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Abstract: The polar regions of Mars, including the South and North Poles, are crucial for studying
Martian climate and geological history, as they contain the largest reservoir of subsurface water ice.
This study introduces a new approach for reflector detection, which includes radargram denoising
to effectively enhance the signal of underground reflectors, peak detection to extract the positions
of subsurface stratification from the radar echoes, and peak points connection to form continuous
layers. The mapped enhancement denoising process involves a linear brightness adjustment and a
fourth-order diffusion equation to enhance the signal of the subsurface layers for effective detection.
The subsurface detection extracts the surface and subsurface peak points based on a peak detection
algorithm, while using locally window-enhanced peak filtering and Kullback–Leibler (KL) divergence
mapping to filter out non-stratified peak points. Finally, the layered connection process uses the
proximity parameter to connect peak points in the same layer. Applied to multiple SHARAD
(Shallow Radar) images at the Martian poles, this algorithm demonstrated a false detection rate
below 5%. Compared to other methods, this method has a missed detection rate of less than 5%
and, additionally, exhibits fewer discontinuities in layer connectivity. Therefore, this algorithm
shows exceptional proficiency and applicability in analyzing the complex subsurface structures of
the Martian polar regions.

Keywords: Mars; subsurface layer extraction; automatic detection; peak detection

1. Introduction

The subsurface stratifications in Martian polar regions contain vital information about
ancient Martian climates and the developments of the planet’s environmental conditions [1].
Compared to other regions on Mars, the polar regions experience lower temperatures,
making the ice layers there more likely to preserve ancient information without being
disrupted by heat. Additionally, the polar regions exhibit less geological activity, resulting
in a relatively stable stratigraphy. This stability enhances the likelihood of preserving intact
subsurface layers, aiding scientists in their research on the ancient Martian environment.
In modern geophysical and planetary science, radar subsurface detection has become a
critical technology for revealing the structure and characteristics of subsurface layers. A
subsurface radar emits a high-frequency electromagnetic wave toward the Martian surface.
When the electromagnetic wave encounters the surface of Mars, some energy is reflected,
while the rest continues to propagate through the subsurface media. The transmission,
reflection, and attenuation of energy depends on the wavelength of the electromagnetic
wave and the electrical parameter of the Martian soil. Electromagnetic waves will be
reflected and transmitted again at the different underground interfaces, allowing the radar
to distinguish different geological layers, such as sedimentary layers, bedrock, porous rocks
with water ice, and those without water ice. Two important parameters, the depth (or
thickness) of the subsurface layers and the dielectric constant of each layer, can be derived
from Martian subsurface radar data. The subsurface depth helps to study the lithospheric
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characteristics, ice thickness, Martian climate, and geological evolution. The dielectric
constant indicates the physical properties of the material comprising the layer, such as the
presence of water ice.

To date, three radar sounders have imaged the Martian subsurface: the Mars Advanced
Radar for Subsurface and Ionosphere Sounding (MARSIS) [2] on European Space Agency’s
Mars Express, the Shallow Radar (SHARAD) [3] on NASA’s Mars Reconnaissance Orbiter,
and the Mars Orbiter Subsurface Investigation Radar (MOSIR) [4] on China’s Tianwen-1
mission. This study utilized orbital data from SHARAD, which aims to map Martian
subsurface interfaces to a depth of several hundred meters at selected sites and search for
information about the subsurface ice layers, rocks, and potentially meltwater. SHARAD
operates at a central frequency of 20 MHz, with a range resolution of 15 m (in free space), an
along-track resolution of 0.3–1 km, and a cross-track resolution of 3–7 km. Existing data and
results show that SHARAD can detect kilometers-thick, ice-rich polar deposits. Its primary
advantage lies in its excellent vertical resolution, enabling it to map fine stratigraphic
structures and reveal more details of polar layered deposits.

The abundance of radar sounder data and the need for precise information about
subsurface reflectors necessitate the development of automated techniques for extracting
information from radargrams. Currently, automatic extraction techniques are still in their
early stages. The existing methods have some limitations, including an insufficient ability
to deal with complex formation structures, an insufficient ability to identify weak reflectors,
and the influence of noise. In this study, we propose an effective algorithm for automatically
detecting subsurface reflectors in radargrams. The method consists of two parts: mapped
enhancement denoising and reflector detection. In the preprocessing steps, we use a fourth-
order diffusion model based on the AOS (additive operator splitting) operator for noise
reduction [5], which outperforms traditional methods such as Gaussian filters and BM3D
filters [6]. The reflector detection employs peak detection based on KL divergence maps
and threshold processing, addressing the high complexity and inability to detect weak
reflective layers of previous methods, and its accuracy has been verified.

