WBPHS survey seg-
ments), to allow for a more robust assessment of differences in habitat composition across
buffer scales than using the PAD alone, and therefore informed our expectations of the role
of spatial scale in predicting duck distribution via SAMs.

SAMs were run in a stepwise, additive fashion, separately for each foraging guild
because our goal was to test whether the predictive ability provided by the novel inundation
data was additive to that from more traditional wetland habitat (i.e., land cover) data. We
first modelled duck abundance in the PAD as a function of the time-static covariates-
wetland type, class, and extent while controlling for effects of random segment variation
and (natural log-transformed) prairie pond counts at each spatial scale. These SAMs are
referred to as baseline models. Due to the limited number of survey segments in the PAD
(n = 7), only a single time-static covariate was included in each candidate baseline SAM.
The best baseline SAMs for each guild were then considered starting models for enhanced
SAMs, to which spatio-temporal inundation covariates open water, inundated vegetation,
and non-inundated were added at all spatial scales. This approach allowed baseline and
enhanced models to compete, hence was an assessment of the additive benefit of inundation
covariates on model performance.

SAMs were developed using General Additive Mixed Models (GAMM) and were fit
using the ‘mgcv’ library [56] within the R programming language for statistical comput-
ing. GAMMs, which allow for the incorporation of random effects, are an extension of
generalized additive models and are widely used for modelling correlated and clustered re-
sponses; several studies examining waterfowl populations have used this approach [57,58].
Moreover, using GAMM’s allowed covariate effects to be non-linear, with relationship
complexities quantified through effective degrees of freedom (EDF; larger values indicate
increasingly non-linear model effects). All GAMMs were fit using a natural log link func-
tion, negative binomial distribution, and included a smoothed random intercept effect at
the segment level. Models were ranked based on Akaike Information Criterion (AIC; [59]),
which is a method for identifying best-approximating models (i.e., within 4 ∆ AIC units of
the top model) among a set of candidates. Our study’s overall approach to modelling duck
pair distribution over the PAD is presented in Figure 6.



Remote Sens. 2024, 16, 1175 9 of 20

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 20 
 

 

AIC units of the top model) among a set of candidates. Our study’s overall approach to 
modelling duck pair distribution over the PAD is presented in Figure 6. 

 
Figure 6. Overall duck modelling approach used in this study, and the covariates and their spatial 
scales assessed. Baseline models were fit using only land cover covariates (i.e., wetland extent, wet-
land class, wetland type, and pond count), and then enhanced models were fit using both land cover 
and inundation covariates in an additive fashion. 

We then used the best dabbler and diver models from baseline and enhanced SAM 
analyses to separately predict and map pair abundance across the PAD region. Model-
based predicted pairs were generated for reference grids spanning the combined ranges 
of landcover and inundation covariates in increments of ~0.2–0.3%. Prairie pond counts 
was set at the mean value across 2017–2019 and the random effect set to 0, resulting in 

Figure 6. Overall duck modelling approach used in this study, and the covariates and their spatial
scales assessed. Baseline models were fit using only land cover covariates (i.e., wetland extent,
wetland class, wetland type, and pond count), and then enhanced models were fit using both land
cover and inundation covariates in an additive fashion.

We then used the best dabbler and diver models from baseline and enhanced SAM
analyses to separately predict and map pair abundance across the PAD region. Model-
based predicted pairs were generated for reference grids spanning the combined ranges
of landcover and inundation covariates in increments of ~0.2–0.3%. Prairie pond counts
was set at the mean value across 2017–2019 and the random effect set to 0, resulting in
lookup tables containing >40,000 reference pair estimates per guild. The lookup table values
were used to plot estimated pair abundance in ArcGIS Pro 3.2.0 software, by assigning
abundance for a given pixel based on the wetland covariate attributes summarized at the
optimal spatial scale. This resulted in time varying maps for 2017–2019, representing the
extent of our inundation data with large lakes masked out.

