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Abstract: GNSS Reflectometry (GNSS-R) is an emerging technique for the remote sensing of the
environment. Traditional GNSS-R bio-geophysical parameter retrieval algorithms and deep learning
models utilize observables derived from only the peak power of the delay-Doppler maps (DDMs),
discarding the rest. This reduces the data available, which potentially hinders estimation accuracy.
In addition, reflections from water bodies dominate the signal amplitude, and using only the peak
power in those areas is challenging. Motivated by all the above, we propose a novel deep learning
retrieval model for biomass estimation that uses the full DDM of surface reflectivity. Experiments
using CYGNSS data have illustrated the improvements achieved when using the full DDM of surface
reflectivity. Our proposed model was able to estimate biomass, trained using the ESA Climate
Change Initiative (CCI) biomass map, outperforming the model that used peak reflectivity. Global
and regional analysis is provided along with an illustration of how biomass estimation is achieved
when using the full DDM around water bodies. GNSS-R could become an efficient method for
biomass monitoring with fast revisit times. However, an elaborate calibration is necessary for the
retrieval models, to associate GNSS-R data with bio-geophysical parameters on the ground. To
achieve this, further developments with improved training data are required, as well as work using in
situ validation data. Nevertheless, using GNSS-R and deep learning retrieval models has the potential
to enable fast and persistent biomass monitoring and help us better understand our changing climate.

Keywords: biomass; GNSS-R; deep learning; delay-Doppler map

1. Introduction

Above-ground-biomass is an essential climate variable that determines the global
distribution of carbon. The recent drastic increase in CO2 is believed to be the major factor
causing climate change and the cause of the greenhouse effect [1]. Unfortunately, global
in situ biomass measurements are impractical due to the vast areas to cover, as well as
the inaccessibility of remote and dense tropical forests. Remote sensing is a more suitable
approach, which exploits the electromagnetic wave interaction mechanisms (e.g., scattering
and attenuation) with vegetation to indirectly infer the above-ground-biomass.

There have been numerous efforts to generate biomass maps using data acquired from
space. LIDAR data such as NASA’s GEDI [2] and ICESat-1 (GLAS instrument) [3] missions
have been used to estimate forest canopy heights and above-ground-biomass in conjunction
with other instruments. However, they suffer from clouds (e.g., around tropical forests)
and weather conditions, limiting their spatial extent. On the other hand, microwave signals
can penetrate through clouds and operate irrespective of weather conditions. JAXA’s ALOS
series missions use synthetic aperture radar systems in the L-band to measure backscatter
intensity and infer above-ground-biomass. Nevertheless, it was shown that it saturates at
around 100 tonnes/ha [4]. The future ESA BIOMASS mission [5] will use the P-band and
aims to overcome this limitation.

Remote Sens. 2024, 16, 1125. https://doi.org/10.3390/rs16071125 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16071125
https://doi.org/10.3390/rs16071125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs16071125
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16071125?type=check_update&version=1


Remote Sens. 2024, 16, 1125 2 of 16

At the same time, numerous studies have utilized reflected signals from the Global
Navigation Satellite System (GNSS), to retrieve bio-geophysical parameters [6,7]. GNSS-
Reflectometry (GNSS-R) is a multi-bistatic radar, which utilizes reflected L-band navigation
signals, with as many transmitters as in-view GNSS satellites (e.g., Galileo, GPS). The spec-
tral region of the navigation signal is sensitive to water content, and it can penetrate through
vegetation. Low-cost GNSS-R passive instruments enable smaller platforms and larger
constellations, translating into wide spatial coverage and high revisit times.

Several spaceborne GNSS-R missions have demonstrated the potential of this technique,
from Disaster Monitoring Constellation-1 (DMC-1) [8], TechDemoSat-1 (TDS-1) [9], a specific
mission mode of the Soil Moisture Active Passive (SMAP) [10], to the constellation of the
Cyclone GNSS (CYGNSS) [11], the BuFeng-1 A/B constellation [12], the FSSCat [13], and
commercial GNSS-R constellations such as Spire’s cubesats [14,15]. There are planned
missions such as ESA’s Hydrology using GNSS reflections (HydroGNSS) [16].