The structure of this article is as follows: Section 2 introduces the current research sta-
tus of the automatic detection of underground reflectors in radargrams. Section 3 describes
the automatic detection algorithms, including the mapped enhancement denoising and
the reflector extension, and verifies their accuracy and effectiveness, comparing them with
other algorithms. Section 4 verifies the accuracy of the algorithm in this article and con-
ducts a quantitative and a qualitative indicator analysis. Section 5 summarizes this article
and explores the applications and future development directions of automatic detection
algorithms. The data in this paper were provided by PD4 (Planetary Data System Release
4) radargrams from SHARAD.

2. Background
2.1. Principles of Radar Underground Detection

According to terrain data obtained from MOLA (Mars Orbiter Laser Altimeter) [7],
the NPLDs (North Polar Layered Deposits) of Mars have a similar overall morphology and
thickness to SPLDs (South Polar Layered Deposits). Both NPLDs’ and SPLDs’ geological
units are roughly circular, with a diameter of approximately 1000 km and a maximum relief
of approximately 3.5 km relative to the surrounding terrain [8,9]. Using MOLA data to
estimate the total volume of polar layered deposits, the result suggests they are equivalent
to a global geological layer 16–22 m thick. Multiple orbit images show that the PLDs consist
of geological layers with varying reflectivity, and the inconsistency in reflectivity between
layers is believed to be caused by different ice–dust mixtures.

Among the methods for investigating Martian structures and properties, radar can
obtain detailed physical information about Martian stratigraphy, reflectivity, surface mor-
phology, and dielectric constants. Radar detectors emit electromagnetic waves that pene-
trate the Martian surface, and capture reflections from subsurface interfaces of different
subsurface media. These reflected waves carry rich information, revealing specific under-
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ground characteristics such as the thickness of rock layers, the location of fractures, or the
presence of water. This method essentially uses differences in the physical properties of
media for detection.

As shown in Figure 1, electromagnetic waves emitted by the antenna undergo their
first reflection upon reaching the Martian surface. At time t0 = 2H/c, the radar receives a
strong reflected echo, where H represents the satellite’s height above the Martian surface
and c is the speed of light in a vacuum. A portion of the electromagnetic waves transmits
into the Martian crust and continues to propagate at a reduced speed v = c/n (where n
is the refractive index of the medium, related to the real part of the medium’s dielectric
constant εr, and n =

√
εr). If a subsurface layer with a discontinuous dielectric constant

exists at depth d beneath the surface, electromagnetic wave reflection and transmission
will occur again. The secondary reflected echo will penetrate the first layer of medium and
be received by the radar, producing an echo signal at the delay t0+2d/v , which is much
weaker than the surface echo. The polar regions of Mars have many layered structures. By
analyzing this layered information, we can determine the number and depth of reflectors
underground in the polar region, and infer the dielectric constant of widely distributed
underground materials. These data are crucial for the three-dimensional reconstruction of
the underground structure in the Martian polar region. Therefore, accurately extracting un-
derground stratification information is crucial for a deeper understanding of the geological
structure and environmental history of Mars.
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Figure 1. Radar transmitting electromagnetic wave schematic diagram subscripts. Pi is the incident
power, Ps and Pss denote the surface and subsurface reflected power, respectively.

2.2. Current Status of Subsurface Information Extraction Technology

Current research on subsurface layer extraction mainly focuses on stratified regions of
Earth and Mars, and can be categorized into two types. The first type involves statistical
and machine learning methods. Ref. [10] used the Viterbi Algorithm (VA) for multi-layer
boundary detection in Earth’s Ground-Penetrating Radar (GPR) data. However, the VA
has its limitations because it assumes that layer boundaries always start from the leftmost
side of the radargram. For Martian radargrams, layer boundaries might only span a
small portion of the image. Additionally, the VA may struggle with local irregularities or
nonlinear features in radargrams. In contrast, Ref. [11] employed the Markov-chain Monte
Carlo method (MCMC) for inferring layer boundaries. The MCMC is an iteration-based
algorithm that gradually approaches the target distribution through repeated sampling
processes. For Mars’s complex subsurface stratification, the convergence speed is slow.
Ref. [12] suggested using Hidden Markov Models (HMMs) to model the radar responses
of layer boundaries, and used the VA for the automated detection of layer boundaries
in radargrams. However, in HMMs, each state (such as the presence or absence of layer
boundaries) is associated with the reflected signals. Weak reflective layers with a lower
signal strength may have lower corresponding observational probabilities, resulting in
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lower transitional probabilities in these areas. Therefore, this algorithm might not accurately
identify weak reflective layers.