Pond count data are from the prairies and control for potential influences on boreal
population size that occur outside our study area.
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3. Results
3.1. Pairwise Correlations of Wetland Classes and Types

There was high correlation in percent areas among spatial scales for the five wetland
classes (Figure 7, r = 0.79–0.99) and 11 wetland type (Figure 8, r = 0.64–0.98) variables (i.e.,
the time static wetland variables mapped from this study).
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3.2. Baseline Duck SAMs

For diving ducks, the top baseline model was wetland extent open water at 200 m
(Table 3). However, because (1) the primary interest of this study was to assess the more
detailed wetland type information, (2) very high correlations were observed at all scales
within all wetland covariates (Figures 7 and 8), and (3) inclusion of each of these candidate
covariates improved on the null model (∆AIC > 4 from the null model), we advanced
both wetland type open water (200 m) and wetland class shallow open water (200 m) to
enhanced SAM analyses. Effective degrees of freedom were 1.00 and 1.25, respectively, and
we therefore chose to fit them as linear predictors in the enhanced models. Prairie pond
counts were not predictive of annual diving duck pair abundance.

Table 3. Top baseline SAMs for diving ducks (∆AIC < 4.00 from the best approximating model and
with smaller AIC values than the reference null model).

Model Rank Covariate Total EDF 1 ∆AIC 2

1 s (wetland extent—open water—200 m) 4.00 0.00
2 * s (wetland type—open water—200 m) 4.00 1.04
3 s (wetland extent—open water—1000 m) 4.00 1.06
4 s (wetland type—open water—500 m) 4.00 1.75
5 * s (wetland class—shallow open water—200 m) 4.57 2.73
6 s (wetland type—hardwood swamp—500 m) 4.52 2.75
7 s (wetland type—open water—1000 m) 4.53 3.06
8 s (wetland class—shallow open water—500 m) 4.92 3.32
9 s (wetland class—swamp—200 m) 4.39 3.66

10 s (wetland class—shallow open water—1000 m) 5.25 3.89
- Null 3 7.69 7.47

1 EDF = effective degrees of freedom. For each model, total EDF includes contributions from the effects included
in the reference null model. 2 ∆AIC = delta Akaike information criterion. 3 The null model includes an overall
intercept, linear effect of ln(prairie pond counts), and a smoothed random segment effect. * = models advanced as
baselines for the added effects of inundation.

Dabbling ducks had several competing baseline models (Table 4), with model fits
differing by only ~1.3 AIC units. Two models including either shrubby fen or conifer
swamp at 5000 m had significant smoothed covariate effects and so were advanced to
enhanced SAM analyses as the best baseline models for dabblers. Effective degrees of
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freedom for the effects of shrubby fen (5000 m) and conifer swamp (5000 m) were both 1.00
and we therefore fit them as linear predictors in the enhanced models. Dabbling duck pair
abundance increased when prairie pond counts were down.

Table 4. Top baseline SAMs for dabbling ducks (∆AIC < 4.00 from the best approximating model and
with smaller AIC values than the reference null model).

Model Rank Covariate Total EDF 1 ∆AIC 2

1 * s (wetland type—shrubby fen—5000 m) 7.86 0.00
2 s (wetland type—shrub swamp—500 m) 8.73 0.45
3 s (wetland class—swamp—200 m) 8.75 0.46
4 s (wetland class—swamp—1000 m) 8.75 0.46
5 s (wetland class—swamp—500 m) 8.76 0.47
6 s (wetland type—shrub swamp—200 m) 8.75 0.49
7 s (wetland type—shrub swamp—1000 m) 8.76 0.51
8 s (wetland type—emergent marsh—200 m) 8.77 0.51
9 s (wetland type—emergent marsh—500 m) 8.78 0.52

10 * s (wetland type—conifer swamp—5000 m) 8.59 0.52
- Null 3 8.71 0.61

1 EDF = effective degrees of freedom. For each model, total EDF includes contributions from the effects included
in the reference null model. 2 ∆AIC = delta Akaike information criterion. 3 The null model includes an overall
intercept, linear effect of ln(prairie pond counts), and a smoothed random segment effect. * = models advanced as
baselines for the added effects of inundation.