Initial proposals for the utilization of GNSS-R involved ocean remote sensing [8,17–19],
for altimetry [20,21] and wind speed retrieval [22,23]. Nevertheless, over the years, many
different applications have emerged for the estimation of wind direction [24], sea target
detection [25,26] and over land [27,28] such as soil moisture [29,30], and above-ground-
biomass [31,32], to name a few. For an in-depth review, ref. [6] provides details for various
geophysical parameters, and [7] focuses specifically on land applications.

This work investigates the application of GNSS-R over land, and more specifically,
for biomass estimation. The main mechanism that enables GNSS-R data to be sensitive
to biomass is the attenuation of the near-specular reflected signal from the soil due to
vegetation [7]. One of the key observables is the equivalent surface reflectivity, Γ, defined
in Equation (1). Figure 1a illustrates the gridded, mean Γ (the mean is calculated from
the surface reflectivity of the full DDM per specular point and then gridded at 5 km),
and Figure 1b includes the corresponding above-ground-biomass (AGB) from the ESA
Climate Change Initiative (CCI) [33]. It can be seen that there is a general trend when
biomass is high and Γ is low and vice versa. However, biomass estimation from GNSS-R
data is a highly ill-posed problem. The received power on a GNSS-R platform depends not
only on biomass, but on many other parameters and factors.

(a) (b)

Figure 1. Sensitivity of GNSS-R data to biomass at 5 km. (a) Gridded mean equivalent surface
reflectivity, Γ (the mean is calculated from the reflectivity of the full DDM per specular point and then
gridded at 5 km). (b) Gridded AGB from the ESA CCI biomass map.

Recently, efforts have been focused on spaceborne GNSS-R data from TDS-1 and the
CYGNSS constellation. The trailing edge and reflectivity derived from CYGNSS were
used in [32] to study their sensitivity and ability to retrieve biomass. An empirical ap-
proach based on polynomial fitting was used to estimate biomass at selected test sites
with encouraging preliminary results. Further studies augmented the GNSS-R-derived
observables with other data such as latitude/longitude, the signal-to-noise ratio [31], and
soil moisture [34].
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The above studies utilize a single value for equivalent surface reflectivity, computed
from the maximum power received at the platform for each location. This results in more
than 99% of the data available from the delay-Doppler map (DDM) shown in Figure 2 being
discarded due to the difficulty in incorporating them into traditional retrieval algorithms.
There have been studies that propose to use the full DDM to extract additional information
using deep learning models for soil moisture estimation [35] and wind speed retrieval [36].
Before moving further, it is worth providing more details and characteristics, motivating
the use of the full DDM for biomass estimation.

Over land surfaces, the reflected GNSS signal is composed of a nearly specular reflec-
tion from the soil surface and diffuse scattering for vegetation and surface roughness [31].
This means that the signal is composed of both coherent and incoherent scattering, with the
relative portion depending on the coherent integration time, the acquisition geometry, and
the properties of the scattering media [32]. The type of scattering is important as it affects
the spatial resolution achievable by the instrument. It is approximately determined by
the size of the first Fresnel zone for coherent scattering (hundreds of meters) [37] or about
25 km for incoherent scattering [6]. This results in the signal arriving from a limited zone
around a specular point (pre-defined based on the instantaneous acquisition geometry)
where the power is the strongest, called the glistening zone. Note that the contribution of
each type of scattering is yet to be fully understood and remains an open research question
in the GNSS-R community [7].

From this zone, the main product is the delay-Doppler map (DDM). A cross-correlation
of the received data with a clean replica of the PRN code [6] is performed for different delays
(difference in traveling path) and carrier frequency offsets (frequency shift of scattered
signal) to compute a map of power across these spatial dimensions. The structure within the
DDMs is different depending on the observable scene on Earth; however, it is challenging
to quantify these differences in closed form. Figure 2 illustrates three examples of DDMs.
It can be seen that, as the biomass changes on the ground, the DDM structure changes.
In addition, with increasing biomass, the peak power decreases.