The second type encompasses signal processing and image processing methods.
Ref. [13] combined the Continuous Wavelet Transform (CWT) and the DBSCAN clustering
algorithm for three-dimensional reconstruction of subsurface reflectors in the Promethei-
Lingula region. This technique is primarily suited for areas where reflectors are more
dispersed. The radargram images of Martian Polar Layered Deposits (PLDs) indicate
frequent and closely packed reflectors, so this method is less appropriate. Martian subsur-
face detection based on the Steger algorithm [14] can detect layers with a small spacing.
It essentially involves the detection of curves by extracting center lines based on pixel
values. The signal strength of the weak reflection layer is usually very low, close to the
level of background noise, making it difficult to distinguish from noise. The accuracy and
connectivity of reflector detection still need to be improved. In the following section, a new
algorithm will be proposed to accurately extract the stratification of Martian polar regions.

3. Automatic Detection Algorithm

Figure 2 shows a flowchart of the proposed automatic detection algorithm. It consists
of two main parts: mapped enhancement denoising and subsurface reflector detection.
Finally, the peak points of the detected underground layers are connected into continuous
layers using proximity checks.
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3.1. Mapped Enhancement Denoising

This step aims to diminish the background noise in the radargrams and enhance
the signature of linear features, preparing for subsequent subsurface reflector detection
with the mapped enhancement denoising algorithm. It consists of two parts, the linear
brightness adjustment based on image histogram peaks, and the image denoising and edge
enhancement based on fourth-order partial differential equations using AOS operators [15].

3.1.1. Linear Brightness Adjustment

To enhance the contrast of radargrams, it is necessary to perform a brightness adjust-
ment. The input radar backscatter power map u0(i, j) is linearly normalized to the range
of 01~255, which makes radargrams easier to observe and analyze. It is logarithmically
processed according to (1) to expand the contrast between the light and dark areas in
the radargram.

u1(i, j) = 10 log10(u0(i, j)) (1)

The following linear mapping effectively removes non-zero values by mapping them
to the appropriate range.

u2(i, j) = kmap × u1(i, j) + b (2)
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where kmap is the mapping slope, which defines the proportional relationship between the
input and output values. It is computed as

kmap =
255× (u1(i, j)− p)
max(u1(i, j))− p

(3)

The percentile p in (3) is the peak value of the distribution histogram of the current
image’s pixel values, that is, the most frequently occurring pixel value. In (2), b is the
mapping intercept, used to adjust the baseline in the mapping process, and is computed as

b = −p× kmap (4)

The radargrams of orbit 00505101 and orbit 00520501 were used to evaluate the effect
of the linear brightness adjustment. The standard deviation is an important indicator
for measuring the distribution range of image pixel values. A higher standard deviation
usually means that the image has a higher contrast. Figure 3b,d show the processed images,
while Figure 3a,c show them after a linear brightness adjustment, with a significant increase
in the standard deviation and contrast compared to before processing.
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3.1.2. Denoising of Radargrams

(A) Denoising Algorithm based on Fourth-order diffusion equation

Before detecting the subsurface layers, a fourth-order partial differential equation
(PDE) diffusion model was used for image denoising to eliminate the influence of random
noise in radargrams on underground layered signals. If the radargram is treated as a
two-dimensional function, u(x, y), the noise is irregular fluctuations superimposed on the
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image function. By choosing an appropriate PDE model to describe this fluctuation, we
can “diffuse” or “smooth” these irregularities while preserving the main features of the
image, such as edges and textures. The diffusion equation is expressed as

∂u
∂t = −

(
Φ uxx
|uxx|

)
xx
−
(

Φ uyy
|uyy|

)
yy

Φ = 1√
1+(|∇(Gσ×u)|/2)2

(5)

where u represents the image intensity, t is the iteration time, and Φ is a nonlinear diffusion
function that depends on image gradients ∇(Gσ × u). Gσ is a Gaussian smoothing kernel
and σ is the standard deviation that controls the degree of smoothness.

