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Abstract: The rapid advancement of remote sensing technology has given rise to numerous global-
and regional-scale medium- to high-resolution land cover (LC) datasets, making significant contri-
butions to the exploration of worldwide environmental shifts and the sustainable governance of
natural resources. Nonetheless, owing to the inherent uncertainties embedded within remote sensing
imagery, LC datasets inevitably exhibit inaccuracies. In this study, a local accuracy assessment of
LC datasets in Southwest China was conducted. The datasets utilized in our analysis include ESA
WorldCover, CLCD, Esri Land Cover, CRLC, FROM-GLC10, GLC_FCS30, GlobeLand30, and SinoLC-
1. This study employed a sampling approach that combines proportional allocation and stratified
random sampling (SRS) to gather sample points and compute confusion matrices to validate eight
LC products. The local accuracy of the eight LC maps differs significantly from the overall accuracy
provided by the original authors in Southwest China. ESA WorldCover and CLCD demonstrate
higher local accuracy than other products in Southwest China, with their overall accuracy (OA)
values being 87.1% and 85.48%, respectively. Simultaneously, we computed the area for each LC
map based on categories, quantifying uncertainty through the reporting of confidence intervals for
both accuracy and area parameters. This study aims to validate and compare eight LC datasets and
assess precision and area of diverse spatial resolution datasets for mapping and monitoring across
Southwest China.

Keywords: land cover datasets; spatial accuracy assessment; area comparison; remote sensing

1. Introduction

The impacts of the greenhouse effect, such as global climate warming [1], extreme
oceanic events [2], precipitation extremes [3,4], and glacial retreat [5], are significantly
affecting the future survival of humanity. The emissions of greenhouse gases such as
carbon dioxide (CO2) are detected as the primary drivers of global warming [6–8]. With
the continuous advancement of urbanization and industrialization, a substantial amount
of carbon dioxide is released into the atmosphere due to human activities [9]. Among
these, land cover change (LCC) emerges as a pivotal factor in carbon emissions, comprising
roughly one-third of the carbon emissions attributed to human activities throughout the
Industrial Revolution period [10]. The carbon emission coefficients differ across various
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land types. For instance, cropland stands at approximately 0.04, whereas forest is approx-
imately −0.06 [11]. To quantify the carbon emissions, LCC reconstructions are needed
and utilized in relevant carbon models [12–14]. But the carbon emissions it causes are also
one of the most uncertain factors in the global carbon budget. Hence, the information
acquiring accurate land cover (LC) data about the current state of the Earth’s land surface
holds theoretical significance for studying the interrelationship between LCC and carbon
emissions [15], contributing to the realization of the objective of carbon neutrality [16].

With the rapid development of Earth observation technology, remote sensing (RS)
monitoring offers a more efficient and effective approach to generate LC products. Scholars
are making active efforts on both domestic and international levels to develop region-specific
LC maps with varying resolutions, and the spatial resolution has been increased from 1
km [17] to 500 m [18], 30 m [19–21], 10 m [22–25], and even as fine as 1 m [26]. These LC
data have been widely utilized to analyze the carbon stocks of terrestrial ecosystems [27–29].
However, the differences in the acquisition time of remote sensing data, LC classification
techniques, classification systems, etc., used in existing LC products, result in inconsistent
classification standards and accuracy [30]. For example, inaccurate data of LCC in China
led to a serious underestimation of the terrestrial carbon sink [31]. It is a challenge for
us to choose suitable products for related research. With the growing demand for more
detailed and accurate LCC information, it becomes essential to document the accuracy of
these LC products [32]. Commonly employed techniques for validating LC maps include
classic methods like Multiple-Resolution Cross Tabulation, Cross-Tabulation Matrix, Soft
Classification Maps, and Pattern Analysis (Map Curves), etc. [33]. Researchers and various
organizations have actively utilized these diverse methods to validate LC maps. For example,
Chaaban [34] used stratified random sampling (SRS) and equalized stratified random (ESR)
to assess the accuracy of existing 10 m spatial resolution LC products: ESA WorldCover and
Esri Land Cover. Gao [35] evaluated three 30 m LC products concerning areal and spatial
consistency using the Land Use/Cover Area Frame Statistical Survey (LUCAS) reference
dataset over the European Union (EU). Each approach possesses unique strengths and
applicability [36–40]. However, it is important to note that limitations still exist.