(a) (b) (c)

Figure 2. Examples of delay-Doppler maps (DDMs) over different surfaces. (a) Coherent reflection
from low-biomass scene (3.08 tonnes/Ha), (b) roughness from scene with medium/high biomass
(167.01 tonnes/Ha), and (c) low power from scene with high biomass (267.49 tonnes/Ha).

By using the peak power alone, the additional information from the structure of the
DDMs is not utilized. Not only that, if the observation area contains water bodies, it
would make the peak power of the GNSS-R signal unusable. This is because the power of
the reflection over water dominates the amplitude of the reflected signal [35]. Motivated
by this and the differences in the structure of the DDMs with varying biomass values,
we propose to utilize the full DDM for biomass estimation. We developed a novel deep
learning retrieval model that utilizes the equivalent surface reflectivity from the full DDMs
for biomass estimation with single-pass retrieval, that is the GNSS-R data are not gridded
prior to estimation, providing greater flexibility. We also performed correlation analysis and
filtering recommendations for the generation of training data, as well as ablation studies
for the choice of inputs. This resulted in a deep learning retrieval model that is able to
estimate biomass using only input data related to the GNSS-R acquisition, independent of
any external sources.
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The rest of the paper is organized as follows: Section 2 describes the generation of the
training data and the deep learning retrieval model. Section 3 provides the description of
the experiments and results. Lastly, Section 4 analyses and discusses the results of the study.

2. Materials and Methods

In this section, the data used and the procedure to curate a training dataset is provided.
Then, the proposed deep learning retrieval model is described.

2.1. Training Data Generation

In order to create a dataset that is suitable for training deep learning models for
GNSS-R, there are several steps that need to be performed. The appropriate inputs and the
corresponding target need to be selected, studied, and co-located.

2.1.1. CYGNSS Dataset

The CYGNSS mission is a constellation of eight small satellites, each of which collects
forward-scattered navigation signals from four specular points simultaneously. The mea-
surements are limited to ±38 degrees latitude since it was originally designed to track wind
speeds and extreme events such as cyclones in the tropics. The data are accessible via the
Physical Oceanography Distributed Active Archive Center (PODAAC) [38].

Level 1 delay-Doppler maps (DDMs) from the v3.0 dataset have been extracted from
the database. As illustrated in Figure 2, this is a 17 × 11 element array of calibrated power
in Watts. Each sample in the DDM corresponds to the power received at a certain delay
and Doppler shift. Along with the DDMs, some informative data are also provided. These
could be used as additional inputs to the retrieval algorithm or utilized for computing
other observables. Among the main observables that have shown sensitivity to biomass are:
the DDM, the signal-to-noise ratio (SNR), and the equivalent surface reflectivity, Γ [31,32].
The latter embeds the effects of surface moisture content, small-scale roughness, and
attenuation introduced by vegetation cover [7]. The SNR is available from the L1 files,
and it is the ratio of the maximum value of the uncalibrated DDM in raw counts over the
average per-bin raw noise counts. On the other hand, Γ is computed using Equation (1):

Γ =
(4π)2Pddm(Rt + Rr)2

λ2GrGtPt
, (1)

where Pddm is a sample from the 17 × 11 power DDM, Rt is the distance from the specular
point and the transmitter, Rr is the distance from the receiver to the specular point, λ is
the wavelength of the GPS L1 signal, Gr is the receiver antenna gain in the direction of the
specular point, and GtPt is the transmitter equivalent isotropically radiated power (EIRP).
All quantities are provided in the L1 files and are used for the calibration of the power from
the full DDM to the equivalent surface reflectivity per specular point.

2.1.2. ESA CCI Biomass Map

The European Space Agency Climate Change Initiative (ESA CCI) provides yearly
datasets of biomass maps up to 2020, at the time of writing [33], including some that
coincide with the period that the CYGNSS mission has been active. The ESA CCI biomass is
derived by utilizing a variety of data sources depending on the year, including Copernicus
Sentinel-1, Envisat’s ASAR, and JAXA’s ALOS series, and rely on allometries from NASA’s
GEDI and ICESat-2 missions.