Equation (5) contains two independent partial differential operators in the x and y
directions. Thus, a parallel splitting method [16] based on the additive operator splitting
(AOS) [15] is used to divide the two-dimensional diffusion process into two independent
processes: row diffusion and column diffusion [17]. The discrete iterative equations are
as follows:

(u1)
n+1
i,j = un

i,j − 2τDxx(Ψx(un
i,j)Dxx(un

i,j))

(u2)
n+1
i,j = un

i,j − 2τDyy(Ψy(un
i,j)Dyy(un

i,j))
(6)

where (u1)
n+1
i,j and (u2)

n+1
i,j represent the results of row diffusion (horizontal direction) and

column diffusion (vertical direction) in the n + 1 iteration, respectively, i and j represent the
row and column indices, respectively, τ represents the time step, Dxx and Dyy are discrete
second-order derivative operators, and Ψx and Ψy are diffusion coefficients related to the
image gradient. 

Ψx(un
i,j) =

Φx((uσ)
n
i,j)(

|Dxx

(
un

i,j

)
|+ε

)
Ψy(un

i,j) =
Φy((uσ)

n
i,j)(

|Dyy

(
un

i,j

)
|+ε

) (7)

where uσ = Gσ × u represents the convolution of a Gaussian filter Gσ with image u, and ε
represents an infinitely small positive number, which is used to prevent the denominator
from being 0. Φx and Φy are the local characteristic function of images in horizontal (X
direction) and vertical (Y direction) directions, expressed as

Φx

(
(uσ)

n
i,j

)
= 1/

√
1 +

(
(uσ)

n
i+1,j−(uσ)

n
i−1,j

2

)2

Φy

(
(uσ)

n
i,j

)
= 1/

√
1 +

(
(uσ)

n
i,j+1−(uσ)

n
i,j−1

2

)2
(8)

Finally, the two diffusion results are averaged as un+1
i,j = 1

2

[
(u1)

n+1
i,j + (u1)

n+1
i,j

]
to

ensure that diffusion effects in each direction are appropriately considered. Since Dxx and
Dyy are symmetric positive definite operators, the AOS operator is unconditionally stable.
For each time step, (6) is performed iteratively until the image change between adjacent
iterations is less than a certain threshold.

(B) Denoising Results

This part will demonstrate the results with the above denoising algorithm based on
the fourth-order diffusion equation, and quantitatively discuss the performance of the
algorithm. The average variance was evaluated for images without layered information,
while the average contrast was evaluated for images containing underground layers. The
average contrast was measured using two statistical indicators: the grayscale co-occurrence
matrix (GLCM) and contrast [18]. GLCM is a statistical method used to analyze texture
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features in images, which indicates the spatial relationship between grayscale values in the
image. The contrast quantifies the local changes between grayscale levels, expressed as

Contrast =
N−1

∑
i=0

N−1

∑
j=0

P(a, b)× (a− b)2 (9)

where P(a, b) represents the frequency or probability of a pixel with grayscale value b
appearing next to the pixel with grayscale value a at a specified distance and direction. N
is the number of grayscale levels. This formula calculates the square of the difference in
grayscale values between pixel pairs, weighted by their frequency of occurrence. (a− b)2

is the square of the difference in pixel intensity values between a and b (the greater the
difference, the higher the contrast). It examines the frequency at which a pair of pixels
appears together in a specific direction and distance. A high contrast means significant
grayscale changes, which are usually associated with clear textures or edges.

We performed the denoising process on the radargram of orbit 00505101 as shown
in Figure 4a. The upper blue box outlines the non-layered region for the computation of
average variance, which included random noise, as shown in Figure 4a. Figure 4b shows
that the average variance rapidly decreased in the first eight iterations and then stabilized,
indicating that the denoising level in this region was gradually converging [19]. Therefore,
in terms of denoising, for the first eight iterations the noise continued to decrease, and
the noise level tended to stabilize after eight iterations. Figure 4c shows that the average
contrast value decreased by more than 50% after seven iterations. If the iterations continued,
the layered information would be lost [18], which would further affect the accuracy of the
subsurface reflector detection. Therefore, in this study, the number of iterations was set
to seven.
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non-layered region for the computation of average variance.