Such “accuracy” generated by existing research mainly involves national and inter-
continental scales (such as global accuracy), and further verification is needed to determine
whether it meets the requirements in the specified research area. Bai found that even for
the same LC product, GLCD-2005, there are significant differences in accuracy among
different regions in China [36]. Most LC products primarily rely on RS images as their
main data source. During production, they are often affected by issues related to the
accuracy of these images itself, such as cloud cover and mixed pixels [41]. This impact is
particularly important in areas with complex and fragmented LC distributions, leading to
a noticeable decrease in accuracy. Consequently, traditional per-pixel sampling designs
are ill-suited for these environments, as they fail to adequately characterize the complex
spatial variability and relationships within fragmented area [42]. This gap highlights the
need for optimized sampling techniques to enhance the representation of spatial variability
in accuracy assessments of heterogeneous regions. Area estimation, especially for forested
areas, can be utilized to quantify global forest carbon losses through remote sensing es-
timates [43]. Keenan believes that furnishing reliable information on global forest area
trends is invaluable for all people in decision-making on policies and investments [44].
However, estimates of LCC, particularly those related to critical factors like forest change in
carbon accounting [45], are often susceptible to significant errors [46]. The key to address-
ing certain global environmental science issues lies in the accurate measurement of LCC
areas. Traditional methods of obtaining this involve directly extracting information from
categorized LC products. However, it is possible that the area computed from the LC map
could be badly biased even when the two classifications are both highly accurate [47–49].

Southwest China has a robust carbon sequestration capacity, becoming the largest
terrestrial carbon sink in China over the past 30 years [50]. Its carbon absorption constitutes
slightly over 35% of Chinese total absorption [51]. On the other hand, Southwest China has
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experienced a “once-in-a-century” prolonged severe drought, triggering severe impacts
on vegetation growth and thereby suppressing this carbon sink [52]. Therefore, LCC in
Southwest China is undoubtedly necessary to pay high attention to prevent further degra-
dation of the existing environment. However, it poses significant challenges for obtaining
sufficient high-quality and high-resolution remote sensing images in this place, because of
its frequently cloudy and foggy weather [53]. At the same time, the geomorphological struc-
ture of this area is complex, and the distribution of land classes is extremely fragmented.
Driven by such factors, the challenges in classifying LC in the southwestern region have
consequently increased. Therefore, it is quite important to obtain an accurate assessment
for LC products in this region.

In this paper, the primary objective is to validate the accuracy of medium- and high-
resolution LC data in Southwest China, an area with diverse and fragmented landscapes,
by comparing it with independent LC samples obtained by optimized sampling methods.
Secondly, we will produce scientifically rigorous and transparent estimates of area for each LC
category based on the sampled points. Through this analysis, our objective is to improve the
estimates of the carbon budget in Southwest China, where forests are widespread, representing
an extensive carbon sink and contributing to the global carbon balance.

2. Materials and Methods
2.1. Study Area

Southwest China is located between 21◦04′~34◦23′N and 97◦26′~112◦06′E, including
Sichuan Province, Yunnan Province, Guizhou Province, Chongqing City, and Guangxi
Zhuang Autonomous Region (Figure 1). The region is often covered by extensive cloud
cover (Figure 1a), making it hard to obtain high-quality satellite images [53]. Moreover,
the subtropical humid monsoon climate results in extremely hot and abundant rainfall in
summer. Rainfall has led to the southwestern mountainous regions becoming one of the
most severely affected areas by water-eroded desertification in China [54]. The topogra-
phy in this area is varied and complex, featuring deeply incised valleys and expansive
karst areas, with a relative elevation difference exceeding 7000 m from the northwest to
the southeast [55]. These combined influences have intensified land fragmentation in
this region.
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2.2. Medium- and High-Resolution LC Products

Eight LC maps with widely used and recent production dates, featuring different
spatial resolutions, were sourced from various sensors, including Landsat and Sentinel-2
(Table 1). The products selected for this study are all from 2020. Since the latest production
year for FROM_GLC extends only up to 2017, considering the proximity of dataset phases,
it is still included in this study.

