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Abstract: In recent years, hyperspectral (HS) sharpening technology has received high attention
and HS sharpened images have been widely applied. However, the quality assessment of HS
sharpened images has not been well addressed and is still limited to the use of full-reference quality
evaluation. In this paper, a novel no-reference quality assessment method based on Benford’s law for
HS sharpened images is proposed. Without a reference image, the proposed method detects fusion
distortion by performing first digit distribution on three quality perception features in HS sharpened
images, using the standard Benford’s law as a benchmark. The experiment evaluates 10 HS fusion
methods on three HS datasets and selects four full-reference metrics and four no-reference metrics to
compare with the proposed method. The experimental results demonstrate the superior performance
of the proposed method.

Keywords: image quality assessment; no-reference; hyperspectral sharpened image; Benford’s law;
first digit distribution

1. Introduction

With the rapid development of imaging sensor technology in recent years, more and
more airborne and satellite hyperspectral sensors have been able to capture hyperspec-
tral (HS) images. Due to the rich spectral information, HS images have a wide range of
applications in remote sensing, such as geological monitoring [1–3], object tracking [4],
atmospheric monitoring [5–7], etc. Because of the trade-off issue in HS images acquisition,
where high spectral resolution comes at the cost of low spatial resolution, the practical
application of HS data has been greatly limited. In the past decade, many HS sharpening
methods have emerged, which produce fused HS images with high spatial resolution (also
known as HS sharpened images). In practice, high-quality fused HS images are very desir-
able in some specific tasks, such as anomaly detection [8], image classification [9], change
detection [10], etc. The quality assessment of HS sharpened images is crucial for evaluating
the quality of the fusion products from different HS sharpening methods, providing useful
feedback to fusion design and valuable guidance for downstream processing tasks.

Nowadays, there are well-known satellites and airborne platforms capturing and
providing HS images. The Hyperion sensor equipped on NASA’s Earth Observing-1
satellite (EO-1) can simultaneously capture HS or multispectral (MS) images with a spatial
resolution of 30 m and panchromatic (PAN) images with a spatial resolution of 10 m,
covering the spectral range of 400–2500 nm [11]. Another famous airborne sensor is the
Next-Generation Airborne Visible Infrared Imaging Spectrometer (AVIRIS-NG), which
collects HS images from 2012 to the present and supports major activities in North America,
India, and Europe [12]. AVIRIS-NG covers a spectral range of 380–2510 nm and has a
spatial resolution of 0.3–20 m. The Hyperspectral Imager Suite (HISUI) recently developed
by Japan has been recording HS and MS data since 2020, with a spatial resolution of 30 m
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for HS images and 5 m for MS ones [13]. The Prisma satellite is managed and operated by
the Italian Space Agency and was launched in 2019. It collects HS images with a spatial
resolution of 30 m and MS images with a spatial resolution of 5 m, covering a spectral range
of 400–2500 nm [14]. In addition, the new Environmental Mapping and Analysis Program
(EnMAP) HS satellite of Germany was launched in 2022, which can provide 224 bands and
has a spectral range of 420–2450 nm, and a spatial resolution of 30 m.

The emergence of new HS sensors and the availability of HS images have stimu-
lated the further development of HS image enhancement technology including HS super
resolution and HS sharpening. HS super resolution processes a single input HS image
without relying on any auxiliary image/information, while HS sharpening is the fusion
of HS images with MS/PAN images to obtain the high spatial resolution HS images. The
existing HS sharpening methods can be roughly divided into four categories: classical
pansharpening-based methods, matrix factorization (MF)-based methods, tensor represen-
tation (TR)-based methods, and deep convolution neural network (CNN)-based methods.
Pansharpening (also known as multispectral sharpening) is a traditional fusion technique
that utilizes PAN images to improve the spatial resolution of MS images. For the fusion of
HS and MS images by using band selection or band synthesis strategy to assign each MS
band to several corresponding HS bands, HS sharpening can be seen as an extension of
multiple pansharpening [15]. In this way, pansharpening methods can be applied to fuse
HS images. Two representative pansharpening methods are component substitution (CS)-
based methods and multi-resolution analysis (MRA)-based methods. The former includes
intensity–hue–saturation [16], principal component analysis (PCA) [17], Gram-Schmidt
adaptive (GSA) [18], etc., while the latter includes the generalized Laplacian pyramid
(GLP) [19], smoothing filtered-based intensity modulation (SFIM) [20], etc. MF-based meth-
ods is used to estimate the spectral basis and coefficients and regard HS sharpening as an
optimization problem. The typical MF-based fusion methods include sparse MF [21], fast
fusion based on Sylvester equation [22], non-negative structured sparse representation [23],
maximum a posteriori estimation with a stochastic mixing model (MAP-SMM) [24], HS
super-resolution (HySure) [25], and coupled non-negative matrix factorization [26]. TR-
based methods treat HS and MS data as tensors and decompose them in different ways.
Tucker decomposition and Canonical polyadic (CP) decomposition are widely used. The
representative TR-based fusion methods include coupled sparse tensor factorization [27],
nonlocal coupled tensor CP [28], low tensor multi-rank regularization (LTMR) [29], low
tensor-train rank representation [30], unidirectional total variation with tucker decomposi-
tion (UTV) [31], tensor subspace representation-based regularization model (IR-TenSR) [32].
The deep CNN-based methods often train a network between ground-truth images (i.e.,
original HS images) and input images (i.e., low spatial resolution HS and high spatial reso-
lution MS images). In recent years, many deep CNN-based methods have been proposed.
The representative deep CNN-based methods include CNN-based fusion (CNN-Fus) [33],
two-stream fusion network [34], HS image super-resolution network [35], spatial-spectral
residual network [36] and so on. Although there are many different HS sharpening meth-
ods, how to accurately evaluate the quality of the HS sharpened images has not been well
resolved in the fusion field. Due to the lack of ideal high spatial resolution HS images
that can be referenced, no-reference quality assessment of HS sharpened images is still a
challenging issue.

In general, quality assessment of fused remote sensing images consists of subjective
evaluation and objective evaluation. Subjective evaluation, also known as qualitative
evaluation, is the subjective visual evaluation of the fusion result by human observers,
and the implementation of the evaluation often requires a lot of manpower and material
resources. Objective evaluation, namely quantitative evaluation, is the use of various
algorithms or metrics to calculate specific numerical values representing image quality.
Figure 1 shows the process of HS sharpening with its objective quality assessment. At
present, objective measurement can be classified into full-reference (FR) evaluation and
no-reference (NR) evaluation. FR evaluation is more popular, since it is convenient and
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reliable [37]. FR evaluation needs the reference image as the ground truth and uses it to
measure the distorted image. However, the reality is that high spatial resolution (HR)
HS images, i.e., the references, are extremely difficult to obtain or do not exist at all.
Therefore, FR evaluation of HS sharpened images is usually conducted at a degraded
scale. The specific procedure is to degrade both the original HS image and the original
HR-MS image to respectively obtain the low spatial resolution (LR) HS image and the
degraded LR-MS image. Thus, the original HS image is used as the reference. Then the
LR-HS and the LR-MS images are fused together to obtain the fused images (i.e., the
HS sharpened images). Finally, the FR quality assessment employs the reference image
to measure the distortions of the HS sharpened images. Commonly used FR metrics
include peak signal-to-noise ratio (PSNR) [38], spectral angle mapper (SAM) [39], erreur
relative globale adimensionnelle de synthèse (ERGAS) [40], structural similarity (SSIM) [41],
Q2n [42], etc. Due to the inability of FR assessment to directly provide evaluation results
for full-resolution fused images, some scholars shifted the research towards NR evaluation.
In recent years, many metrics designed for multispectral sharpening have been proposed
for NR evaluation. The typical NR metrics include Quality with No Reference (QNR) [43],
filtered QNR (FQNR) [44], regression-based QNR (RQNR) [45], hybrid QNR (HQNR) [46],
generalized QNR (GQNR) [47], etc. Moreover, some researchers proposed NR metrics based
on a multivariate Gaussian distribution (MVG) model from the perspective of statistical
characteristics [48]. With the development of deep learning, some novel evaluation methods
based on a deep learning network have also been proposed [49]. However, most of the
current NR metrics cannot be directly used for the quality assessment of HS sharpened
images. For example, the well-known QNR metric requires measuring the difference
between two bands, while HS sharpened images typically have hundreds of bands, which
undoubtedly leads to a huge computational burden. To the best of our knowledge, there are
few evaluation metrics specifically designed for NR quality assessment of HS sharpened
images. Due to the large number of bands in HS images, HS image data are characterized
by rich mathematical and statistical characteristics. Therefore, it is possible to use statistical
distribution models to analyze the quality of HS sharpened images. Wu et al. extracted the
first digit distribution (FDD) feature of the angle component of the hyperspherical color
domain in pansharpened MS images and used it to evaluate the spectral quality of the fused
images [50]. Inspired by this, a novel NR quality assessment method for HS sharpened
images based on Benford’s law is designed in the paper, and extensive experiments are
conducted to verify the effectiveness of the proposed method. The contributions of this
paper are as follows:

• Three statistical features following the standard Benford’s law are discovered from
HS images. The features are the FDDs of (1) the singular values of low-frequency
coefficients from discrete wavelet transform (DWT), (2) the complementary values
of the high-frequency correlation between HS bands and MS bands, and (3) the
information preservation coefficients between HS bands and MS bands at different
resolution scales.

• An effective NR evaluation method for HS sharpened images via Benford’s law is
proposed. The proposed method extracts the three FDD features from the HS sharp-
ened images, then computes the distance between the extracted FDD features and the
standard FDD feature, and finally obtains the evaluation results.

• Comprehensive experiments are conducted to verify the proposed method. The band
assignment algorithm is applied to the four NR evaluation metrics of multispectral
sharpening, and these adapted metrics are used to evaluate the HS sharpened images.
Furthermore, the experiments adopt four commonly used FR evaluation metrics, three
HS datasets, and 10 fusion methods to verify the accuracy and robustness of the
proposed method.