Based on the runtime and image quality, it is necessary to choose an appropriate
number of iterations. The unified selection of iteration times for this study was seven. The
final preprocessed image is shown in Figure 5, taking orbit 00505101 and orbit 00221401
as examples, and they of the NPLDs and the SPLDs, respectively. Among them, (a) and
(d) are the original graphs, (b) and (e) are the graphs after linear brightness adjustment,
and (c) and (f) are the partial enlarged images after seven iterations of the fourth-order
partial differential diffusion equation. It can be observed that the noise in (b) and (e) was
significantly removed, while in (c) and (f) there was a further removal of the noise while
image details were maintained.
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Figure 5. The preprocessed results step by step for SHARAD radargrams of different orbits.

3.1.3. Performance Evaluation of Denoising Process

The SSIM (Structural Similarity Index Measure) is now used as one of the indicators to
evaluate the denoising performance of fourth-order PDE diffusion, expressed as [20]

SSIM(X, Y) = l(X, Y) · c(X, Y) · s(X, Y) (10)

where X, Y are the original image and the processed image, respectively. l(X, Y) is the
luminance matrix, c(X, Y) is the contrast matrix, and s(X, Y) is the structure matrix. These
matrixes are expressed as follows:

l(X, Y) = 2µXµY+(0.01×255)2

µ2
X+µ2

Y+(0.01×255)2

c(X, Y) = 2σXσY+(0.03×255)2

σ2
X+σ2

Y+(0.03×255)2

s(X, Y) = σXY+(0.03×255)2/2
σXσY+(0.03×255)2/2

(11)

where uX, uY are pixel mean values of each image; σX, σY are the pixel standard deviations;
and σXY is the covariance of the two images.

We used the clutter simulation images of orbit 00505101 and orbit 00520501 as original
noise free images, and added random Gaussian noise to obtain noisy images (https://
ode.rsl.wustl.edu/mars/datasets, accessed on 9 September 2023). Both BM3D filters and
fourth-order PDE diffusion were used for image denoising. The evaluation indicators
included the SSIM (Structural Similarity Index Measure), the PSNR (Peak Signal-to-Noise
Ratio), and the time consumption. The results are shown in Table 1, which indicated that
the fourth-order diffusion equation based on the AOS operator had a better denoising
effect than BM3D filter. In addition, the time consumption of PDE diffusion denoising was
also lower.

https://ode.rsl.wustl.edu/mars/datasets
https://ode.rsl.wustl.edu/mars/datasets
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Table 1. Comparison of SSIM, PSNR, and running time of orbit 00505101 and orbit 00520501.

Methods Orbit Time SSIM PSNR

Fourth order diffusion equation
00505101 1.39 s 0.329174 30.465262 dB

00520501 19.6 s 0.615163 33.018803 dB

BM3D filter
00505101 8.70 s 0.164992 12.126245 dB

00520501 30.9 s 0.504334 15.387862 dB

3.2. Reflector Extration

(a) Peak detection

In geological or geophysical data, the boundary of layers is usually manifested as a
sudden change in signal intensity. Peak detection helps identify these mutation points and
determine the position of layers. Therefore, peak detection can be used to extract peak
points below the surface echo, and then locate the hierarchical positions.

The radar emits broadband electromagnetic wave signals along the orbit and receives
the scattered echoes from the Martian surface and underground interface to form radar-
grams. The maximum power of each echo typically comes from the surface. Considering
the continuity of the surface, determining the position of surface echoes in radargrams
should consider the following two scenarios. (1) If the position of the maximum value in
the current sequence differs by less than five pixels from the surface position detected in the
previous sequence, the position of this maximum value is the right position of the surface
echo. This situation may occur in areas with relatively flat terrain, with no significant
terrain undulations or other surface features such as large rocks, ravines, or potholes. (2) If
the position of the maximum value in the current sequence differs by more than five pixels
from the surface position detected in the previous sequence, the first point with an intensity
greater than five times the average value of the sequence is the position of the surface echo.
This situation may occur in areas with complex terrain or significant topographic changes
such as steep slopes, cliffs, large rocks, or other surface structures. These terrain features
may cause significant changes in the position of the maximum value of radar echoes.

After finding the location indicating the echo based on the above method, the peak
detection function was used to find some peaks of each echo sequence. Figure 6 is an
example of peak detection below the surface echo, which represents frames 707, 768, 867,
and 1048 of orbit 00505101.
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Since the subsurface radar antenna on the orbiter detects changes in dielectric prop-
erties, any change in ground composition will yield a strong return. As the peak points
extracted in the above steps were all peak points below the surface, both layered and
non-layered peak points were extracted. Therefore, further screening was needed to reduce
the non-layered peak points. The next step involves threshold filtering of the detected peak
points beneath the surface layer. For each radar echo sequence X = radargram[:, j], (12) is
used to compute the local coefficients, which is the relative intensity of a numerical change
within a local window.