Table 1. Parameters of LC products used in the study.

Product Sensor Production
Organization Time Classification

Number
Overall

Accuracy Source

CLCD Landsat Wuhan
University 1985–2022 9 79.31%

https://zenodo.org/records/
5816591#.ZAWM3BVBy5c

(accessed on 16 March 2024)

GLC_FCS30 Landsat AIR 1985–2020 * 29 82.50% https://data.casearth.cn/
(accessed on 16 March 2024)

GlobeLand30 Landsat NGCC 2000, 2010, 2020 10 80.33%

https://www.webmap.cn/
mapDataAction.do?method=
globalLandCover (accessed on

16 March 2024)

ESA WorldCover Sentinel-1,
Sentinel-2 ESA 2020, 2021 11 74.40%

https://viewer.esa-
worldcover.org/worldcover/
(accessed on 16 March 2024)

Esri Land Cover Sentinel-2 ESRI 2017–2022 9 85.96%
https://www.arcgis.com/

apps/mapviewer/index.html
(accessed on 16 March 2024)

CRLC Sentinel-2 Wuhan
University 2020 8 84.87%

https://github.com/
LiuGalaxy/CRLC (accessed

on 16 March 2024)

FROM_GLC10 Sentinel-2 Tsinghua
University 2017 10 72.76%

https://data-starcloud.pcl.ac.
cn/zh/resource/1 (accessed

on 16 March 2024)

SinoLC-1 Sentinel-2 Wuhan
University 2020 11 73.61%

https://zenodo.org/records/
8214871 (accessed on 16

March 2024)

* GLC_FCS30 dataset was generated every five years from 1985 to 2020.

(1) CLCD [19] land cover map with 30 m spatial resolution from Wuhan University. It is the
annual long-term Landsat-derived land cover dataset, established by utilizing visually
interpreted samples from satellite time-series data and a random forest classifier.

(2) GLC_FCS30 [20] land cover map with 30 m spatial resolution from Aerospace Informa-
tion Research Institute, Chinese academy of science (AIR). It offered the most refined
classification system in the dataset used for this study (encompassing 16 global LCCS
land cover types along with 14 intricate regional land cover types). The data adopted
a local adaptive random forest model.

(3) GlobeLand30 [21] (Global land cover dataset with 30 m spatial resolution) land
cover map with 30 m spatial resolution based on the integration of pixel- and object-
based methods with knowledge (POK-based) from National Geomatics Center of
China (NGCC).

(4) ESA WorldCover [22] land cover map with 10 m spatial resolution from European
Space Agency (ESA) from the WorldCover project. This product was based on both
the Sentinel-1 and Sentinel-2 satellite data and used the pixel-based strategy.

(5) Esri Land Cover [23] land cover map with 10 m spatial resolution from ESRI and
Microsoft’s Planetary Computer. It was used for building the global map based on a
deep learning artificial intelligence (AI) land classification model.

(6) CRLC [24] land cover map with 10 m spatial resolution from Wuhan University. They
have introduced a cross-resolution land cover mapping framework that incorporates
the principles of noisy label learning.

https://zenodo.org/records/5816591#.ZAWM3BVBy5c
https://zenodo.org/records/5816591#.ZAWM3BVBy5c
https://data.casearth.cn/
https://www.webmap.cn/mapDataAction.do?method=globalLandCover
https://www.webmap.cn/mapDataAction.do?method=globalLandCover
https://www.webmap.cn/mapDataAction.do?method=globalLandCover
https://viewer.esa-worldcover.org/worldcover/
https://viewer.esa-worldcover.org/worldcover/
https://www.arcgis.com/apps/mapviewer/index.html
https://www.arcgis.com/apps/mapviewer/index.html
https://github.com/LiuGalaxy/CRLC
https://github.com/LiuGalaxy/CRLC
https://data-starcloud.pcl.ac.cn/zh/resource/1
https://data-starcloud.pcl.ac.cn/zh/resource/1
https://zenodo.org/records/8214871
https://zenodo.org/records/8214871
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(7) FROM_GLC [25] (Finer Resolution Observation and Monitoring of Global Land Cover)
land cover map with 10 m and 30 m spatial resolution from the team of Professor
Gong Peng of Tsinghua University. It was developed on Google Earth Engine (GEE)
using a supervised random forest classifier with FROM-GLC Plus (FGP).