It is worth noting that the ESA CCI biomass maps are static, and there is one map
for the entire year. The map does not provide any evolution over time, which is not the
optimal reference when using a time series of GNSS-R data acquisitions [7]. However, in the
absence of any other easily accessible reference dataset in the desired spatial resolution, it
was chosen for training and testing data as a proof-of-concept.

The original spatial resolution of the biomass maps is 100 meters per pixel, while the
resolution of the CYGNSS data is expected to be lower. Based on previous studies [31]
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and the expected resolution in a regime of GNSS-R incoherent scattering (which is the
predominant type of scattering in the presence of biomass), we selected 5 km as the biomass
spatial resolution. To do that, we averaged the original 100-meter ESA CCI biomass pixels
around 5 km of each specular point and co-located them with the corresponding CYGNSS
data acquisition. Figure 3 includes the ESA CCI biomass maps for 2019 and 2020.

(a) (b)

Figure 3. ESA CCI biomass maps, gridded at 5 km for (a) year 2019 and (b) year 2020.

2.2. Correlation Analysis and Data Filtering

There are numerous inputs that could be derived from the CYGNSS data. Here, we
investigate the relationship of five variables with the ESA CCI biomass map at 5 km spatial
resolution. These are namely the following:

1. The peak power of the delay-Doppler map (DDM);
2. The mean power of the DDM;
3. The peak equivalent surface reflectivity per specular point;
4. The mean equivalent surface reflectivity per specular point;
5. The signal-to-noise ratio (SNR) per specular point.

The CYGNSS constellation produces an enormous amount of data per year. However,
there might be data acquisitions with erroneous or undesirable measurements (e.g., radio
frequency interference, acquisition over mountains). Thus, appropriate data filtering is
required. First, measurements over the oceans and measurements with associated zero
above-ground biomass are removed. Then, the surface topography of each data acquisition
is considered, since it is known that CYGNSS acquisitions over regions with high elevation
have performance issues [30,39]. Using the 1 km gridded digital elevation model (DEM)
data from the NOAA Global Land One-km Base Elevation Project (GLOBE) [40], we filtered
out all CYGNSS data acquired over regions with 2 km and above in elevation.

Furthermore, the incidence angle can affect the shape and cause distortions on DDMs;
thus, acquisitions with angles outside 30–50° were discarded. Another consideration is
the antenna receiver gain towards the direction of the specular point [39], which should
be high enough to obtain a measurement of sufficient quality. We used data that have an
associated receiver antenna gain above 3 dB. The antenna gain is provided in the CYGNSS
L1 files, for the specular point only, and consideration is required of how this might affect
the computation of the full DDM of reflectivity. Lastly, the radio frequency interference
(RFI) needs to be considered. Using the CYGNSS RFI flag would result in substantial data
reduction [35]. Therefore, we followed the approach in [35] and used custom quality filters.

Five months of the first half of 2019 were filtered as described above. Table 1 lists the
correlation coefficient between the five observables of interest and the ESA CCI biomass.
It can be seen that the observable with the best indicator is the mean equivalent surface
reflectivity, Γ. The second-best observable is the mean power of the DDM. This re-enforces
our motivation to use information from the full DDM as opposed to its maximum power.
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Table 1. Correlation of five GNSS-R observables with ESA CCI biomass at 5 km spatial resolution.

Variable/Res. 5 km
Samples 13.9 × 106

Max DDM −0.36173
Mean DDM −0.44531

Max Γ −0.37602
Mean Γ −0.47389

SNR −0.28362

2.3. Deep Learning Model for Biomass Retrieval

Incorporating the full DDM into traditional retrieval models is not straight-forward
due to the lack of closed-form expressions. However, deep learning models can process the
data directly and extract features. In order to achieve this, the 2D-DDM of equivalent surface
reflectivity is flattened and concatenated with additional data of interest. The concatenated
vector is denoted here as x, given by

x = [γ, xSNR, xLAT, xLON, xAngle] (2)

where γ is the flattened surface reflectivity. xSNR is the signal-to-noise-ratio (SNR), xLAT, xLON
are the latitude and longitude of each specular point, and xAngle is the incidence angle. All
these variables are scalars per acquisition, available only for the specular point, and were
obtained from the CYGNSS L1 files. Note that there are no inputs used that depend on any
external datasets (e.g., digital elevation model or soil moisture products). The choice of
the input data and the order that they are arranged were chosen empirically. Their impact
on prediction accuracy is analyzed in the next section, but a more sophisticated way of
selecting and arranging this vector is subject to future developments.