C(i) =
|X′(i)|2

mean(|X′(i−windows : i− 1)|2)
X′ = X−min(X) (12)

where the local window is set to 30 [21]. The peak detection function is used to detect the
peak of the sequence C. For the detected peak values, the standard deviation stdCpeak is
calculated as the threshold to remove false peaks. The filtered results of Figure 6 are shown
in Figure 7, which indicates that the peak points extracted underground were screened.
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(b) Feature extraction

In addition to the subsurface stratification, the peaks extracted from the above process
include non-stratified points. In this session, the KL (Kullback–Leibler) divergence graph
is used to further refine and filter out these non-stratified peak points. KL divergence is a
method for measuring the difference between two probability distributions [22].

In this application, it is used to detect anomalies or features in images. The calculation
of KL(S, N) involves the KL distance between the actual distribution S of amplitude ui,j
within an overlapping sliding window of size Wa ×Wb and the theoretical distribution
of the fitted non-layered region N within the window. A higher KL divergence value
indicates a greater difference between the actual distribution S and the non-layered region
distribution N. According to [23], the gamma distribution is most suitable for describing
the characteristics of radar signals, so samples of different target categories (such as non-
layered and layered areas) can be modeled using the gamma distribution. Therefore, the
gamma distribution was used for fitting S and N.

The KL divergence value for each pixel in the image was calculated to assess its
similarity to the surrounding pixels. In this paper, the KL divergence was computed as

KL(S, N) = ∑
ui,j∈Wa×Wb

S(ui,j)× log
S(ui,j)

N(ui,j)
(13)
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where ui,j represents the pixel value of the i row and j column in the sliding window,
and S

(
ui,j
)

represents the probability of the gamma distribution followed by pixel values
within a local window of Wa×Wb centered on (i, j). N

(
ui,j
)

represents the probability of
the non-layered region distribution being in the same window. In this study, S

(
ui,j
)

in
the non-layered region and N

(
ui,j
)

in the underground layers were both considered as
gamma distributions, and the probability density function of the gamma distributions is
expressed as

Gpdf(u) =
u
α

β−1
· e−

u
α

αΓ(β)
(14)

where u is the random variable and Γ(α) is the gamma function. The parameters α and
β are the shape and scale parameters, respectively. They were calculated based on the
geometric and arithmetic mean of the pixel values within the window as

α = u
β ,

log(β)−ψ(β) = log

 u

( ∏
Wa×Wb

ui,j)
1/m

,
(15)

where Ψ(β) is the di-gamma function and u is the mean in the local window (i, j) ∈Wa×Wb.
The size of the window was determined based on the empirical spatial distribution of Mar-
tian subsurface features [23]. Generally, the subsurface features have a broader distribution
or continuity in the azimuthal direction, i.e., the horizontal direction, where changes are
gradual. To capture this horizontal continuity or change, a larger azimuthal window is
needed. On the other hand, the subsurface features in the vertical or range direction may
change abruptly, such as transitioning from one ice layer to another, or to bedrock. Hence,
in the range direction, i.e., the vertical direction, changes are steep. These abrupt changes
do not require a large window to capture them as they are spatially confined. In this paper,
the window size was set to Wa= 15, Wb= 9 based on our experience.

In order to calculate the scale parameter α and shape parameter β of the non-layered
region, which is always distributed at the top of the input radargram, the samples from 0
to the first echo of the surface reflection need to be extracted. Thus, the sample numbers of
each A-scan channel were

NMap = Radargraminput[1 : Nsurf −Nσ, j]
j = 1, 2 . . . , n

(16)

where Nsurf is the index of the surfaced echo, Nσ is the tolerance value for the first echo
detection, and n is the number of columns in the original radargram. In this study, Nσ was
set to 15 based on our experience.

The KL divergence of S and N was then computed. The higher the KL divergence
value, the greater the difference between the actual distribution S and the non-layered area
distribution N, indicating a greater likelihood of being a layered area. Based on the final
KL value, a threshold process generates a binary encoded map to determine the presence
of subsurface reflectors, as per Equation (17). Through some experiments, we determined
the threshold as 50, and Figure 8 shows the binary encoded map.