Remote Sens. 2024, 16, 1167 4 of 32

Remote Sens. 2024, 16, x FOR PEER REVIEW 3 of 33 
 

 

measurement can be classified into full-reference (FR) evaluation and no-reference (NR) 
evaluation. FR evaluation is more popular, since it is convenient and reliable [37]. FR eval-
uation needs the reference image as the ground truth and uses it to measure the distorted 
image. However, the reality is that high spatial resolution (HR) HS images, i.e., the refer-
ences, are extremely difficult to obtain or do not exist at all. Therefore, FR evaluation of 
HS sharpened images is usually conducted at a degraded scale. The specific procedure is 
to degrade both the original HS image and the original HR-MS image to respectively ob-
tain the low spatial resolution (LR) HS image and the degraded LR-MS image. Thus, the 
original HS image is used as the reference. Then the LR-HS and the LR-MS images are 
fused together to obtain the fused images (i.e., the HS sharpened images). Finally, the FR 
quality assessment employs the reference image to measure the distortions of the HS 
sharpened images. Commonly used FR metrics include peak signal-to-noise ratio (PSNR) 
[38], spectral angle mapper (SAM) [39], erreur relative globale adimensionnelle de 
synthèse (ERGAS) [40], structural similarity (SSIM) [41], Q2n [42], etc. Due to the inability 
of FR assessment to directly provide evaluation results for full-resolution fused images, 
some scholars shifted the research towards NR evaluation. In recent years, many metrics 
designed for multispectral sharpening have been proposed for NR evaluation. The typical 
NR metrics include Quality with No Reference (QNR) [43], filtered QNR (FQNR) [44], 
regression-based QNR (RQNR) [45], hybrid QNR (HQNR) [46], generalized QNR 
(GQNR) [47], etc. Moreover, some researchers proposed NR metrics based on a multivar-
iate Gaussian distribution (MVG) model from the perspective of statistical characteristics 
[48]. With the development of deep learning, some novel evaluation methods based on a 
deep learning network have also been proposed [49]. However, most of the current NR 
metrics cannot be directly used for the quality assessment of HS sharpened images. For 
example, the well-known QNR metric requires measuring the difference between two 
bands, while HS sharpened images typically have hundreds of bands, which undoubtedly 
leads to a huge computational burden. To the best of our knowledge, there are few eval-
uation metrics specifically designed for NR quality assessment of HS sharpened images. 
Due to the large number of bands in HS images, HS image data are characterized by rich 
mathematical and statistical characteristics. Therefore, it is possible to use statistical dis-
tribution models to analyze the quality of HS sharpened images. Wu et al. extracted the 
first digit distribution (FDD) feature of the angle component of the hyperspherical color 
domain in pansharpened MS images and used it to evaluate the spectral quality of the 
fused images [50]. Inspired by this, a novel NR quality assessment method for HS sharp-
ened images based on Benford’s law is designed in the paper, and extensive experiments 
are conducted to verify the effectiveness of the proposed method. The contributions of 
this paper are as follows: 

 
Figure 1. The process of HS sharpening and objective quality assessment. Figure 1. The process of HS sharpening and objective quality assessment.

The organizational structure of this paper is as follows: Section 2 briefly reviews
related works. Section 3 provides a detailed introduction to the proposed method. Section 4
reports various experiments to validate the effectiveness of the proposed method. Section 5
discusses the performance of all related NR quality assessment metrics based on the
experimental results and analysis. Finally, Section 6 concludes the paper.

2. Related Works
2.1. Wald’s Protocol

Lucien Wald et al. proposed the first protocol to quantitatively evaluate the quality of
multispectral sharpening (often referred to as the Wald’s protocol) [51]. Wald’s protocol
is a widely used remote sensing image fusion quality evaluation strategy. It was further
discussed and established in [52,53]. The protocol mentions that the pansharpened images
should have two properties: consistency and synthesis.

The consistency property is conducted at the observation resolution of imaging sensors.
If an HR fused image F̂ is spatially degraded to the LR fused image F̂L by using the same
modulation transfer function (MTF) as the original HS imaging sensor, then the image F̂L
should be as consistent as possible with the original LR-HS image H. The consistency can be
represented as

DL(F̂Li, Hi) ≤ εi, i = 1, 2, . . . , N (1)

where DL(A, B) represents the difference between two images A and B at a low spatial
resolution, εi describes the error which should be small enough, i is the band index, and N
is the number of bands in the HS image.

The synthesis property consists of two sub-properties. One states that the pansharpened
image should be as identical as possible to the image acquired via the MS sensor if it had
the high spatial resolution of the PAN sensor. In other words, the HR fused images F̂ should
be as consistent as possible with the reference images G. It can be represented as

DH(F̂i, Gi) ≤ εi, i = 1, 2, . . . , N (2)

where DH(A, B) represents the difference between two images A and B at the resolution
level of the fused images, i.e., the full resolution scale.

The other sub-property states that the spectral vectors of the HR fused images F̂ and
reference images G should be as consistent as possible, which can be represented as

DSP(F̂, G) ≤ ε (3)

where DSP(A, B) represents the distance between the spectral vectors of two images A and
B at the resolution level of the fused image. The smaller the distance, the higher the spectral
similarity.
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2.2. FR Quality Assessment

FR quality assessment is a commonly used approach for evaluating the quality of
fusion images. Currently, the mainstream of FR quality assessment follows the synthesis of
the Wald’s protocol which requires higher resolution images as the references, although [54]
mentioned that consistency can also be used as an evaluation strategy for FR. However, in
practical applications, it is hard to obtain the images using higher spatial resolution imaging
sensors. The reference image is not available. In FR quality assessment of image fusion, it
is feasible to perform spatial degradation on all input images (PAN, MS, and HS images)
in order to use the original HS or MS images as the references. FR assessment is therefore
called reduced resolution assessment. Since the degraded fusion images can be directly
compared with the reference images, FR evaluation results are usually considered more
accurate and reliable. Most of the current quality assessments of HS sharpened images are
almost always based on FR quality assessment [37].

The FR quality assessment of HS sharpening has been an open problem. Firstly, the
reliability of FR assessment will decrease as the resolution scale differences increase [38],
which often occurs in HS sharpening. Secondly, the difficulty in obtaining MTF-filter
parameters during the degradation process is a potential influencing factor. Alternatively,
some researchers use uniform filtering [31,32] and Gaussian filtering [29,30,36] to imple-
ment the spatial degradation. The size and the variance of Gaussian kernels used are
different, making the accuracy of spatial degradation unreliable. Thirdly, due to the lack of
benchmark HS datasets, the current way adopted by researchers is to simulate LR-HS and
HR-MS images from the original HS images as the fusion inputs, and then use the original
HS images as the reference for quality evaluation [38,55], which is inconsistent with the
actual implementation of FR quality assessment.

2.3. NR Quality Assessment

NR quality assessment, also known as full resolution quality assessment, does not
have a reference, but instead uses the input images, namely HR-PAN or HR-MS images, as
the spatial or spectral references. NR assessment is more in line with practical evaluation
processes. Although many NR evaluation methods designed for multispectral sharpening
have been proposed, there is little dedicated NR quality assessment method for HS sharp-
ened images. The most widespread NR evaluation metric is QNR [43]. It concerns two
distortions: spatial distortion and spectral distortion. The spatial distortion is measured
using the difference in the Q values between PAN and MS images at different scales, while
the spectral distortion is measured using the change in the Q values among MS bands.
There have been some variants and improvements originating from the QNR metric so
far. These variants include FQNR [44], RQNR [45], HQNR [46], and GQNR [47], to name a
few. Also, some other NR methods have been designed. The quality-estimation-by-fitting
(QEF) method predicts the evaluation results via linear regression from the FR evaluation
results at different degraded resolution scales [56]. Kalman QEF (KQEF) is subsequently
designed to improve the QEF [57]. Moreover, the MVG-based QNR method (MQNR)
extracts multiple spatial and spectral features from the fused images to build the distorted
MVG model. The distance between the benchmark MVG model and the distorted MVG
model is used to indicate the evaluation results [48]. With the help of large-scale datasets,
deep-learning-based NR methods have also emerged and been used for PAN-MS fusion
quality assessment [49].

Some researchers have attempted to apply NR quality assessment metrics of multi-
spectral sharpening to evaluate HS sharpened images. In the practice of using PAN images
to increase the spatial resolution of HS images, Javier et al. used drones, orthophotos, and
satellite high spatial resolution data to enhance the resolution of airborne and satellite HS
images. When conducting NR quality assessment, they calculated the spatial correlation
coefficients (sCC) between each band of the fused HS image and the PAN image and
averaged all sCC results as an evaluation of spatial quality. In addition, they computed
the SAM between the degraded fused images and the original HS images to evaluate
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the spectral quality [58]. Meng et al. initially designed MQNR metric for the NR quality
assessment of multispectral sharpening and applied the MQNR to HS sharpened images to
verify its effectiveness [48]. In the cases of HS-MS image fusion, NR quality assessment
is feasible in a band assignment way. The band assignment algorithm originated from
HS-MS image fusion. According to the spectral overlap of MS and HS images, it divides
the HS bands into multiple groups corresponding to each of MS bands, and then uses the
pansharpening-based method to fuse the HS bands and MS images in each group [59].
Rocco et al. first applied the band assignment algorithm to NR quality assessment of HS
sharpened images, when they conducted a study on HS sharpening using multiplatform
data [15]. In NR quality evaluation, they proposed to assign each MS band to the related
fused HS bands and obtained multiple MS-HS groups. Then, they adopted the spatial index
of RQNR to evaluate the spatial quality of each group and the spectral index of FQNR to
calculate the SAM between the degraded fused image and the original HS image. Another
very interesting evaluation method is the task-based approach. Kawulok et al. retrieved the
air pollution index, i.e., NO2 column from HS sharpened images and compared it with the
ground-truth NO2 column to get the evaluation results [60]. Overall, although NR quality
assessment faces more challenges than FR quality assessment, it is more practical and has
less limitations.