3.3. Enhanced Duck SAMs

For diving ducks, ‘inundated vegetation’ improved baseline models the most, with
5–7 unit decreases in AIC values and a doubling of deviance explained (Table 5). Abun-
dance increased linearly with percent shallow open water (Figure 9) and changed non-
linearly with inundated vegetation, increasing until ~20%, then declining thereafter. Note
that predictive uncertainty is large at the higher end of observed inundation, given only
one observation >30%.

Table 5. Enhanced SAMs for diving ducks (∆AIC < 4.00 from the best-approximating model and with
smaller AIC values than the baseline models). A model which included the effect of the best additive
inundation covariate (i.e., without any time-static land cover covariate added) is also included for
comparison. Baseline models used to inform the enhanced models are also included.

Model Rank Covariate Total EDF 1 AIC 2 ∆AIC 3 Deviance Explained

Enhanced wetland class—shallow open water—200 m +
s (inundation—inundated vegetation—1000 m) 8.16 140.57 0.00 68.9%

- s (inundation—inundated vegetation—1000 m) 9.86 140.97 0.40 74.0%

Enhanced wetland type—open water—200 m +
s (inundation—inundated vegetation—1000 m) 8.59 141.72 1.15 68.7%

Baseline wetland type—open water—200 m 4.00 146.15 5.58 35.7%
Baseline wetland class—shallow open water—200 m 4.67 148.03 7.46 34.2%

1 EDF = effective degrees of freedom. For each model, total EDF includes contributions from estimation of an
overall intercept, linear effect of ln(prairie pond counts), and a smoothed random segment effect. 2 AIC = Akaike
information criterion. 3 ∆AIC = delta Akaike information criterion.

Like diving ducks, time-varying inundation variables improved model performance
for dabblers (Table 6). Time-varying open water improved AIC by ~4, although deviance
explained the changed minimally. A portion (17%) of deviance explained in the baseline
models was due to the random effect of waterfowl survey segment, whereas deviance
explained in the enhanced models was due to the biological effects of prairie pond count,
land cover, and inundation covariate effects. Dabbling duck pair abundance declined
linearly with the percent of both shrubby fen and open water (Figure 10).
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Like diving ducks, time-varying inundation variables improved model performance 
for dabblers (Table 6). Time-varying open water improved AIC by ~4, although deviance 
explained the changed minimally. A portion (17%) of deviance explained in the baseline 
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Figure 9. Natural log-transformed estimated number of diving duck pairs (±95% confidence band
in grey) in relation to the proportion of (a) shallow open water at the 200 m buffer scale, and
(b) inundated vegetation at the 1000 m buffer scale. Estimates come from the best-approximating
enhanced model with all other covariates set to median values and the random segment effect set to
0. Blue points represent the partial residuals.

Table 6. Enhanced SAMs for dabbling ducks (∆AIC < 4.00 from the best-approximating model
and with smaller AIC values than the baseline models). A model which included the effect of the
best additive inundation covariate (i.e., without any time-static land cover covariate added) is also
included for comparison. Baseline models used to inform the enhanced models are also included.

Model Rank Covariate Total EDF 1 AIC 2 ∆AIC 3 Deviance Explained

Enhanced wetland type—shrubby fen—5000 m + 5.00 122.43 0.00 82.7
Enhanced s (inundation—open water—200 m) 5.00 122.95 0.52 82.1
Baseline wetland type—conifer swamp—5000 m + 7.86 127.04 4.61 83.9
Baseline s (inundation—open water—500 m) 8.59 127.56 5.13 84.9

- s (wetland type—shrubby fen—5000 m) 9.43 128.59 6.16 85.6
1 EDF = effective degrees of freedom. For each model, total EDF includes contributions from estimation of an
overall intercept, linear effect of ln(prairie pond counts), and a smoothed random segment effect. 2 AIC = Akaike
information criterion. 3 ∆AIC = delta Akaike information criterion.
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Spatial representation of best baseline and enhanced models (Figure 11) further indi-
cates that variability in inundation, including both extent of surface water and inundated 
vegetation, plays a critical role in determining abundance and distribution of duck pairs. 
Specifically, variations in model inputs (e.g., time static, or time varying) can lead to very 
different duck population estimates. For example, in some cases, the enhanced SAMs ei-
ther identified important regions missed by the baseline SAMs or had substantially dif-
ferent portrayals of where high-density locations were located. 