The concatenated vector is passed through a series of fully connected layers, in order
to estimate the biomass at each location. The output of the first layer of the fully connected
network is given by

α0 = σ(xWT
0 + c0). (3)

where σ is the sigmoid function, W0 are the weights to be learned, and c0 is a bias term.
In a similar manner, the intermediate layer outputs are given by activation vectors:

αl = σ(αl−1WT
l + cl), ∀l ∈ {1, ..., L − 1}. (4)

The final layer estimates the biomass prediction:

b̂ = αL−1wT
L + cL (5)

where αL−1 is the output of the activation of the (L − 1) layer, wL are the weights to be
learned, and cL is a scalar bias term. wL is a vector, since the output is a single scalar value.

Figure 4 illustrates a schematic of the proposed deep learning retrieval model. This is
analogous to traditional geophysical parameter-retrieval models, where the weights of a
linear combination of selected variables are optimized via regression analysis. In the case of
our model, the relationship can be non-linear using activation functions, the incorporation
of new inputs and full DDMs is trivial and the number of weights to be optimized can be
orders of magnitude larger. To learn the weights, we used the absolute error, given by

L(b̂, b) = |b̂ − b|, (6)

where b is the ESA CCI biomass value and b̂ is the biomass estimated by the deep learning
retrieval model defined in Equation (5). Gradients of the loss with respect to each weight
are calculated, and optimization is performed using the ADAM optimizer. Mini-batches
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are used, and optimization is performed using millions of samples as described next. All
experiments were performed using the PyTorch library, version 1.10 [41].

Figure 4. Diagram illustrating the architecture of the deep learning retrieval model. The full DDM
of surface reflectivity is flattened and concatenated with additional information. A fully connected
neural network is utilized in order to estimate biomass for each location of GNSS-R data acquisition.

3. Results

The ESA CCI provides static, yearly biomass maps; hence, we gathered one year
of CYGNSS data acquisitions to train over the entire period and test over another year.
The year of the training data is 2019, and the year of the test data is 2020. After data filtering,
49 million DDMs with their associated metadata and biomass were used for training and
approximately 65 million, 6 hundred thousand DDMs for testing.

3.1. Model Capacity

In theory, neural networks could learn to approximate arbitrary functions and, thus,
should be able to learn a mapping from the surface reflectivity to biomass. This is possible
provided that sufficient and representative data are available and that the size of the
model is chosen accordingly. Too big a model could overfit the data, too small a model
might fail to learn the mapping. In this study, we chose to fix the number of the fully
connected layers to four and only varied the number of neurons per layer. This was
performed to better understand the model capacity required to capture the complexity of
the functional mapping.

Table 2 lists the global prediction accuracy, computed from L2 retrievals (i.e., not
gridded) and averaged over all test samples. As the number of neurons increases, the cor-
relation coefficient (R) between the prediction and the ESA CCI biomass map increases
and the root-mean-squared error (RMSE) decreases. However, the improvement in predic-
tion accuracy diminishes with increasing neurons, and doubling the number of neurons
increases the training and inference time. Thus, we selected the model with 128 neurons
per layer as a trade-off between prediction accuracy and computational load.

Table 2. Global prediction accuracy, computed from L2 retrievals (i.e., not gridded) using four layers.

Number of Neurons per Layer R RMSE

8 0.871 41.952
16 0.891 38.833
32 0.922 32.873
64 0.931 31.125

128 0.940 28.897
256 0.946 27.575

3.2. Ablation Study of Input Options

After choosing the model capacity, the next step is to understand the importance of
various inputs to the network. For each set of inputs, a dedicated deep learning model was
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trained using the 2019 data and then tested over the 2020 data. The mean equivalent surface
reflectivity is shown in Figure 5a and the corresponding ESA CCI biomass in Figure 5b.