(8) SinoLC-1 [26] land cover map established by Wuhan University, is the first land cover
dataset which has 1 m spatial resolution of China, utilizing a deep learning-based
framework and open-access data.

The above eight LC products used in this study have undergone independent accuracy
assessments. Nonetheless, the results of these independent accuracy evaluations cannot be
directly compared due to the use of different verification methods and reference data. In
this research, these LC products were validated in Southwest China to obtain local accuracy.

2.3. Methods

Since obtaining the actual LC information for the whole study area is both expensive
and challenging, conducting accuracy assessments based on statistical sampling is a
more common practice. Given the significant spatial heterogeneity of the land surface in
the Southwest China, this study integrates stratified random sampling and proportional
allocation while considering the rare classes, building upon traditional probability
statistical models.

Figure 2 presents the validation flowchart for LC products in Southwest China.
Step 1: Data pre-processing. Main contents of data pre-processing include projection

transformation, mosaic, extraction, reclassification, etc. This step was performed in the
ArcGIS 10.8 platforms, a desktop Geographic Information System (GIS) software developed
by ESRI (www.esri.com, accessed on 16 March 2024).

Step 2: Sample collection using SRS. Olofsson proposed that regardless of which
map is used to define the strata when assessing multiple maps, the data from the sample
references remain available for evaluating any map [56]. Considering both prior knowledge
and computational costs, this study chose CLCD products to define the strata. Strata were
delineated based on eight LC types. Based on SRS, calculate the total sample size and
determine sample allocation based on the area of each LC types. The samples obtained
through this method serve for accuracy estimation, area calculation, and quantifying the
associated uncertainty.

Step 3: Integration of data sources for sample points interpretation. In this step, a
combination of field survey data, multiple remote sensing images from diverse sources
and periods, and high-resolution Google Earth Images was employed. Each sample points
underwent interpretation, leading to the identification of its corresponding LC type.

Step 4: Validate the accuracy of the LC data using the chosen sampling points,
encompassing both accuracy validation and area estimation. Sample points were applied
to all LC products to calculate validation indicators and the area of each category. In
order to comprehensively characterize the LC patterns in the southwestern region of
China, an analysis emphasizing the spatial distribution differences among various LC
datasets was conducted.

www.esri.com
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2.3.1. Reclassification

We contrasted the diverse classification systems of various products and converted it
into a consistent classification system. Additionally, as both the CLRC and Esri Land Cover
merge shrubland and grassland into a single category named “Grassland/Shrubland”, we
have also unified these two classes. This study simplified the classification system to eight
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classes: Forest, Grassland (including Shrubland), Cropland, Impervious, Barren, Ice, Water,
and Wetland (Table 2).

Table 2. Correspondence between target classification system and original classification system.

Product Forest Grassland Cropland Impervious Barren Ice Water Wetland

GLC_FCS30 12/51/52,61/62/
71/72/81/82/91/92 *

11/120/121/122/130/
140/150/152/153 10/20 190 200/201/202 220 210 180

GlobeLand30 20 30/40 10 80 90 100 60 50

CLCD 2 3/4 1 8 7 6 5 9

FROM_GLC10 20 30/40 10 80 90 100 60 50

ESA
WorldCover 10 20/30 40 50 60 70 80 90

Esri Land
Cover 2/6 11 5 7 8 9 1 4

CRLC 2 3 1 8 9 10 6 5

SinoLC-1 2 3/4 5 1/6 7 8 9 10

* The numbers presented in the table denote the category codes of the original classification system for different
remote sensing product.

2.3.2. Stratified Random Sampling Method

Sampling design is the protocol for selecting a subset of spatial units, which will
constitute the foundation for accuracy assessment. The crucial recommendation is that the
sampling design should be a probability sampling design. Multiple probability sampling
designs are applicable for precision assessment and area estimation, with the most com-
mon designs being simple random, stratified random, and systematic designs [57]. The
implementation of stratification has two advantages: The first purpose is if there are strata
of interest for the reported results, such as the accuracy of various categories divided by
LC type. In the stratified random sampling method, the partitioning of each stratum must
include certain probabilities, and these probabilities form the basis for accuracy and area
estimation. Because of the diverse LC types and significant area variations in our study
area (Figure 1b), aiming to obtain adequate samples for each LC type in the classification
system, we collected reference samples for all LC classes using stratified random sampling
method (SRS) following good practices as recommended by Olofsson [56].