Figure 10. Natural log-transformed estimated number of dabbling duck pairs (±95% confidence band
in grey) in relation to the proportion of (a) shrubby fen at the 5000 m buffer scale, and (b) inundated
open water at the 1000 m buffer scale. Estimates come from the best-approximating enhanced model
with all other covariates set to median values and the random segment effect set to 0. Blue points
represent the partial residuals.
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Spatial representation of best baseline and enhanced models (Figure 11) further indi-
cates that variability in inundation, including both extent of surface water and inundated
vegetation, plays a critical role in determining abundance and distribution of duck pairs.
Specifically, variations in model inputs (e.g., time static, or time varying) can lead to very
different duck population estimates. For example, in some cases, the enhanced SAMs either
identified important regions missed by the baseline SAMs or had substantially different
portrayals of where high-density locations were located.
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Figure 11. Expected pair abundance and distribution using baseline (time invariant) and enhanced
(2017–2019) SAMs for diving and dabbling ducks. Abundance predictions for the enhanced SAMs
varied annually due to changing inundation conditions. Large lakes were masked out (grey shading).
(a) Baseline diving duck SAM for 2017. (b–d) Multi-scale enhanced diving duck SAMs for 2017–2019.
(e) Baseline dabbling duck SAM for 2017. (f–h) Multi-scale enhanced dabbling duck SAMs for
2017–2019.

4. Discussion

Our study demonstrated the potential value of using novel remote sensing data, in
particular SAR, to advance conservation of biodiversity in remote regions. Not only did
models using time-variant SAR data statistically outperform time-static models, but they
also allowed for more frequent prediction of changes in species abundance and distribution
(e.g., from year-to-year). Thus, we see potential to use SAMs and SAR wetland data
to undertake regular, predictive population estimation in response to observed habitat
changes. In addition, the improved modelling capabilities allowed by SAR wetland data
could facilitate better forecasting of how abundance and distribution of wetland-dependent
species respond to future habitat change scenarios in northern regions. This could even
have implications for public health, in terms of epidemiology. Since waterfowl are natural
carriers of pathogens, understanding their habitat preferences could provide valuable
insights into their migration patterns and thus virus transmission [60].

The biodiversity conservation benefits of such ability to estimate or forecast changes in
abundance and distribution based on habitat characteristics is significant [61–63]. Climate
change is expected to have habitat altering consequences for wetland-dependent species [9]
but is not the only source of potential change to the ABZ habitat. Resource extraction
may alter wetlands in the region [64,65], which could require measures to avoid negative
consequences for biodiversity. Any such conservation effort requires an understanding
of where important areas are, why they are important, and, ideally, how robust the value
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of those areas may be to systematic habitat changes such as loss, degradation, or shifts
in location or types. This understanding helps planners assess where best to apply con-
servation measures, what actions are likely to be most effective and, ultimately, whether
they are successful. Our results with SAR data suggest that the relative importance of
different regions may vary with habitat conditions. If true, SAMs based on time-invariant
habitat data may not accurately identify locations of important areas because inputs are
only a snapshot of dynamic systems. As well, the ability that SAMs and SAR data may
provide for monitoring animal population response to changing habitat conditions can be
a cornerstone of model-based metrics of conservation success, permitting rapid learning
and adaptation. These metrics are particularly beneficial when status and trend surveys to
directly measure population response are too costly, infrequent, or sparse relative to the
pace and needs of decision making, which is likely true for much of the ABZ.

The comprehensive characterization of wetlands in the ABZ, both in terms of classifi-
cation (e.g., type) and condition (e.g., inundation), has implications beyond biodiversity
conservation. Climate modelling suggests that arctic amplification/climate change is al-
tering the biogeochemical cycling of ABZ wetlands, causing instabilities that are shifting
some from a greenhouse gas sink to source, and further threatening their role in the global
hydrological cycle and climate regulation at large [66,67]. Recent studies suggest long-term
warming is enhancing these processes, in which positive greenhouse-gas–climate feedback
is associated with wetland hydrological regime shifts [68]. ABZ wetlands are evidently
complex ecosystems that are sensitive to environmental shifts [5,69], and to fully under-
stand their hydrological properties when subject to increasing global temperatures, and
implications for biodiversity more broadly, enhanced remote sensing methods such as ours
can be used.