2.4. Image Quality Assessment Based on Benford’s Law

Benford’s law is a numerical law. In 1881, Simon Newcomb discovered that the first few
pages of the logarithmic table were more broken than the other pages, indicating a higher
probability of the first digit being 1 in the values used for calculation [61]. Subsequently,
Frank Benford rediscovered this phenomenon in 1935. After extensive testing and research,
he found that as long as there were enough samples of data, the probability distribution of
the first digit of the data followed a logarithmic criterion [62]. Benford’s law has received
attention from people since then. At present, data from many fields in reality always
indicate compliance with Benford’s law, such as mathematics [63], physics [64], social
sciences [65], and environmental sciences [66]. Until today, Benford’s law still guides
people to explore the principles behind it [67].

Ou et al. found that FDD features extracted from the discrete cosine transform (DCT)
coefficients of natural images are highly sensitive to white noise, Gaussian blur, and
fast fading, and applied Benford’s law to the quality assessment of natural images [68].
It has been verified in [69–71] that the high-frequency coefficients of discrete wavelet
transform (DWT), shearlet coefficients, and singular values follow the standard Benford’s
law. Therefore, the standard Benford’s law has been applied to distortion classification [69]
and natural images quality assessment [70,71]. Additionally, the generalized Benford’s
law [72] was used to evaluate the quality of natural images with external noise such as
Gaussian white noise, JPEG compression distortion, blur distortion, etc. For the first time,
Wu et al. introduced Benford’s law into the quality assessment of multispectral sharpening,
who employed the extracted FDD feature of the angle components of the pansharpened
images in the hyperspherical color domain to evaluate the spectral quality [50]. However,
the method exhibits poor performance in evaluating HS sharpened images. Inspired by
this, this paper proposes an NR method to evaluate the quality of HS sharpened images
with the help of Benford’s law.

3. Proposed Method

Figure 2 shows the flowchart of the proposed method. The method consists of two
parts. One part is the FDD feature extraction. The FDD features include a low-frequency
FDD feature, a high-frequency FDD feature, and a Q-based FDD feature. The other part
is the distance measurement, which calculates the difference between the distributions:
the extracted FDD features and the FDD feature of the standard Benford’s law. A detailed
introduction to each part of the proposed method will be provided in this section.
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3.1. Standard Benford’s Law

The standard Benford’s law records the distribution probability of the first digits about
a certain type of data. The first digit refers to the first non-zero digit of a numerical value
from left to right. For example, the first digit of 2.45 is 2 and the first digit of −0.32 is 3. The
standard Benford’s law is based on this numerical law, which holds that the distribution
of the first digits of a large amount of data about a certain thing follows a logarithmic
distribution. It can be described using the following:

P(n) = log10 (1 +
1
n
), n = 1, 2, . . . , 9, (4)

where P(n) records the FDD feature of the first digit being n. The standard Benford’s
law can be represented by a nine dimensional FDD feature, i.e., [P(1), P(2), . . ., P(9)]. The
standard FDD feature is denoted as FDDstd in (5) and the first digit distribution is plotted
in Figure 3.

FDDstd = [0.3010, 0.1761, 0.1249, 0.0969, 0.0792, 0.0669, 0.0580, 0.0512, 0.0459] (5)
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It is assumed that the FDD features extracted from the ideal fusion products should
conform to the standard Benford’s law as much as possible, so that the standard FDD
feature FDDstd can be used as the reference model. Fortunately, three quality perception
features in high-quality HS image data are found. Through extensive experiments, it is
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verified that the features comply with the standard Benford’s law and are sensitive to
distortions in HS sharpened images.

3.2. Quality Perception Features

HS images often have dozens or hundreds of spectral bands, which contain a large
amount of information and have complex potential statistical characteristics. With the help
of Benford’s law, it is possible to identify some stable features extracted from the HS images
for quality assessment. After extensive experiments, three types of FDD features are found
out, including a low-frequency FDD feature, a high-frequency FDD feature, and a Q-based
FDD feature, which can effectively perceive the distortions of fusion results. A detailed
description of the three types of FDD features is provided below.

3.2.1. Low-Frequency FDD Feature

Singular value decomposition has been widely used in image denoising in which
the degree of image distortion is determined by detecting singular values. Moreover, the
compact support property of Meyer wavelets makes them important and valuable in signal
processing, image reconstruction, and analysis of distribution functions [73]. Motivated
by this, this work tries to find the representative statistical features to characterize the
quality of the HS images. Through lots of experiments on HS images, it is found that the
FDD features of the singular values of the low-frequency coefficients within Meyer wavelet
domain follow the standard Benford’s law. Firstly, Meyer wavelet transform is performed
on each band of the HS image to obtain the low-frequency coefficients of the approximation
images. Then, singular value decomposition is used so the coefficients and the singular
values of all HS bands are obtained. Finally, the low-frequency FDD (denoted as FDDlf)
feature is calculated based on the singular values.

To verify the effectiveness of the low-frequency FDD feature, experiments of the
feature extraction are conducted on three different HS datasets, i.e., Pavia University
dataset, Salinas dataset, and Cuprite dataset (see the detailed information of the datasets in
Section 4.1). Figure 4 displays the distribution of the three FDDlf features from the datasets
and the distribution of the FDDstd. Table 1 reports the specific values of the FDDstd and
FDDlf features.

Table 1. The specific values of the FDDstd and FDDlf features from three HS datasets. The first column
represents the sources of the extracted FDDlf features and the FDDstd. P(n) records the FDDstd and
FDDlf features of the first digit being n. The last column provides the symmetric Kullback–Leibler
divergence (sKL) between the FDDstd and FDDlf features.

P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) sKL

Pavia University 0.2969 0.1784 0.1262 0.0968 0.0791 0.0708 0.0569 0.0490 0.0460 3.1 × 10−4

Salinas 0.3021 0.1699 0.1218 0.0975 0.0829 0.0681 0.0600 0.0517 0.0460 4.2 × 10−4

Cuprite 0.3004 0.1687 0.1294 0.0980 0.0800 0.0686 0.0578 0.0525 0.0446 4.4 × 10−4

FDDstd 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0459 0

To compare the difference between the FDD features, symmetric Kullback–Leibler
divergence (sKL) is used to measure the distance between the FDDstd and FDDlf. The
calculation formula for sKL is as follows:

sKL(A, B) =
1
2

KL(A, B) +
1
2

KL(B, A) (6)

where A and B are the first digit distributions to be measured and Kullback–Leibler (KL)
divergence is given by

KL(A, B) =
9

∑
i=1

A(i)log2
A(i)
B(i)

(7)
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Figure 4. The distributions of the FDDstd and FDDlf features from three HS datasets.

From the values in Table 1, it can be seen that the sKL divergence between the FDDlf fea-
tures and the FDDstd are close to 10−4. The distance between two probability distributions
is very small. Based on the observations of Figure 4 and Table 1, it can be concluded that the
FDDlf feature of the original HS images conform to the standard Benford’s law. This makes
it possible to evaluate the quality of HS sharpened images based on the low-frequency
FDD feature.

In order to test the sensitivity of the FDDlf feature to the quality of distorted HS images,
two experiments are conducted on the HS datasets. In the first experiment, different types
of noise are added to the datasets separately. The noises include Gaussian white noise
with a mean of 0 and a gradually increasing standard deviation, Gaussian blur noise
with a gradually increasing standard deviation, and multiplicative noise with a gradually
increasing standard deviation. In the second experiment, four HS sharpened images, i.e.,
IR-TenSR [32], UTV [31], SFIM [20], MAP-SMM [24], and EXP (i.e., the upsampled image
by cubic interpolation) with increasing fusion distortions are selected. Then, the FDDlf

features are extracted from these distorted images and the FDDstd is used as the benchmark
for distance measurement. Taking the experiment on the Pavia University dataset as an
example, Figure 5 shows the distribution of the FDDlf features from the different distorted
images and Table 2 gives the values of the FDDlf features from the HS sharpened images.

Table 2. The specific values of the FDDstd and FDDlf features from different fused images of the Pavia
University dataset.

P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) sKL

Reference 0.2969 0.1784 0.1262 0.0968 0.0791 0.0708 0.0569 0.0490 0.0460 3.1 × 10−4

IR-TenSR [32] 0.3025 0.1809 0.1270 0.0932 0.0788 0.0650 0.0568 0.0504 0.0453 3.0 × 10−4

UTV [31] 0.2911 0.1841 0.1318 0.0965 0.0818 0.0675 0.0522 0.0507 0.0444 1.3 × 10−3

SFIM [20] 0.2893 0.1661 0.1284 0.1005 0.0822 0.0730 0.0632 0.0508 0.0466 1.7 × 10−3

MAP-SMM [24] 0.2817 0.1641 0.1286 0.1066 0.0809 0.0744 0.0631 0.0534 0.0472 3.3 × 10−3

EXP 0.3336 0.2179 0.1234 0.0822 0.0624 0.0469 0.0460 0.0447 0.0428 2.1 × 10−2

FDDstd 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0459 0

From Figure 5a–c, it can be seen that for different types of external noise, as the noise
increases, the FDDlf features of the distorted images further deviate from the FDDstd, indi-
cating that the FDDlf features exhibit good performance in measuring external noise. In
Figure 5d and Table 2, the FDDlf features of the different fused images and EXP image with
increasing fusion distortion are presented. Table 2 shows that as the degree of fusion distor-
tion increases, the values of sKL divergence also monotonically increase. This phenomenon
can also be observed in Figure 5d. The two experiments demonstrate that the FDDlf feature
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can be selected as a quality perception feature to evaluate the quality of HS sharpened
images.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 33 
 

 

Table 2. The specific values of the FDDstd and FDDlf features from different fused images of the Pavia 
University dataset. 