KLMap[i, j] =
{

0
1

KL < threshold
KL ≥ threshold

(17)

Figure 8 shows the KL map of orbit 00505101 and orbit 00221401. Their original
radargrams are shown in Figure 5. Thus, the KL map can particularly highlight the region
with underground structures. Finally, the detected peak points were multiplied by the KL
map, as shown in Figure 9.
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Figure 8. KL map of orbit 00505101 (a) and orbit 00221401 (b).

Figure 9 shows the results of peak detection in orbit 00505101 and orbit 00221401. The
green color marks the location of the detected peak point. It can be seen from Figure 9 that
the specific location of the peak point can be well detected for tight layers, and the location
of layers can also be detected in some deeper areas.
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Figure 9. Peak detection result of orbit 00505101 (a) and orbit 00221401 (b).

(c) Connecting peak points

The final step involves processing the coordinate set of the peak matrix into multiple
layers, using proximity checks to determine if the points are in the same layer. We calculate
the Euclidean distance of all detected peak points. If the distance is less than δ , they are
in the same layer. δ is related to the frequency and bandwidth of SHARAD, expressed as
Equation (18) [12,24].

δ = 2×
⌈

fc

4B
√

SNR

⌉
(18)

where [·] is the ceil operator. For SHARAD, the sampling frequency fc= 26.67 MHz, the
bandwidth B = 10 MHz, and the SNR is approximately 17 dB [25]. Thus, the proximity
δ = 2. The final connected result of Figure 9 is shown in Figure 10.
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4. Performance Analysis
4.1. Calculation of Missed Detection Rate and False Detection Rate

When evaluating the accuracy of subsurface reflector detection algorithms, it is com-
mon to use datasets with known labels for validation [26]. However, this method was
not applicable due to the lack of standard labeled data for Martian polar subsurface lay-
ers. Another evaluation method involves assessing algorithm performance based on the
number of extracted layers [12,27], but this approach is not suitable for algorithms based
on peak detection. For peak detection algorithms, more appropriate evaluation criteria
include detection accuracy, peak recognition ability, and false alarm rate. Therefore, using
visual identification to evaluate the number of detected peak points offers a more precise
way to differentiate between missed and falsely detected peaks, providing a more accurate
method of assessment.

Therefore, to verify the accuracy in this study, visual identification results were used.
For visual identification we used Adobe Illustrator 2021 software to meticulously annotate
and evaluate inspection points to verify their accuracy. Here, the evaluation metric is not
based on the number of detected layers, but on the count of peak points. The false detection
rate Rf and the missed detection rate Rm were used for the evaluation [28].

Rf =
Nf
Nd
× 100% (19)

Rm =
Nm

Nd + Nm −Nf
× 100% (20)

where Nf represents the number of false peak points, Nd is the count of accurately detected
peak points, and Nm is the count of missed peak points.

Figure 11 shows the detection results of three SHARAD radargrams, where Figure 11a,b
are NPLDs, and Figure 11c shows SPLDs. The basal unit structure of the Martian North
Pole generally exhibits some ambiguous areas on the radargrams, such as the bottom region
of Figure 11a,b. These basal structures are not the stratified structure, and this algorithm
accurately neglected them. Some missed detections of deeper layers, marked in the red
box, were mainly due to the lower SNR (signal-to-noise ratio), and some false detections
of shallow layers, marked in the blue box, were mainly due to the smaller interval. The
interlayer spacing in the image was minimized to an interval of approximately five pixels.
Moreover, Figure 11c indicates that both the miss rate and false detection rate in the SPLDs
region were higher than in the NPLDs region. The reason is that SHARAD images of
the SPLDs often display near-surface scattering phenomena, creating a diffuse, fog-like
appearance that obscures the underlying reflective stratified layers [29]. Additionally, the radar
attenuation losses in the SPLDs were significantly greater than those in the NPLDs [29],
resulting in large areas of white, blurred brightness in the images, as in Figure 12. In terms
of peak detection, the lower signal-to-noise ratio (SNR) in the SPLDs was due to a problem
with the orbital data [30], which in turn led to increased missed and false detection rates.
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Table 2 shows the detection accuracy parameters of three SHARAD radargrams. The
missed detection rate and false detection rate were both below 5%. For the NPLDs with
a small interlayer spacing, the missed detection rate and false detection rate were very
low, with a miss rate of less than 1%. Compared with the extraction results of the NPLDs,
the missed detection rate and false detection rate of the extraction results of the SPLDs
were increased, but both were below 5%. Therefore, the threshold processing showed
excellent performance in terms of reflector detection. This method demonstrates significant
adaptability, accurately identifying the position of strata in each column of the image, and
maintaining a consistent detection capability even with increasing depth. In addition,
its high sensitivity makes it particularly suitable for identifying complex underground
formations. It effectively distinguishes and identifies subtle hierarchical differences, even
in radargrams with a very small interlayer spacing.