Monitoring of wetland conditions is a challenging task in more remote regions of the
world, such as the ABZ [70]. The GEE cloud-based image processing pipeline presented in
this study represents an efficient and potentially scalable solution to deriving such critical
biodiversity-related information over extensive areas (e.g., the NASA ABoVE domain).
Traditional remote sensing techniques use desktop-based processing and specific software
to map wetland conditions [71]. However, this study adopted a cloud-based framework
based on GEE’s on-demand resource allocation and processing capabilities [72]. Using
GEE and weather-independent SAR imagery permits frequent (e.g., 6-to-12-day revisit
time based on Sentinel-1) and consistent monitoring of wetlands, data which can be used
to model wetland conditions under different and/or changing climatic conditions, both
among and within year. For example, our analyses used inundation at a single time stamp
each year corresponding to waterfowl survey dates. However, our mapping approach
also permits assessment of annual variation in inundation frequency (Figure 12). These
hydroperiod maps were created by combining ‘open water’ and ‘inundated vegetation’
pixels for each Sentinel-1 satellite revisit into one general ‘inundated’ class, then calculating
inundation frequency based on how often a pixel was classified as inundated across satellite
revisits within a year. Clearly, wetland hydroperiod can be very different from year to
year, which is closely linked to precipitation and evapotranspiration [73] and may have
implications for wetland productivity and biodiversity [74]. This makes maps like these
important for assessing habitat as climate change continues to impact the extent and
dynamics of wetlands in the ABZ of North America [75].

For these reasons, SAR imagery represents an advantageous approach to wetland mon-
itoring compared to conventional optical sensors which are impeded by cloud cover [76].
SAR sensors also have canopy penetrating capabilities, providing valuable information on
beneath canopy flooding which would otherwise be missed with optical data [77] and can
be critical to informing biodiversity conservation. As such, our future intention is to test the
feasibility of this inundation methodology over different regions of the ABZ for informing
duck SAMs and other indices useful to biodiversity conservation. Further demonstration
would permit development of duck SAMs at the scale of the ABoVE domain, improving
targeted conservation initiatives [53,78–80].
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5. Conclusions

The results of this study demonstrated that novel, time-varying inundation informa-
tion produced using SAR satellite imagery and cloud computing enhanced our ability to
predict duck pair abundance in an ABZ study site. Specifically, inundated vegetation and
open surface water successfully captured the inter- and intra-annual dynamics of wetlands,
resulting in better SAMs than baseline land cover-only data, which is what previous studies
have mostly relied on in the ABZ. This outcome suggests that incorporating inundation into
duck pair abundance and/or distribution models at larger scales could lead to better and
more frequent predictability, an asset for conservation planning in northern environments,
particularly in the context of climate-related and other habitat changes. This enhanced
spatio-temporal information may also be important for supporting indigenous subsistence
harvest of waterfowl and assisting in indigenous-led conservation planning that is both
effective and socially just.
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Appendix A

Table A1. Remote sensing image sources and their acquisition dates used for wetland type classifica-
tion of the Peace-Athabasca Delta (PAD) and for parts of the extended corridor region covering the
Slave River Delta (SRD).

AOI PALSAR-2 Date 1 PALSAR-2 Date 2 Landsat 8 Date 1 Landsat 8 Date 2 Sentinel-1 Date Ranges

PAD East 2 July 2018 3 July 2017 28 May 2019 26 August 2017 2 June 2017–20 August 2018
PAD West 17 July 2017 27 August 2018 28 May 2019 26 August 2017 2 June 2017–20 August 2018
SRD East 2 July 2018 21 July 2018 14 June 2017 17 August 2017 12 June 2017–20 August 2018
SRD West 28 June 2018 21 July 2018 30 May 2018 31 August 2017 12 June 2017–18 August 2019
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