 P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) sKL  
Reference 0.2969 0.1784 0.1262 0.0968 0.0791 0.0708 0.0569 0.0490 0.0460 3.1 × 10−4 

IR-TenSR [32] 0.3025 0.1809 0.1270 0.0932 0.0788 0.0650 0.0568 0.0504 0.0453 3.0 × 10−4 
UTV [31] 0.2911 0.1841 0.1318 0.0965 0.0818 0.0675 0.0522 0.0507 0.0444 1.3 × 10−3 
SFIM [20] 0.2893 0.1661 0.1284 0.1005 0.0822 0.0730 0.0632 0.0508 0.0466 1.7 × 10−3 

MAP-SMM [24] 0.2817 0.1641 0.1286 0.1066 0.0809 0.0744 0.0631 0.0534 0.0472 3.3 × 10−3 
EXP 0.3336 0.2179 0.1234 0.0822 0.0624 0.0469 0.0460 0.0447 0.0428 2.1 × 10−2 𝐹𝐷𝐷  0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0459 0 

From Figure 5a–c, it can be seen that for different types of external noise, as the noise 
increases, the FDDlf features of the distorted images further deviate from the FDDstd, indi-
cating that the FDDlf features exhibit good performance in measuring external noise. In 
Figure 5d and Table 2, the FDDlf features of the different fused images and EXP image 
with increasing fusion distortion are presented. Table 2 shows that as the degree of fusion 
distortion increases, the values of sKL divergence also monotonically increase. This phe-
nomenon can also be observed in Figure 5d. The two experiments demonstrate that the 
FDDlf feature can be selected as a quality perception feature to evaluate the quality of HS 
sharpened images. 

  
(a) (b) 

  
(c) (d) 

Figure 5. The distributions of the FDDlf features from different distorted images of the Pavia Uni-
versity dataset: (a) images distorted by Gaussian white noise with gradually increasing standard 
deviation; (b) images distorted by Gaussian blur noise with gradually increasing standard devia-
tion; (c) images distorted by multiplicative noise with gradually increasing standard deviation; (d) 
HS sharpened images with increasing fusion distortion. 

  

1 2 3 4 5 6 7 8 9
First digit

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Standard FDD feature

 = 1×10-5

 = 1×10-4

 = 1×10-3

 = 1×10-2

 = 1×10-1

Standard FDD feature
 = 1×10-5

 = 1×10-4

 = 1×10-3

 = 1×10-2

 = 1×10-1

1 2 3 4 5 6 7 8 9
First digit

0.05

0.1

0.15

0.2

0.25

0.3
Standard FDD feature

 = 0.3
 = 0.5
 = 0.7
 = 1.0
 = 1.2

1 2 3 4 5 6 7 8 9
First Digit

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Standard FDD feature

 = 1×10-4

 = 1×10-3

 = 1×10-2

 = 1×10-1

 = 5×10-1

1 2 3 4 5 6 7 8 9
First digit

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Standard FDD feature
IR-TenSR
UTV
SFIM
MAP-SMM
EXP

Figure 5. The distributions of the FDDlf features from different distorted images of the Pavia
University dataset: (a) images distorted by Gaussian white noise with gradually increasing standard
deviation; (b) images distorted by Gaussian blur noise with gradually increasing standard deviation;
(c) images distorted by multiplicative noise with gradually increasing standard deviation; (d) HS
sharpened images with increasing fusion distortion.

3.2.2. High-Frequency FDD Feature

For the quality evaluation of natural images, the FDD features extracted from high-
frequency coefficients of DWT, DCT, and shearlet have been proven to be effective [69–71].
Unfortunately, these typical FDD features are ineffective for hyperspectral images and
cannot be used for quality evaluation of HS sharpened images. This is because the distortion
of natural images often comes from external noise, such as image transmission, image
compression, etc. The distortion of fused images, as an internal distortion, is generated
in the fusion process. Therefore, the FDD features of natural images may view fusion
distortion as the structure of the image itself, rather than distortion. To tackle with this
problem, a new way is designed to obtain an effective high-frequency FDD feature as a
quality perception feature.

(1) The band assignment on the fused HS image and the HR-MS image is performed
according to [59]. Suppose the original HS image of N bands and the HR-MS image
of M bands are fused, the HS sharpened image will have N bands. After band
assignment, M groups can be obtained so that each group contains one MS band and
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several corresponding HS bands. Then, the quality assessment of HS sharpened image
can be treated as a combination of multiple pansharpening quality assessment cases.

(2) For each group, the high-frequency components are extracted from the HS bands and
the MS band, respectively. The extraction process of the high-frequency component of
HS/MS band is as follows:

Xh f = X − LPFGauss(X) (8)

where X is the MS/HS band, LPFGauss(·) is Gaussian low-pass filtering, and Xh f is the
high-frequency component of X.

Next, the high-frequency components of HS/MS bands are divided into non-overlapping
blocks and the correlation coefficients between the blocks of each HS band and the MS band
are calculated. The complementary values of the correlation coefficients are calculated as

HFD
i,k = 1 − CC(Fh f

i,k , Mh f
k ), i = 1, 2, . . . , T; k = 1, 2, . . . , M (9)

where HFD
i,k is the high-frequency difference matrix between the ith fused HS band and the

MS band in the kth group, Fh f
i,k is the high-frequency component of the ith fused HS band in

the kth group, and Mh f
k is the high-frequency component of the MS band in the same group.

CC(·) is the calculation of correlation coefficients in blocks, T is the number of HS bands
in kth group, and M is the number of the groups. The set of all high-frequency difference
matrices is denoted as HFD. The lower the high-frequency similarity between two bands,
the higher the values of HFD, which facilitates the detection of the spatial distortion in the
HS sharpened images.

(3) The high-frequency FDD feature, denoted as FDDhf is obtained by counting the
number of the first digit of HFD.

Similar to Section 3.2.1, the high-frequency FDD feature is experimentally verified to
comply with the standard Benford’s law (The detailed information of the fused HS image
and HR-MS image in the experiment are provided in Section 4.1). Then, FDDhf features
from three HS datasets are extracted separately and compared with the FDDstd. The FDDhf

features of three HS datasets are presented in Figure 6 and Table 3. It can be seen that the
values of sKL are very small reaching the order of 10−3 or 10−4, and the curves of the FDDhf

features match well with the FDDstd. The experimental results demonstrate that the FDDhf

can serve as a stable high-frequency feature representing the quality of HS images.
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Figure 6. The distributions of the FDDstd and FDDhf features from three HS datasets.
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Table 3. The specified values of the FDDstd and the FDDhf features from three HS datasets.

P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) sKL

Pavia University 0.3004 0.1824 0.1264 0.0945 0.0761 0.0677 0.0582 0.0506 0.0438 3.7 × 10−4

Salinas 0.2944 0.1710 0.1217 0.0971 0.0802 0.0709 0.0621 0.0550 0.0476 9.0 × 10−4

Cuprite 0.3004 0.1879 0.1314 0.0969 0.0764 0.0632 0.0538 0.0475 0.0426 1.6 × 10−3

FDDstd 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0459 0

Furthermore, FDDhf features are extracted from four different fused images and EXP
on three HS datasets. Figure 7 and Table 4 show the experimental results on the Pavia
University dataset. In Figure 7, it can be seen that the FDDhf features of different fused
images significantly deviate from the FDDstd and the FDDhf feature of EXP appears the
maximum deviation. From the values of sKL in Table 4, it can be seen that as the distortion
of the fused image increases, the values of the FDDhf features also increase and the trend
of the change is consistent. The experiment demonstrates that the high-frequency FDD
feature is an appropriate quality perception feature for HS images and has the ability to
detect fusion distortion.
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Figure 7. The distributions of the FDDstd and FDDhf features from the fused images of the Pavia
University dataset.

Table 4. The specific values of the FDDstd and FDDhf features from the fused images of the Pavia
University dataset.

P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) sKL

Reference 0.3004 0.1824 0.1264 0.0945 0.0761 0.0677 0.0582 0.0506 0.0438 3.7 × 10−4

IR-TenSR [32] 0.3062 0.1705 0.1274 0.0993 0.0817 0.0659 0.0572 0.0488 0.0430 5.6 × 10−4

UTV [31] 0.2864 0.2149 0.1439 0.1035 0.0778 0.0561 0.0457 0.0379 0.0339 1.7 × 10−2

SFIM [20] 0.3806 0.1754 0.0885 0.0649 0.0606 0.0575 0.0591 0.0588 0.0547 3.8 × 10−2

MAP-SMM [24] 0.3905 0.2671 0.1279 0.0517 0.0315 0.0313 0.0314 0.0335 0.0351 1.3 × 10−1

EXP 0.1457 0.0041 0.0099 0.0357 0.0660 0.1236 0.2201 0.2334 0.1614 1.28

FDDstd 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0459 0

3.2.3. Q-Based FDD Feature

Since the Q index was proposed by Wang et al. in 2002 [74], it has demonstrated
a powerful ability to measure the similarity between two images. Several variations of
the Q-based QNRs, such as FQNR, RQNR, and HQNR, are the most commonly used in
NR-quality assessment of multispectral sharpening. Motivated by this, it is meaningful to
find a Q-based FDD feature satisfying the assumption of the preservation of the statistical
Q through the hyperspectral sharpening process.
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(1) Similar to Section 3.2.2, the band assignment is performed to the HS sharpened image
and the HR-MS image and M groups are obtained. In each group, there are one MS
band and several HS bands.

(2) For each group, the Q values between the MS and HS bands at different resolution
scales are calculated. For a certain resolution scale, the Q values are calculated as [74]

Q(X, Y) ≜
4σXY·X·Y

(σ2
X + σ2

Y)(X
2
+ Y2

)
(10)

where X and Y are the reference MS band and the fused HS band, respectively. σXY is the
covariance between X and Y, X and Y are the means, and σ2

X and σ2
Y are the variances of X

and Y, respectively. The series of Q-value at different resolution scales are given by

QD(r)
i,k ≜ Q(Mk, F̂i,k)− Q(

∼
M

(r)

k , H(r)
i,k ), i = 1, 2, . . . , T; k = 1, 2, . . . , M (11)

where F̂i,k is the ith fused HS band and Mk is the HR-MS band in the kth group. H(r)
i,k is the

ith original LR-HS band in the kth group and
∼
M

(r)

k is the spatially degraded version of Mk,
in which the superscript (r) indicates the spatial resolution ratio between the fused image
and the original image. T is the number of HS bands in the kth group and M is the number
of groups. Similarly, the set of all QD(r)

i,k is denoted as QD(r).

(3) The Q-based FDD feature, denoted as FDDQ, is obtained by counting the number of
the first digit on the QD(r) matrix.