For SRS, assuming equal sampling costs for each stratum, the formula for calculating
the sample size (n) is as follows:

n =
(∑ WiSi)

2

[S(Ô)]
2
+ (1/N)∑ WiS2

i

≈ (
∑ WiSi

S(Ô)
)

2
(1)

where S(Ô) is the standard error of the estimated overall accuracy we aim to achieve,
Wi is the mapped proportion of area of class i, Si is the standard deviation of stratum i,
calculated as Si =

√
Ui(1−Ui) (Ui is the user accuracy), and N is the number of units

in the study area. Because N is typically large, the second term in the formula always
can be ignored. Based on prior knowledge, we assume a user’s accuracy of 0.6 and the
standard error of 0.005.

When using SRS for sampling, it is necessary to determine the total number of samples
and the distribution method of the samples required for each stratum. The sample allocation
methods commonly used include random allocation, proportional allocation, Neyman
allocation, etc. [58].

Proportional allocation ensures all strata are represented proportionally, relative to the
size of the landscape areas within it, preventing under-sampling of some strata. We choose
the proportional allocation which is in stratified sampling, where the sample size ni in each
stratum is proportional to the stratum size Ni:

ni = nWi (2)
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Finally, the sample size for rarer categories is appropriately increased, catering to
samples from all categories to ensure a more equitable distribution of samples for each
stratum compared to proportional allocation results.

2.3.3. Sample Labeling

In practice, it is not always possible to visit the sample locations we selected, as they
may be located in excessively high mountains or in overly dangerous ravines. The cost
of accessing all sample points is excessively high. Therefore, we use the following multi-
source remote sensing data as reference data to identify the LC types of validation points
(Table 3):

(1) GF-2 imagery from National Major Projects on High-Resolution Earth Observation
System. Southwest China has unique weather, with an exceptionally short duration
of effective sunlight (Figure 1a). Therefore, we have chosen multiple time-series data
from 2019 to 2020.

(2) Google Earth Images.

Another issue to consider is that the size represented by the sampling points should
be appropriate for the pixel size of the LC map to be evaluated. This study aims to
select sample points from homogeneous areas of at least 60 m × 60 m to ensure the
representativeness of the sample points and mitigate the scale effect on verification accuracy.
If the representative size of the sample points equals only a single pixel, the validation
results can be unduly influenced by inherent location errors in satellite imaging and the
impact of mixed pixels.

We employed various independent interpretation methods by different individuals,
involving three experts with extensive remote sensing image interpretation experience
and one quality controller in this process. The three experts independently interpreted
sample land classes, recording interpretation confidence levels (high, medium, low). These
independently interpreted results were passed on to another expert for cross-verification.
After removing obvious errors, the consistency among the results from the three experts
now exceeds 95%. The cross-verified interpretation results are submitted to the quality
control personnel for final inspection. In cases where a consensus on interpretation results
cannot be reached through discussion, those particular samples are discarded.

A total of 9579 samples were collected, encompassing eight categories: Forest, Grass-
land, Cropland, Impervious, Barren, Ice, Water, and Wetland (Figure 3). In Figure 3d, the
distribution of sampling points is depicted, with a predominant focus on Forest, Cropland,
and Grassland, showcasing the quantity of each category. In Figure 3f, the distribution
of sampling points in latitude can be observed. Forests are most widely distributed, with
lower latitudes corresponding to the Impervious. Conversely, regions with higher latitudes
demonstrate the distribution of snow and ice, grassland, and wetlands.

Typical regions to showcase the sampling results are presented in Figure 3a–c. Figure 3a
depicts Chongqing city on the edge of the Sichuan Basin, characterized by persistent cloud
cover and fog, restricting access to high-quality remote sensing data. Due to intensive
human activities and complex karst topography in the region, land cover is highly frag-
mented. Figure 3b shows the southwestern region of Mount Siguniang in Sichuan Province,
characterized by diverse LC types due to significant terrain variations. Figure 3c illustrates
Kunming city in Yunnan Province, where the terrain, landforms, and Land Use and Land
Cover (LUCC) are complex and variable.
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Table 3. Feature classification and description of imagery.