(a) (b)

(c) (d)

Figure 5. (a) shows the mean equivalent surface reflectivity per specular point; (b) is the ESA CCI
biomass target; (c) is the estimation using only latitude and longitude; (d) uses Γ from the full DDM,
SNR, and incidence angle. Figures correspond to single-pass reflectivity, target, and retrievals.

First, the latitude and longitude of the CYGNSS acquisitions are used as input to enable
the models to learn regional biomass patterns and behaviors. Nevertheless, location alone
is not sufficient, as seen in Figure 5c, which includes the biomass estimation from a model
trained using only latitude and longitude as the inputs. It can be seen that the prediction is
very coarse, completely missing the small-scale variations. From Table 1, it was shown that
CYGNSS observables correlate with biomass. To test if these are sufficient, we trained a
model using Γ from the full DDM, SNR, and incidence angle as inputs. Using these was
not sufficient, as illustrated in Figure 5d. The model captures the smaller scales, as opposed
to the model that uses only location, but does not produce an overall accurate map.

In order to exploit the best of both configurations, we trained a model using both the
CYGNSS observables and the latitude and longitude. Figure 6a shows the prediction of
this model, illustrating that it is possible to simultaneously capture small scales and larger
regional patterns. Another input configuration of interest is the peak of the DDM scaled
to the equivalent surface reflectivity. This was also shown to be correlated with biomass,
and it is used in other studies as the input to neural networks for biomass estimation [31].
We trained a model using the peak reflectivity as the input as opposed to reflectivity from
the full DDM, but kept the rest of the inputs the same. Figure 6b includes the biomass
estimation using this model. It can be seen that the model focuses more on smaller scales,
e.g., rivers are more visible, which can also be seen as higher absolute error for the model
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using the peak reflectivity in Figure 6d, as opposed to Figure 6c, illustrating the error using
reflectivity from the full DDM.

(a) (b)

(c) (d)

Figure 6. (a) uses the latitude, longitude, Γ computed from the full DDM, SNR, and incidence angle,
and (b) uses the peak Γ with the rest of the inputs the same. (c,d) include the corresponding absolute
errors. Both (a,b) correspond to single-pass retrievals.

Furthermore, Table 3 lists the R and RMSE of different models using various input
configurations. The best configuration uses the reflectivity computed from the full DDM,
SNR, and incidence angle (θ) and, in addition, includes the location information. Note that
the R and RMSE highlight the best model, but the small differences between the metrics do
not capture the visual differences that can be seen in Figures 5 and 6. Other more specialized
quality metrics during model evaluation are essential in order to better understand their
ability to capture spatial variations and patterns accurately.

Table 3. Ablation study over the 2020 test data, computed from L2 retrievals (i.e., not gridded).

Inputs R RMSE

Full Γ, SNR, LAT, LON, θ 0.940 28.897
Peak Γ, SNR, LAT, LON, θ 0.935 29.956

LAT, LON 0.925 32.350
Full Γ, SNR, θ 0.653 65.733

3.3. Local Analysis to Compare Full and Peak Equivalent Surface Reflectivity

We further explored the differences between the models that use the peak and full Γ
as the input, by performing a local analysis. We selected a large area around the border
of Suriname and Brazil near the Sipaliwini savanna nature reserve. This is a diverse area
consisting of a savanna, surrounded by a rainforest and rivers, which provides different
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conditions for testing biomass estimation. Figure 7a includes a zoom-in of the biomass
map, with Figure 7b showing a collection of optical images captured by Sentinel-2. Low
biomass in the savanna is surrounded by high biomass from the dense rainforest with
rivers. The rivers are visible in the mean Γ per specular point, as seen in Figure 8a with
the associated ESA CCI biomass in Figure 8b. The peak Γ is more sensitive to water
content than the full DDM, since water bodies dominate the amplitude of the reflection [35].
The reflectivity over water is high, but this also occurs when low biomass values are present.
This makes the distinction between the two wave interaction mechanisms challenging when
only the peak reflectivity is available. Figure 8c illustrates the biomass estimation of the
model using the peak reflectivity as the input.