Also, the experiment on the Pavia University dataset is taken as an example to show the
experimental validation. Considering the different spatial resolutions of LR-HS images and
HR-MS images in practice, the original HS image is degraded at five different resolution
scales and the degradation ratios are 2, 4, 6, 8, and 10. At each resolution scale, the
corresponding Q-based FDD features are extracted, i.e., QD(2), QD(4), QD(6), QD(8), and
QD(10). The experiment results are shown in Figure 8 and Table 5. It can be seen that the
Q-based FDD features at different scales have stable values around 10−3 and basically
match with the standard FDD feature. Therefore, for HR-MS and LR-HS images with
different spatial resolution ratios in practice, the FDDQ can be used as a feature to represent
the quality of HS images.
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Figure 8. The distributions of the FDDstd and FDDQ features from the Pavia University dataset at
different resolution ratios.
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Table 5. The specific values of the FDDstd and FDDQ features from the Pavia University dataset at
different resolution ratios.

P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) sKL

Ratio of 2 0.2954 0.1834 0.1307 0.1010 0.0774 0.0626 0.0573 0.0477 0.0445 1.0 × 10−3

Ratio of 4 0.2902 0.1863 0.1369 0.0980 0.0800 0.0634 0.0558 0.0465 0.0428 2.2 × 10−3

Ratio of 6 0.2921 0.1855 0.1255 0.1033 0.0804 0.0649 0.0553 0.0499 0.0431 1.1 × 10−3

Ratio of 8 0.2924 0.1907 0.1401 0.0998 0.0751 0.0627 0.0526 0.0453 0.0413 3.9 × 10−3

Ratio of 10 0.2933 0.1856 0.1276 0.0989 0.0830 0.0628 0.0577 0.0483 0.0428 1.2 × 10−3

FDDstd 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0459 0

Taking the QD(4) as an example, the Q-based FDD features from four fused images
are extracted. Figure 9 and Table 6 show their distributions and specific values. It can
be seen that the Q-based FDD feature of IR-TenSR with lower distortion are closer to the
standard FDD feature. Due to the more severe fusion distortion of SFIM, MAP-SMM, and
EXP, their Q-based FDD features deviate further from the standard FDD feature. Therefore,
the Q-based FDD feature can effectively perceive fusion distortion.
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Figure 9. The distributions of the FDDstd and FDDQ features from the fused images of the Pavia
University dataset.

Table 6. The specific values of the FDDstd and FDDQ features from the fused images of the Pavia
University dataset.

P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) sKL

Reference 0.2902 0.1863 0.1369 0.0980 0.0800 0.0634 0.0558 0.0465 0.0428 2.2 × 10−3

IR-TenSR [32] 0.3056 0.1891 0.1294 0.0975 0.0737 0.0633 0.0516 0.0456 0.0442 2.3 × 10−3

UTV [31] 0.2987 0.1573 0.1111 0.0989 0.0900 0.0756 0.0643 0.0552 0.0490 5.4 × 10−3

SFIM [20] 0.3286 0.0640 0.0693 0.0778 0.0888 0.0992 0.1009 0.0959 0.0755 1.7 × 10−1

MAP-SMM [24] 0.5293 0.1012 0.0340 0.0353 0.0429 0.0490 0.0570 0.0701 0.0813 2.9 × 10−1

EXP 0.1105 0.2286 0.2546 0.1802 0.1061 0.0629 0.0342 0.0160 0.0069 3.5 × 10−1

FDDstd 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0459 0

3.3. Distance Measurement

In the above experiments, three quality perception features for HS sharpening have
been identified and validated on different fused images of different HS datasets. Three
quality perception features are the low-frequency FDD feature FDDlf, the high-frequency
FDD feature FDDhf, and the Q-based FDD feature FDDQ. The features measure the fusion
distortion from different perspectives. Therefore, it is necessary to integrate them in order
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to comprehensively evaluate the quality of HS sharpened images. Here, the standard
FDD feature FDDstd is taken as the benchmark for distance measurement. Specifically,
Manhattan distance is used to measure the distance between the distorted FDD features
and the standard FDD feature. The distance measurement is calculated as

QFDD = 1 −
9

∑
i=1

∣∣∣FDDstd
i − FDDl f

i

∣∣∣+∣∣∣FDDstd
i − FDDh f

i

∣∣∣+∣∣∣FDDstd
i − FDDQ

i

∣∣∣ (12)

The ideal value of QFDD is 1, and the larger the value, the higher the quality of the HS
sharpened image.

4. Experiments
4.1. Datasets

In the experiments, three typical HS datasets, i.e., Pavia University dataset [55], Salinas
dataset [9], and Cuprite dataset [55] are selected.

• The Pavia University dataset was collected using German Reflective Optics Spec-
trographic Imaging System (ROSIS-03) sensors and recorded partial scenes of Pavia
city, Italy. The dataset contains 103 available bands, covering a spectral range of
0.43–0.86 µm. The dimension is 610 × 340 pixels with a spatial resolution of 1.3 m.

• The Salinas dataset was captured using the AVIRIS sensor of NASA and recorded parts
of the Salinas Valley in California. The dataset has 204 available bands and covers a
spectral range of 0.4–2.5 µm. The spatial resolution of the HS images is 3.7 m with the
dimension of 512 × 217 pixels.

• The Cuprite dataset was also collected using the AVIRIS sensor and recorded parts of
the Cuprite area in Nevada. The original dataset contains 224 bands and the spectral
range covers from 0.37–2.48 µm. The bad bands with low signal-to-noise are removed
and 185 bands are retained for the experiment. The dimension of the HS images is
512 × 612 pixels with a spatial resolution of 20 m.

To generate LR-HS and HR-MS images for HS-MS fusion, spatial and spectral simula-
tions are conducted on these HS datasets. The simulation process is the same as that in [55].
Specifically, spatial filtering is performed on the original HS image to obtain the LR-HS
image. The convolutional kernel of the spatial filtering is a 7 × 7 Gaussian kernel with zero-
mean and a standard deviation of 3. The spatial resolution of the obtained LR-HS image is
1/4 of the original HS image. To obtain HR-MS image, the spectral response functions of
the IKONOS sensor and the WorldView3 sensor are used as the spectral filters. The spectral
coverage range of the IKONOS sensor is 0.45–0.9 µm [55], while the spectral coverage range
of the Worldview3 sensor is 0.4–2.365 µm [15]. Therefore, the Pavia University dataset is
filtered using the spectral response function of IKONOS and HR-MS image with four bands
is obtained. Similarly, the Salinas dataset and Cuprite dataset are filtered using the spectral
response function of WorldView3 and HR-MS images with 16 bands are obtained.

4.2. HS Sharpening Methods

Among the four categories of fusion methods mentioned in Section 1, ten HS sharpen-
ing methods are selected.

• Classical pansharpening-based methods. Four methods, including PCA [17], GSA [18],
GLP [19], and SFIM [20] have been selected. PCA and GSA are typical CS-based
fusion methods, which are built on principal component transformation and Gram-
Schmidt orthogonal transformation, respectively. They have been widely used in many
practical applications. GLP and SFIM are representative MRA-based fusion methods,
which improve the spatial resolution of LR images by injecting the spatial details
obtained through spatial filtering. After the band assignment, these methods can be
applied to fuse HS images, since HS sharpening can be seen as a multi pansharpening
cases.
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• MF-based methods. Two methods, MAP-SMM [24] and HySure [25], have been
selected. MAP-SMM utilizes a stochastic mixing model to estimate the underlying
spectral scene content and develops a cost function to optimize the estimated HS data
relative to the input HS/MS images. HySure formulates the HS sharpening as the
minimization of a convex objective function with respect to subspace coefficients.

• TR-based methods. Three methods, including LTMR [29], UTV [31], and IR-TenSR [32]
have been selected. LTMR learns the spectral subspace from the LR-HS image via
singular value decomposition, and then estimates the coefficients via the low tensor
multi-rank prior. UTV utilizes the classical Tucker decomposition to decompose the
target HR-HS image as a sparse core tensor multiplied by the dictionary matrices along
with the three modes. Then it conducts proximal alternating optimization scheme
and the alternating direction method of multipliers to iteratively solve the proposed
model. IR-TenSR integrates the global spectral–spatial low-rank and the nonlocal self-
similarity priors of HR-HS image. Then it uses an iterative regularization procedure
and develops an algorithm based on the proximal alternating minimization method to
solve the proposed model.

• Deep CNN-based method. CNN-Fus method [33] is selected for experiment. CNN-Fus
learns the subspace from LR-HS image via singular value decomposition. Then it
approximates the desired HR-HS image with the low-dimensional subspace multiplied
by the coefficients. It uses the well-trained CNN designed for gray image denoising to
regularize the estimation of coefficients.

4.3. Quality Assessment Metrics

To evaluate the quality of HS sharpened images, four FR metrics are selected: PSNR [38],
SAM [39], ERGAS [40], and Q2n [42]. PSNR evaluates the spatial reconstruction quality,
SAM is the metric for evaluating angular distortion of spectra, and ERGAS and Q2n mea-
sure the overall distortion. Furthermore, the proposed method is compared with four
NR evaluation metrics including QNR [43], FQNR [44], RQNR [45], and MQNR [48]. As
mentioned in Section 3.2.2, after applying the band assignment to the HS and MS bands,
the evaluation of the fused images can be seen as a combination of multiple pansharpening
evaluation cases. To obtain the final evaluation results, these NR metrics are performed
to HS sharpened images in each group and the evaluations of all groups are averaged. In
addition, the spatial distortion indexes and spectral distortion indexes of the NR metrics
are analyzed in Section 4.5.4. The spatial distortion index and spectral distortion index of
QNR are respectively denoted as DQs and DQλ. Similarly, DFs and DFλ are the spatial and
spectral indexes of FQNR, DMs and DMλ are the spatial and spectral indexes of MQNR.
DRs is the spatial index of RQNR.