Table 2. Accuracy of the proposed technique for three regions.

Orbit Nd Nf Nm Rf Rm

00505101 17,365 208 155 1.20% 0.895%

00520501 22,072 176 192 0.797% 0.869%

00221401 1777 36 45 2.03% 2.50%

4.2. Comparative Analysis of Reflection Detection Results with Other Literature

Figure 13 shows a comparison of the detection results of orbit 00520501 and orbit
00528401 with our algorithm and [12]. The extracted layers with our algorithm are clearer,
and show a good improvement in the continuity between layers.

In addition, the algorithm described in this paper and the algorithm of [13] were
applied to the NPLDs orbit 00520501 and the SPLDs orbit 00221401. The comparative results
in Figure 14 indicate that the algorithm presented in this paper could detect more layers.

Moreover, since the wavelet transform algorithm in [13] is based on wavelet transform
peak detection, Table 3 presents the comparison results, indicating that compared to [13],
the algorithm in this paper performs better in terms of the missed detection rate, but is
slightly inferior in terms of the false detection rate. Although a lower missed detection rate
is often accompanied by a higher false detection rate, this phenomenon may be due to the
preprocessing step not completely removing the noise without stratification.

The above comparison of images and quantitative evaluation metrics demonstrates
the effectiveness of our new algorithm. (1) Through threshold filtering, it retains valid peak
points and discards most non-stratified peaks, thereby enhancing the accuracy. (2) Unlike
traditional line detection methods, such as the Steger algorithm [27], this algorithm is based
on peak detection, allowing it to identify weak reflective layers. (3) As shown in Figure 13,
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there is an improvement in continuity compared to [12]. (4) Compared with [13], the missed
detection rate decreased significantly.
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Figure 14. Extract comparison with different algorithms. The left is the algorithm of this paper and
the right is the algorithm of Ref. [13]. The rows from top to bottom are orbit 00520501, orbit 00520501,
orbit 00221401, and orbit 00221401.

Table 3. Comparison of detection results with [13].

Orbit Algorithm Nd Nf Nm Rf Rm

00520501
this paper 22,072 176 192 0.797% 0.869%

Ref. [13] 12,799 40 1450 0.31% 10.2%

00221401
this paper 1777 36 45 2.03% 2.50%

Ref. [13] 1298 18 420 1.39% 24.7%

To test the applicability of this algorithm in other regions of Mars, two orbiter’s radar-
gram images in mid-latitude areas were tested. Figure 15a shows the detection result of
orbit 00320802 in Mars’s Zephyria Planum [17], and Figure 15b shows the detection result
of orbit 00320802 in the Elysium–Utopia Region [31,32]. The assessment explicitly excluded
areas with more ambiguous subsurface structures. Although there were some false detec-
tions at the locations indicated by the arrows, the subsurface layers were still accurately
detected, as shown in the Figure 15. This demonstrates the algorithm’s applicability and
value in non-polar regions of Mars.
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5. Conclusions

This paper developed an automatic algorithm for detecting subsurface layers using
SHARAD images, especially for the detection of dense stratification at different depths
in Martian polar regions. The main contribution of this article is the development of a
peak extraction method based on threshold processing, which is used to effectively detect
underground reflectors in radar echo signals. Firstly, this method is particularly suitable for
identifying complex underground structures. By combining the threshold processed peak
with the extracted features, it not only exhibits high adaptability to different geological
structures, but also has extremely high sensitivity to weak signals. Secondly, combining
the steps of mapped enhancement denoising and peak detection in this algorithm, it
can accurately identify the positions of underground layers, and can even detect weak
reflectors in deep areas or dense layers with small interlayer spacing. In addition, the strata
detected using this method exhibit better continuity horizontally. Overall, the use of this
algorithm has improved the overall performance and accuracy of radargrams in revealing
underground structures.
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