(a) (b)

Figure 7. Local analysis near the Sipaliwini savanna nature reserve. (a) illustrates the ESA CCI
biomass map for this region used in our study with (b) showing a collection of optical images
acquired by Sentinel-2 over the same area (contains modified Copernicus Sentinel data [2020]).

(a) (b)

(c) (d)

Figure 8. Comparison between full and peak reflectivity as inputs. (a) includes the mean equivalent
surface reflectivity per specular point with (b) the corresponding ESA CCI biomass map. (c,d) show
the biomass estimation using the peak reflectivity and full reflectivity as inputs, respectively.

Low biomass is estimated when high reflectivity occurs due to the rivers, in contrast to
the ESA CCI biomass map. In addition, the low biomass over the savanna is over-estimated,
which could be due to the surrounding area which has high biomass. Figure 8d includes
the biomass estimation using reflectivity of the full DDM as input. The biomass is closer to
the ESA CCI biomass, illustrating, for this scenario, that it is possible to overcome the issue
of water bodies by using the equivalent surface reflectivity from the full DDM as the input.
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3.4. Gridding and Global Evaluation

The CYGNSS data are acquired over tracks that can vary at every pass, resulting
in gaps, as seen in Figure 8. In other studies, peak reflectivity is gridded and neural
network training follows. In our case, it is not trivial to grid full DDMs, thus, training
was performed directly using locations of the CYGNSS acquisitions, providing also more
flexibility. After estimating biomass at all locations, it is possible to aggregate them in space
over 5 km areas. Figure 9a,b include the gridded mean reflectivities over South America
and Central Africa, respectively, and Figure 9c,d the biomass estimations for 2020.

(a) (b)

(c) (d)

(e) (f)

Figure 9. The gridded mean equivalent surface reflectivity over a 5 km grid is given in (a,b) with
the corresponding biomass estimations gridded in (c,d). The absolute error differences between the
biomass estimations and ESA CCI biomass map are given in (e,f).

The absolute error differences between the biomass estimations and the ESA CCI
target map are provided in Figure 9e,f. In order to understand the overall performance
of our deep learning retrieval model, Figure 10a includes the global biomass estimations
and Figure 10b the corresponding absolute error between the estimation and the ESA
CCI biomass map. We can see that, generally, the majority of errors occur when there are
sudden changes in the biomass levels. Figure 11a includes a plot of the model predictions
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against the ESA CCI biomass target, illustrating a very high correlation between them with
a low RMSE. In addition, the histograms of the ESA CCI biomass and the predictions are
provided in Figure 11b, showing a very good alignment.

(a) (b)

Figure 10. (a) Gridded global biomass estimation at 5 km using our proposed deep learning retrieval
model; (b) the absolute error between biomass estimation and ESA CCI biomass map.

(a) (b)

Figure 11. (a) Gridded biomass estimations against the ESA CCI biomass map and (b) the histogram
of both the estimations and the ESA CCI biomass map.

4. Discussion

In this study, a deep learning retrieval model that utilizes reflectivity computed from
the full DDMs is proposed and analyzed. By exploiting the differences in the DDMs when
biomass values vary, more information is available to the model. This reduces the depen-
dency on external data sources such as digital elevation models and soil moisture products.
In addition, the estimation is not affected as much by surface water bodies compared to
models that use the peak reflectivity. It was shown that the biomass estimated by our
model has very high correlation with the ESA CCI biomass when using the reflectivity
computed from the full DDM as the input, and better results can be obtained compared to
peak reflectivity. Global and regional analysis illustrated the potential of our deep learning
retrieval model.

Nevertheless, there are some key limitations that still need to be addressed to enable
accurate and reliable biomass estimations. As was described, a deep learning retrieval
model is a functional mapping with optimizable weights. The neural network architecture
design is important and should be tailored to each problem, but it is adjustable and could
learn arbitrary functions, if desired. The training data used to optimize it are not generally
considered as being part of the model formulation. However, the model is essentially
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constructed by the data, and thus, the data should also be considered as integral to the
model as the model itself.