To analyze the reliability and accuracy of all NR metrics, the evaluation results of FR
metrics are used as the testing benchmark. In other words, if the result of an NR metric is
consistent with the results of FR metrics, then the NR metric is considered accurate. Pearson
linear correlation coefficient (PLCC) [71], Spearman rank-order correlation coefficient
(SROCC) [71], and Kendall rank-order correlation coefficient (KROCC) [71] are used to
calculate the correlation between the results of NR metrics and the benchmark. PLCC
reflects the evaluation accuracy of the NR metrics. SROCC and KROCC are used to reflect
the evaluation monotonicity of the NR metrics. Better performance should provide higher
PLCC, SROCC, and KROCC values.

4.4. Experiment Environment

To ensure a fair comparison, all experiments in this paper are coded on MATLAB
2021a, using a laptop equipped with memory of 16.0 GB RAM, AMD Ryzen 7 6800H CPU,
Radeon Graphics, and NVIDIA GeForce RTX 3060 GPU.
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4.5. Experimental Results and Analysis
4.5.1. Subjective Evaluation

Figures 10–12 respectively show the sub scenes in the fusion results of the Pavia
University, Salinas, and Cuprite HS datasets. Although it is difficult to visually analyze the
results of HS sharpening due to hundreds of HS bands, spectral filtering is performed on
the fused HS images to obtain MS images, and then select the red, green, and blue bands
for true color composite display. The zoomed view of a local area is displayed in the upper
right. The corresponding RMSE heat maps are also provided below each fused image.
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Figure 10. Fused images of different HS sharpening methods on Pavia University dataset: (a) REF;
(b) PCA; (c) GSA; (d) GLP; (e) SFIM; (f) MAP-SMM; (g) HySure; (h) LTMR; (i) UTV; (j) IR-TenSR;
(k) CNN-Fus; (l) EXP.

For the Pavia University dataset, it can be seen from the true color images in Figure 10
that SFIM and MAP-SMM images have obvious blocking distortion, EXP appears too blurry,
and other fused images have better visual effects. The RMSE heat maps can help us easily
distinguish the subtle visual difference among the fused results. The images in Figure 10h,j
show that LTMR and IR-TenSR have the minimal spatial distortion. GSA, a traditional
pansharpening method, has also achieved good fusion result. GLP, SFIM, MAP-SMM show
the poor results as the significant distortions spread uniformly in the whole scene.
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Figure 11. Fused images of different HS sharpening fusion methods on Salinas dataset: (a) REF; (b) 
PCA; (c) GSA; (d) GLP; (e) SFIM; (f) MAP-SMM; (g) HySure; (h) LTMR; (i) UTV; (j) IR-TenSR; (k) 
CNN-Fus; (l) EXP. 

  

Figure 11. Fused images of different HS sharpening fusion methods on Salinas dataset: (a) REF;
(b) PCA; (c) GSA; (d) GLP; (e) SFIM; (f) MAP-SMM; (g) HySure; (h) LTMR; (i) UTV; (j) IR-TenSR;
(k) CNN-Fus; (l) EXP.

For the Salinas dataset, the fused images and their RMSE heat maps are presented
in Figure 11. Figure 11 shows a farmland scene, mostly in flat areas. From the zoomed
windows, it can be seen that the TR-based methods and deep CNN-based method, i.e.,
LTMR, UTV, IR-TenSR, and CNN-Fus are very similar to Figure 11a, the reference image.
Moreover, Figure 11d–g exhibit apparent block distortions, especially in SFIM and MAP-
SMM images. From the heat maps, it can be observed that the CNN-Fus, LTMR, and UTV
methods have achieved excellent fusion results. GLP, SFIM and MAP-SMM still show poor
results, especially around the roads.

Figure 12 shows the fusion results and RMSE heat maps on the Cuprite dataset. There
are almost no man-made buildings or vegetations in the scene and the types of ground
objects are relatively single. Despite of the low spatial resolution of the dataset, most fusion
methods still achieve good fusion results, making it difficult to distinguish the differences
in true color images. With the help of the RMSE heat maps, it can be seen that GSA and
UTV have the smallest error, LTMR and CNN-Fus achieve suboptimal results, and GLP,
SFIM, and MAPSMM methods are still the poorest. It is worth mentioning that, due to the
hundreds of bands in HS sharpened images, it is difficult to distinguish spectral distortion
accurately from the true color images only.
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Figure 12. Fused images of different HS sharpening methods on Cuprite dataset: (a) REF; (b) PCA; (c) GSA; (d) GLP; (e) SFIM; (f) MAP-SMM; (g) HySure; (h) 
LTMR; (i) UTV; (j) IR-TenSR; (k) CNN-Fus; (l) EXP. 

Figure 12. Fused images of different HS sharpening methods on Cuprite dataset: (a) REF; (b) PCA;
(c) GSA; (d) GLP; (e) SFIM; (f) MAP-SMM; (g) HySure; (h) LTMR; (i) UTV; (j) IR-TenSR; (k) CNN-Fus;
(l) EXP.

4.5.2. FR and NR Evaluations

The LR-HS and HR-MS images (mentioned in Section 4.1) are fused to obtain the fused
images. Then all fusion products are evaluated using four FR metrics and five NR metrics
and the experimental results are presented in Table 7, Table 8, Table 9 and Figures 13–15.
For FR evaluation, the original HS images are taken as the reference and four FR metrics are
used to evaluate. For NR evaluation, band assignment is conducted on the fused images
and the HR-MS images to get multiple groups. Each group contains one MS band and
several HS bands.

Each group is evaluated using NR metrics and the final NR evaluation results are
obtained by averaging the NR evaluation results of each group. Table 7, Table 8, Table 9
report the FR and NR evaluation results of the fused images on three HS datasets. For each
metric, the best result is marked in bold, and the second-best result is underlined. For a
more intuitive comparison, the evaluation results of each metric are displayed in a line
graph. Figures 13–15 are the line graphs for different datasets, in which the best five results
are marked with yellow blocks.



Remote Sens. 2024, 16, 1167 20 of 32

Table 7. The FR and NR evaluation results of the fused images on Pavia University dataset (best
results are in bold and the second-best results are underlined).

FR NR

PSNR SAM ERGAS Q2n Proposed QNR FQNR RQNR MQNR

PCA [17] 32.7516 4.8990 3.6755 0.9384 0.9052 0.9539 0.8868 0.9402 11.2499
GSA [18] 36.6391 3.8547 2.5563 0.9644 0.9761 0.9514 0.8852 0.9654 12.4637
GLP [19] 30.1203 4.8156 5.0499 0.9122 0.8026 0.9152 0.6900 0.8384 10.7750
SFIM [20] 29.6753 4.5224 5.3376 0.9057 0.7962 0.9094 0.5469 0.8228 9.6054

MAP-SMM [24] 28.4848 5.4159 6.0371 0.8685 0.6682 0.8739 0.4478 0.7805 11.5903
HySure [25] 34.5272 4.9741 3.1551 0.9609 0.9609 0.9543 0.8813 0.9652 13.6281
LTMR [29] 41.5977 3.3518 1.9020 0.9794 0.9756 0.9590 0.9527 0.9980 14.6542
UTV [31] 37.1334 4.7330 2.8079 0.9553 0.9213 0.9007 0.8468 0.9908 16.5310

IR-TenSR [32] 40.4947 3.4947 2.0962 0.9764 0.9708 0.9335 0.9293 0.9981 17.2970
CNN-Fus [33] 38.2684 5.3699 2.9606 0.9392 0.9346 0.8615 0.9014 0.9980 29.7144

EXP 24.5021 7.4930 9.5317 0.6217 0.4117 0.6290 0.1470 0.4851 8.9306

Table 8. The FR and NR evaluation results of the fused images on Salinas dataset (best results are in
bold and the second-best results are underlined).

FR NR

PSNR SAM ERGAS Q2n Proposed QNR FQNR RQNR MQNR

PCA [17] 41.0053 1.1651 1.4423 0.9561 0.9704 0.7855 0.8986 0.9359 5.6958
GSA [18] 42.0334 0.9958 1.4939 0.9513 0.9724 0.7284 0.8831 0.9457 6.0773
GLP [19] 33.8706 1.6669 2.2878 0.8407 0.8921 0.7577 0.6338 0.8855 4.4391
SFIM [20] 33.5175 1.5912 2.3925 0.8478 0.8725 0.7456 0.5518 0.8856 4.0835

MAP-SMM [24] 32.2169 1.9270 2.7237 0.7988 0.8030 0.7662 0.4740 0.8559 5.0511
HySure [25] 39.8855 0.9986 1.6597 0.9301 0.9726 0.7885 0.8687 0.9310 5.1651
LTMR [29] 50.3966 0.4058 1.3581 0.9738 0.9817 0.7889 0.9406 0.9685 5.7486
UTV [31] 45.7645 0.5914 1.3272 0.9570 0.9487 0.8037 0.9279 0.9660 4.9139

IR-TenSR [32] 42.5068 1.1308 1.7279 0.9030 0.9160 0.4030 0.8712 0.9745 5.4985
CNN-Fus [33] 50.4034 0.4055 1.3569 0.9739 0.9820 0.7888 0.9402 0.9683 5.7423

EXP 29.5208 2.2622 3.5258 0.6552 0.6636 0.7062 0.2314 0.7413 4.3056

Table 9. The FR and NR evaluation results of the fused images on Cuprite dataset (best results are in
bold and the second-best results are underlined).

FR NR

PSNR SAM ERGAS Q2n Proposed QNR FQNR RQNR MQNR

PCA [17] 39.5539 0.6362 0.4708 0.9752 0.8605 0.8484 0.9409 0.9643 3.5417
GSA [18] 45.2870 0.6361 0.3104 0.9867 0.8759 0.6106 0.8305 0.9714 4.0883
GLP [19] 35.0414 0.6187 0.7746 0.9255 0.6276 0.7136 0.5303 0.8599 5.1500
SFIM [20] 34.8900 0.6224 0.7880 0.9244 0.6071 0.7172 0.4070 0.8604 5.0715

MAP-SMM [24] 33.6162 0.6049 0.9124 0.8910 0.5451 0.8188 0.3665 0.8395 4.8478
HySure [25] 42.2074 0.6558 0.3708 0.9833 0.8428 0.9299 0.8761 0.9745 4.4016
LTMR [29] 48.5105 0.5219 0.2667 0.9898 0.9401 0.3162 0.8196 0.9794 7.4048
UTV [31] 42.6072 0.6022 0.3548 0.9794 0.807 0.9167 0.9207 0.9876 3.3382

IR-TenSR [32] 41.3697 0.9291 0.5971 0.9496 0.8385 0.2819 0.8205 0.9985 7.4925
CNN-Fus [33] 48.5053 0.5220 0.2668 0.9897 0.9400 0.3150 0.8199 0.9796 7.4009

EXP 29.2470 1.0039 1.5053 0.6427 0.3065 0.5774 0.0893 0.6508 5.0503
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Figure 13. The evaluation values of FR and NR metrics on Pavia University dataset: (a) PSNR;
(b) SAM; (c) ERGAS; (d) Q2n; (e) Proposed; (f) QNR; (g) FQNR; (h) RQNR; (i) MQNR.