Class Name Images Google Earth Feature Description

Forest
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Figure 3. Distribution of sample points in the study area. (a) Chongqing; (b) Mount Siguniang,
Sichuan Province; (c) Kunming, Yunnan Province; (d) Sampling count and proportion by category;
(e) The distribution of LC samples collected in Southwest China; (f) Scatterplots of the map data with
each category to highlight latitudinal patterns.

2.3.4. Validation Indicators

The collected sample points generated error matrices, offering detailed measurements,
including overall accuracy (OA), producer accuracy (PA), user accuracy (UA), and the
Kappa coefficient (Kappa), to assess accuracy variations among different products [58].

OA =
∑

q
i=1 nii

N
(3)

PA =
nii
n·i

(4)

UA =
nii
ni·

(5)

Kappa =
N∑

q
i=1 nii −∑

q
i=1 (ni+n+i)

N2 −∑
q
i=1 (ni+n+i)

(6)

where i is the LC type of the product; nii is the number of pixels correctly classified in type
i; n+i is the number of pixels of type i in the reference product; ni+ is the number of pixels
of type i in the product to be evaluated number.

Differences in area and spatial distribution are also crucial metrics for evaluating the
accuracy of LC datasets. Because of classification error, relying solely on area weighting
and total area to calculate the areas of each category often introduces biases. The sample
size for each map class is proportional to the relative area of the map class, allowing us to
estimate the area using the sample points. Equation (7) serves as an area estimator, relying
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on the reference classification of each sample unit rather than directly obtaining the area
from the map classification [56].

Âj = Atot∑
i

Wi
nij

ni·
(7)

where Âj is an estimate of the area for category j; and Atot is the total area.
Articles published between 2005 and 2010 in several mainstream remote sensing

journals with a track record of publishing articles on land change were surveyed by
Olofsson. He found that these articles rarely presented accuracy information for calculating
the error-adjusted estimated area and confidence intervals [59]. Once the product has been
validated, and an error matrix is created, estimating these parameters is not difficult but
can yield a wealth of valuable information.

The estimated standard error of the estimated area proportion is

S( p̂·j) =

√
∑q

i=1 W2
i

nij
ni·
(1− nij

ni·
)

ni· − 1
(8)

The standard error of the error-adjusted estimated area is

S(Âj) = Atot × S( p̂·j) (9)

An approximate 95% confidence interval (for 95% confidence, z = 1.96) for Aj is
Â .

J
± 1.96× S

(
Âj
)
.

2.3.5. Spatial Distribution Consistency Analysis

It is imperative to include an analysis that highlights the disparities in spatial distribu-
tion among various land cover datasets to comprehensively characterize the land cover
patterns in southwestern China. LC products with different spatial resolutions cannot be
directly compared for consistency. It is necessary to resample the product with a 10 m
spatial resolution to 30 m (due to computational costs, the experiment did not utilize data
with a 1 m spatial resolution). The resampling method employed the maximum area
resampling approach.

Through spatial analysis overlay, a Boolean comparison was employed to generate a
consistency map. Pixels with the same LC type were labeled as consistent, while those with
different LC types were labeled as inconsistent, further categorized into full agreement,
high agreement, and low agreement.

3. Results
3.1. Validation of LC Products

A summary of the calculated results for OA and Kappa between each map pair and
LC samples are given in Figure 4 and Table 4 separately. OA of the eight LC maps across
Southwest China are ESA WorldCover (87.10%), CLCD (85.48%), Esri Land Cover (84.43%),
CRLC (81.85%), FROM-GLC10 (80.89%), SinoLC-1 (77.03%), GLC_FCS30 (75.47%), and
GlobeLand30 (72.78%) in the descending order. Among the 30 m resolution datasets, the
CLCD data achieved the highest overall accuracy and Kappa coefficient, with values of
85.48% and 0.74, respectively. For the 10 m resolution datasets, the ESA WorldCover data
had the highest overall accuracy and Kappa coefficient, with values of 87.10% and 0.76,
respectively. As for the 1 m resolution LC data, the overall accuracy was 77.03%, and
the Kappa coefficient was 0.51. In addition, we compared OA of our results with the OA
reported by the source data authors. The OA for CLCD, FROM_GLC10, ESA WorldCover,
and SinoLC-1 is higher than original data OA, while GLC_FCS30, GlobeLand30, Esri Land
Cover, and CRLC have OA lower than that.
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Table 4. Summary of OA and Kappa of eight LC maps in Southwest China.