For biomass estimation using GNSS-R, one of the biggest limitations is the training
data used for the deep learning retrieval model. The input GNSS-R DDMs are a time series
of reflectivity that vary over time, whereas the ESA CCI biomass target is static irrespective
of the acquisition time. Future investigation using time-evolving biomass datasets is
essential in order to assess whether the model is able to detect biomass changes reliably
over time. In addition, the biomass dataset was compiled by using indirect measurements
from satellites. Both of these characteristics make the target dataset not ideal, and models
that are trained using these pairs of data are prone to errors. In situ datasets would be
ideal, but the mismatch in spatial resolution is very big. We would need to collect in situ
measurements (over an area of 5 × 5 km) to match it to a single GNSS-R acquisition, then
repeat this for a substantial amount of acquisitions to construct a training dataset.

One potential dataset that could meet at least one of the requirements is the data
obtained by the NASA GEDI mission. It provides biomass estimations over time and
could be aligned with GNSS-R data acquisitions for training. Future missions such as the
ESA BIOMASS P-band SAR mission could also be another promising option. Moreover,
potential in situ measurements from persistent forest monitoring campaigns could be
exploited for cal/val purposes, if they fall within the GNSS-R data acquisition footprints.
Further developments and investigations on training data and in situ cal/val data are
essential such that reliable deep learning retrieval models for biomass estimation could
be constructed.

Evaluating the biomass estimations and comparing with different techniques and
inputs is not trivial. Traditional metrics such as the correlation coefficient and root-mean-
squared error can give an indication of estimation accuracy, but they are not sufficient.
By visualizing biomass estimations regionally, small scales are not always captured, al-
though these traditional metrics would still hint at high accuracy. Specialized quality metrics
that capture spatial variations are crucial for better model construction and evaluation.

During the construction of both the training data and the deep learning retrieval
model, many choices are required. Data filtering is essential such that quality data are used,
but at the same time, too aggressive filtering could significantly reduce the data samples.
Further investigation of various data filtering options would be advantageous, as well
as evaluating models with test data that fail the filtering criteria of the data used to train
them. Using different cost functions and other neural network architectures would also be
beneficial, in order to maximize the predictive capabilities of the models.

To compute the reflectivity from the full DDM, the antenna gain is used. However,
this is provided, in the CYGNSS L1 files, only for the specular point. Part of the biomass
estimation error could be caused by the fact that the surface reflectivity of the full DDM is
computed using values at the specular point. Further work on this is needed to understand
its impact on the biomass estimation. Another consideration is the construction of different
models for different regions. Investigating whether it is useful to train dedicated models,
e.g., for South America using only training data from that region and comparing it with a
global model would be advantageous.

Water bodies are strong contributors to the amplitude of the reflection, dominating the
GNSS-R signal with high reflectivity values. Low biomass also provides high reflectivity
values, and it is challenging to distinguish between the two. By using the full DDMs, we
illustrated a regional example where we were able to mitigate this effect as opposed to
using the peak reflectivity. Further investigation of this is required using different scenarios
to understand the limitations of the full DDM over water bodies. Moreover, water masks
have been used in the past [35] as input to neural networks to help overcome this. It would
be beneficial to investigate whether incorporating this would help or impact the biomass
estimations in a different way.
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5. Conclusions

A deep learning retrieval model that incorporates the full DDM of surface reflectivity
was proposed. Experiments using CYGNSS data and the ESA CCI biomass map illustrated
that it was possible to estimate biomass globally, with small errors from the biomass target
used. By incorporating the full DDMs of surface reflectivity in a deep learning retrieval
model, biomass estimation was more accurate than when using the peak reflectivity as
the input. The full DDMs provide more information to the model, reducing the need
for external data sources and making it more robust to reflections from water bodies.
A constellation of GNSS-R satellites is a fast and efficient way to cover the gap in monitoring
biomass with very frequent revisit times. This comes at a cost with a main hurdle that still
needs to be overcome. That is, the requirement of an elaborate calibration process of the
retrieval models to relate the GNSS-R data to bio-geophysical parameters on the ground.
However, using GNSS-R and deep learning retrieval models has the potential to enable
cost-reduced, fast, and persistent global monitoring of bio-geophysical parameters and
help us understand our changing climate.
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