From the results in Table 7, it can be seen that LTMR and IR-TenSR achieve the best or
second-best results among FR metrics, and EXP has the worst results in terms of FR metrics.
For Tables 8 and 9, CNN-Fus and LTMR are always the best or second-best among FR
metrics while EXP is the worst. This phenomenon is basically consistent with the subjective
analysis results in Figures 10–12. From Figures 13–15, it can be seen that there are some
correlations among the four curves of FR metrics, such as the optimal evaluation results
among them basically including GSA, LTMR, UTV, and CNN-Fus. In the performance of
NR metrics, the trend of the proposed method is very similar to Q2n and ERGAS, indicating
that the proposed method has shown excellent performance in evaluating overall quality.
FQNR and RQNR also have a similar trend to the Q2n curves, but their evaluations are not
accurate in methods with good fusion results. For example, in the evaluations of LTMR,
UTV, IR-TenSR, and CNN-Fus, the yellow blocks in RQNR are very close. For QNR, it has
good evaluation ability on the Pavia University dataset, but its evaluation performance
significantly decreases on the other two datasets, as its curves are clearly unrelated. The
curves of MQNR are inconsistent with those of FR metric, which means it cannot be used
for accurate evaluation. In addition, the evaluation results of the NR metrics have a certain
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correlation with PSNR and SAM, but the correlations are not stable enough, especially on
the Cuprite dataset.
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Figure 14. The evaluation values of FR and NR metrics on Salinas dataset: (a) PSNR; (b) SAM;
(c) ERGAS; (d) Q2n; (e) Proposed; (f) QNR; (g) FQNR; (h) RQNR; (i) MQNR.

4.5.3. The Consistency between FR and NR Metrics

FR quality assessment is commonly considered more reliable than NR evaluation, since
the reference is available and used in FR. Therefore, it is reasonable to use the evaluation
conclusion of FR as a reliability and accuracy benchmark for validating NR metrics. In
order to verify the consistency between FR and NR metrics and analyze the differences,
consistency experiments are conducted in which the evaluation results of Q2n, SAM, and
PSNR are considered as representatives of overall quality, spectral quality, and spatial
quality, respectively. Then the PLCC, SROCC, and KROCC are calculated between all
NR metrics and Q2n, SAM, and PSNR separately. Tables 10–12 report the correlations on
three datasets. The higher the values, the more consistent with the FR evaluation. The
negative values indicate that the evaluation results of the two metrics have opposite trend.
For a more intuitive analysis, the correlations are plotted in the form of a bar graph in
Figures 16–18, in which the negative values are set to 0.
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Figure 15. The evaluation values of FR and NR metrics on Cuprite dataset: (a) PSNR; (b) SAM;
(c) ERGAS; (d) Q2n; (e) Proposed; (f) QNR; (g) FQNR; (h) RQNR; (i) MQNR.

Table 10. PLCC, SROCC, and KROCC between Q2n and all NR metrics on three HS datasets (best
results are in bold and the second-best results are underlined).

Pavia University Salinas Cuprite

PLCC SROCC KROCC PLCC SROCC KROCC PLCC SROCC KROCC

Proposed 0.9622 0.9515 0.8909 0.9846 0.8667 0.7455 0.9031 0.9394 0.8909
QNR 0.9569 0.6121 0.5636 0.1506 0.6000 0.4545 0.0054 −0.5273 −0.0545

FQNR 0.9204 0.8182 0.7818 0.9787 0.9636 0.8909 0.8671 0.4424 0.3818
RQNR 0.9685 0.8363 0.7707 0.9618 0.7212 0.7091 0.9467 0.5879 0.5273
MQNR 0.3784 −0.1303 0.5273 0.7211 −1.2121 0.4909 0.0604 −0.4061 0.0909
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Table 11. PLCC, SROCC, and KROCC between SAM and all NR metrics on three HS datasets (best
results are in bold and the second-best results are underlined).

Pavia University Salinas Cuprite

PLCC SROCC KROCC PLCC SROCC KROCC PLCC SROCC KROCC

Proposed 0.8466 0.5879 0.4909 0.8760 0.8788 0.7818 0.5489 0.1879 0.3455
QNR 0.8761 0.5030 0.4545 0.1570 0.4910 0.4180 0.1748 −0.3939 −0.0182

FQNR 0.7908 0.4788 0.4545 0.9292 0.8909 0.7818 0.4474 −0.3697 −0.0182
RQNR 0.8165 0.4606 0.4404 0.8948 0.7818 0.7455 0.5197 −0.0060 0.0545
MQNR 0.1430 −0.7576 −0.2000 0.6778 −1.2485 −0.4771 0.0662 −0.5030 −0.1273

Table 12. PLCC, SROCC and KROCC between PSNR and all NR metrics on three HS datasets (best
results are in bold and the second-best results are underlined).

Pavia University Salinas Cuprite

PLCC SROCC KROCC PLCC SROCC KROCC PLCC SROCC KROCC

Proposed 0.8745 0.8182 0.7818 0.8071 0.7818 0.7091 0.9435 0.8909 0.8182
QNR 0.6336 0.2970 0.3818 0.0701 0.0382 0.0346 −0.4017 −0.6364 −0.1273

FQNR 0.8972 0.8909 0.8182 0.8949 0.9394 0.8545 0.8399 0.4061 0.3818
RQNR 0.8833 0.9818 0.9542 0.8581 0.9030 0.8182 0.8591 0.6970 0.6000
MQNR 0.6192 −1.4970 −0.7091 0.7419 −1.2485 −0.5505 0.3517 −0.4788 −0.0909
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Figure 16. PLCC, SROCC, and KROCC between all NR metrics and Q2n on three HS datasets:
(a) Pavia University dataset; (b) Salinas dataset; (c) Cuprite dataset.
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Figure 17. PLCC, SROCC, and KROCC between all NR metrics and SAM on three HS datasets:
(a) Pavia University dataset; (b) Salinas dataset; (c) Cuprite dataset.
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Figure 18. PLCC, SROCC, and KROCC between all NR metrics and PSNR on three HS datasets:
(a) Pavia University dataset; (b) Salinas dataset; (c) Cuprite dataset.

Table 10 and Figure 16 show the correlations between NR metrics and Q2n for eval-
uating the overall quality. It can be seen that the proposed method has the highest or
second-highest correlations with the evaluation results of Q2n on all three datasets. On
the Cuprite dataset, there is a significant decrease in the accuracy of the other NR metrics,
while the proposed method still maintains excellent evaluation performance. For the FQNR
and RQNR metrics, they can only perform the good evaluation performance on a single
dataset and show unstable evaluation performance and weak robustness. For the QNR
and MQNR metrics, their evaluation results show a weaker correlation or even negative
values compared to Q2n, which indicates the two NR metrics are not reliable to evaluate
the overall quality.

For the spectral quality evaluation, Table 11 and Figure 17 show the correlations
between NR metrics and SAM metric. In Table 11, it can be seen that the proposed method
stays in a stable first tier on all datasets and has good robustness, especially on the Cuprite
dataset. In contrast, the negative values appear in the other NR metrics, which indicates
the metrics cannot accurately evaluate the spectral quality of the Cuprite dataset. Although
RQNR achieves the second-best in terms of KROCC, its numerical value (0.0545) is much
smaller than the proposed method (0.345). On the Salinas dataset, FQNR is the most
relevant to SAM in terms of PLCC and SRCC. However, FQNR performs poorly on the
other two datasets. This is similar to its situation in Table 10. QNR shows good correlation
on the Pavia University dataset but is unstable on the other datasets.

For the spatial distortion evaluation, Table 12 and Figure 18 show the correlations
between NR metrics and PSNR. FQNR and RQNR achieve the highest correlation with
PSNR on datasets Pavia University and Salinas. The proposed method is closer to PSNR
than other metrics on the Cuprite dataset. The reason is that Benford’s law is based on the
statistical characteristics of data, making it more sensitive to large-scale spatial features
(i.e., lower spatial resolution). The Cuprite dataset has a spatial resolution of 20 m, which
is much lower than the other datasets. Therefore, FQNR and RQNR metrics designed
specifically for high spatial resolution (i.e., the multispectral sharpening) are more effective
in perceiving small-scale spatial features. Additionally, it can be observed in Table 12 that
the values of the proposed method are close to FQNR and RQNR on the Pavia University
and Salinas datasets and exhibit stability.

From the consistency experiment results, the following conclusions can be drawn:
(1) Compared with the other NR metrics, the evaluation results of the proposed method
are generally closer to those of FR on all datasets. (2) The proposed method achieves the
best results on the Cuprite dataset. (3) Compared with the other NR metrics, the proposed
method is more stable and robust for different datasets. (4) QNR and MQNR metrics differ
significantly from FR, making the quality evaluation of HS sharpened images unreliable.

Overall, the proposed method exhibits optimal performance in evaluating global and
spectral quality and has high robustness. The FQNR and RQNR can only exhibit optimal
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performance on one to two datasets and have poor robustness. QNR and MQNR are not
suitable for NR quality assessment of HS sharpened images.

4.5.4. Analysis of the Sub-Index in NR Metrics

In order to investigate the performance of FDDlf, FDDhf, and FDDQ, the sub-indexes
of all NR metrics are analyzed and compared by calculating the SROCC between the
spectral/spatial distortion index and all FR metrics. SROCC is often used to reflect the
effectiveness of the spatial/spectral indexes. The higher the SROCC, the more accurate the
ranking of the evaluation results of the sub-index, and the more effective the sub-index
is. Tables 13–15 report the SROCC results between all spatial/spectral indexes and all FR
metrics. The rows on top represent the spatial indexes of the NR metrics, the rows in the
middle represent the spectral indexes of the NR metrics, and the bottom seven rows belong
to the sub-indexes proposed in this paper. PSNR reflects the ability to measure the spatial
distortion, SAM presents the ability to measure the angular distortion of the spectrum, and
ERGAS and Q2n reflect the performance of measuring the overall quality.

Table 13. SROCC between sub-indexes and all FR metrics on Pavia University dataset (best results
are in bold and the second-best results are underlined).

Sub-Index PSNR SAM ERGAS Q2n

sp
at

ia
l DQs 0.8909 0.6727 0.9636 1.0000

DRs 0.9515 0.4545 0.9030 0.8788
DFs 0.7212 0.5273 0.7697 0.8061
DMs 0.4909 0.1273 0.5152 0.6364

sp
ec

tr
al DQλ −1.5758 −0.8970 −1.4788 −1.3697

DFλ 0.9576 0.4242 0.8606 0.8121
DMλ −1.4424 −0.8364 −1.3212 −1.1394

FDDlf 0.7333 0.0909 0.6121 0.6606
FDDhf 0.5394 0.6970 0.6606 0.7939
FDDQ 0.8061 0.6364 0.9273 0.9636
FDDlf + FDDhf 0.7758 0.5333 0.8242 0.9091
FDDlf + FDDQ 0.8061 0.6364 0.9273 0.9636
FDDhf + FDDQ 0.8061 0.6364 0.9273 0.9636
Proposed 0.8182 0.5879 0.9515 0.9515

Table 14. SROCC between sub-indexes and all FR metrics on Salinas dataset (best results are in bold
and the second-best results are underlined).

Sub-Index PSNR SAM ERGAS Q2n

sp
at

ia
l DQs 0.6788 0.6061 0.7758 0.7152

DRs 0.8727 0.7273 0.6061 0.6909
DFs 0.8727 0.8606 0.9455 0.9697
DMs 0.6485 0.6485 0.7697 0.7939

sp
ec

tr
al DQλ −1.0424 −1.0546 −0.8606 −0.9455

DFλ 0.9212 0.8000 0.6788 0.7394
DMλ −1.2121 −1.1152 −1.1394 −1.0909

FDDlf 0.4545 0.6121 0.5152 0.6485
FDDhf 0.7455 0.7818 0.7939 0.8788
FDDQ 0.6485 0.7939 0.6849 0.7576
FDDlf + FDDhf 0.7455 0.7818 0.7939 0.8788
FDDlf + FDDQ 0.7212 0.8424 0.7333 0.8182
FDDhf + FDDQ 0.7818 0.8788 0.7697 0.8667
Proposed 0.7818 0.8788 0.7818 0.8667
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Table 15. SROCC between sub-indexes and all FR metrics on Cuprite dataset (best results are in bold
and the second-best results are underlined).

Sub-Index PSNR SAM ERGAS Q2n

sp
at

ia
l DQs 0.4364 −0.3394 0.4727 0.4606

DRs 0.4364 −0.3394 0.4242 0.4121
DFs 0.5273 −0.1515 0.6000 0.5879
DMs 0.3455 −0.4909 0.3818 0.3930

sp
ec

tr
al DQλ −0.9818 −0.6182 −0.8970 −0.8727

DFλ 0.7273 0.0606 0.6546 0.6061
DMλ −0.8909 −0.6121 −0.7818 −0.8546

FDDlf 0.4304 −0.5880 0.4182 0.4545
FDDhf 0.7333 0.1030 0.8061 0.8182
FDDQ 0.9152 0.2242 0.8667 0.8546
FDDlf + FDDhf 0.7333 0.1030 0.8061 0.8182
FDDlf + FDDQ 0.9030 0.2121 0.8546 0.8424
FDDhf + FDDQ 0.9515 0.2000 0.9273 0.9515
Proposed 0.8909 0.1879 0.9152 0.9394

For the spatial indexes, it can be seen that DRs achieves the highest SROCC with PSNR
on the first and second dataset, while DFs obtains optimal performance on the second and
third dataset. The SROCC of DMs are the lowest among all spatial indexes. Moreover, the
NR spatial indexes also demonstrate high accuracy in measuring overall distortion, such
as the performance of DQs on the first dataset and DFs on the second dataset, although
their performances are not stable on all datasets. In addition, these NR indexes are not
accurate in measuring the spectral distortion, since they show negative SROCC values on
the Cuprite dataset.

For the spectral indexes, DFλ achieves the best performance among the three NR
spectral indexes, and it also demonstrates excellent performance in measuring the spatial
and overall distortion on all three datasets. All SROCCs of DQλ and DMλ are negative,
indicating that they fail to measure fusion distortion. The reason may be that the assumption
of invariance in the relationship between HS bands is unreasonable. For example, the
spectral distortion of EXP is considered smallest in pansharpening and the results of both
SAM and DQλ should be close to 0. In HS sharpening, however, the SAM values of EXP
are always the worst and the results of DQλ are still close to 0. The completely opposite
evaluation results of SAM and DQλ lead to poor performance of DQλ. For DMλ, as it inherits
the assumption of QNR’s spectral distortion index, the results of DMλ are also unreliable.

For the sub-indexes proposed, each of the FDD features and their pairwise combi-
nations are compared separately with FR metrics. It can be seen that the best evaluation
performance is not achieved by using all three FDD features. The performance of different
types of FDD features varies on different datasets. FDDhf and FDDQ both have stable
evaluation performance, and combining them can obtain more accurate and stable evalua-
tion results. In contrast, the ability of FDDlf to measure various distortions is weak since
FDDlf only characterize the statistics of the fused image itself, without considering the
relationship between the fused image and the input images (HR-MS and LR-HS). Due
to the excellent performance of FDDlf in measuring external distortion, it is retained in
QFDD to enhance the robustness of the proposed method. Overall, from the data in the
tables, it can be seen that the sub-indexes of the proposed method exhibit high accuracy
and excellent robustness in measuring various distortions, especially global distortion. The
proposed method is effective to measure the overall distortion of HS sharpened image.
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5. Discussion
5.1. The Distortions in HS Sharpening

For HS sharpening (or MS sharpening), the input images have already been denoised
and registered. In other words, the input images have no noises like stripe noise, Gaussian
white noise, salt and pepper noise, etc. Similar to the authentic distortions of natural
images, the distortions in HS sharpening are inherent in the fused image itself and some
external distortions are not considered. Therefore, the quality assessment should pay
more attention to the distortions yielded in HS sharpening process. To date, the fusion
community consensus is that there exist two types of distortions, i.e., the spatial distortion
and the spectral distortion. However, due to the large number of spectral bands in HS
sharpened images, it is difficult to separate the spectral distortion and spatial distortion
completely. In the experimental results, it can be seen that there exists, to some extent, a
correlation between the evaluation results of spectral and spatial indexes. There is coupling
between the two distortions. It is more reasonable to describe the overall quality of fusion.
To define what the term (spatial/spectral) quality means and quantify the quality in a
measurable way make the quality assessment of HS sharpening a complex task.

5.2. The Accuracy of NR Quality Assessment

For the quality assessment of HS sharpened images, the qualitative evaluation is
infeasible. The subjective evaluation of HS sharpened bands within the visible spectrum
has limitation. Therefore, it is very difficult to verify the accuracy of NR metrics using
DMOS (difference mean opinion score) values obtained from subjective evaluation. Due
to the rarity of the real reference images, NR quality assessment of the fused images is
much debated, especially for NR evaluation of HS sharpened images at full resolution
scale. If the ranking of different fusion results in an NR evaluation is consistent with the
ranking based on full-reference evaluation, then the NR method is considered effective and
reliable. This assumption is a feasible way in current situation. In this paper, experiments
are conducted on the consistency between NR and FR metrics to test the accuracy of NR
metrics. The experimental results show that the proposed method is generally closer to the
evaluation results of FR compared to other NR metrics. However, for the datasets with high
spatial resolution (i.e., Pavia University and Salinas), the proposed method does not have
significant advantages. FQNR and RQNR metrics have good accuracy in measuring overall
and spatial quality on the Pavia University and Salinas datasets but have poor performance
on the Cuprite dataset with low spatial resolution, which indicates the metrics are sensitive
to the spatial resolution of HS sharpened images and have weak robustness. Compared
to FR, QNR and MQNR show opposite evaluation results, so they are not suitable for
evaluating HS sharpening.

5.3. The Limitations

Although the proposed method is tested by using three different HS datasets, there still
may be potential limitations: (1) The input images (i.e., HR-MS and LR-HS images) used
when generating fusion results are simulated from the HS dataset itself. The effectiveness of
the proposed method is uncertain about heterogeneous or multi-platform HS data. (2) The
experimental results show that the proposed method has limitations in detecting the spatial
distortion of the HS sharpened images with high spatial resolution. We believe that there is
a potential connection between the spatial information of image and Benford’s law. The
implicit relationship is worth exploring and will help design a more accurate metric.

6. Conclusions

This paper proposes a no-reference quality assessment method of HS sharpened
images without the need for a reference image or any other simulations based on Wald’s
protocol. The method designs three quality perception features, namely FDDlf, FDDhf, and
FDDQ, to perceive the quality and employs the standard Benford’s law as a benchmark
to evaluate the fusion distortion of HS sharpened images. The extensive experiments
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are conducted to verify the effectiveness of the proposed method. Compared with the
other four commonly used NR metrics, the proposed method is more stable and robust for
different HS datasets, although the performance of the FDD features varies on different
datasets. In addition, the evaluation results of the proposed method are generally closer to
those of FR on all HS datasets. The proposed method can be flexibly used for evaluating
spectral, spatial, and overall distortion without relying on the type of sensors and scale
of the dataset. To obtain a more accurate QFDD by applying the weights to the three FDD
features should be the subject of future work.
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