Name CLCD GLCFCS Global30 FROM_GLC ESRI ESA CRLC SINOLC

OA 85.48% 75.47% 72.78% 80.89% 84.43% 87.10% 81.85% 77.03%
KAPPA 0.74 0.58 0.54 0.65 0.72 0.76 0.68 0.51

Subsequently, we calculated the UA and PA of the eight classes in the eight LC
maps (Figure 5). Neither of the eight maps can achieve high accuracy for both UA and
PA across all categories. The Forest and Water categories demonstrate high accuracy,
displaying strong PA and UA. In the Forest category ESA WorldCover data achieves the
highest accuracy, with both PA and UA exceeding 85%. Water is effectively classified in
most datasets, with ESA WorldCover, CRLC, and GLC_FCS30 data showing notably high
accuracy. Impervious performs well with GLC_FCS30 data, with both PA and UA reaching
80%. For Barren, Ice, and Wetland categories, the accuracy is relatively poor. Most datasets
for Barren and Ice have significant differences between PA and UA. Wetland category
accuracy is low, with GLC_FCS30 data even lacking wetland classes in Southwest China.
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Figure 5. UA and PA of eight land cover types in Southwest China.

3.2. Area Comparison of the Eight Classes

The area of eight classes of all LC maps was calculated, excluding SinoLC-1, due to its
significantly higher computational cost compared to other datasets (Table 5 and Figure 6).

Table 5. Area and error range (95% CI) for each land cover category in the southwestern region land
cover product. All area estimates are provided in units of ten thousand hectares.

Class CLCD GLC_FCS30 Globaland30 FROM_GLC Esri Land
Cover

ESA World
Cover CRLC

Forest 8953 ± 256 9379 ± 305 8945 ± 337 8408 ± 285 8719 ± 269 8697 ± 264 9025 ± 336
Grassland 2089 ± 187 2046 ± 247 2098 ± 254 1931 ± 218 2264 ± 235 2322 ± 231 2441 ± 262
Cropland 2095 ± 228 1725 ± 241 1989 ± 251 2068 ± 243 2018 ± 222 1888 ± 191 2532 ± 255

Impervious 280 ± 105 255 ± 80 272 ± 82 252 ± 102 328 ± 120 265 ± 80 295 ± 97
Barren 113 ± 64 109 ± 74 123 ± 75 138 ± 77 163 ± 69 132 ± 81 119 ± 75

Ice 22 ± 10 13 ± 7 31 ± 11 37 ± 18 42 ± 13 23 ± 15 40 ± 15
Water 112 ± 19 103 ± 17 157 ± 23 122 ± 29 146 ± 29 131 ± 21 159 ± 30

Wetland 11 ± 11 11 ± 13 27 ± 8 30 ± 19 50 ± 26 19 ± 11 35 ± 17

In Southwest China, the areas of various LC categories show notable inconsistencies.
Among all categories, the area of the Forest category is the closest, with GLC_FCS30
having the largest coverage. The Grassland and Cropland categories exhibit relatively
small differences among all categories. In Grassland categories, CRLC has the largest area,
while FROM_GLC10 has the smallest area. In Cropland categories, CRLC has the largest
area, and GLC_FCS30 has the smallest area. However, there is quite a difference in the
Ice and Wetland categories, even though they cover the smallest proportion, collectively
making up less than 1%. E.g., the area of Ice in Esri Land Cover is 3.16 times than that
of GLC_FCS30, while the area of Wetland in Esri Land Cover is 4.43 times than that of
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GLC_FCS30. GLC_FCS30 depicts more areas in Forest categories than the other datasets,
resulting in lower calculated areas for other categories. In terms of standard errors for total
area among various products, CLCD has the smallest, followed by ESA WorldCover. This
indicates better performance of these land cover products.
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3.3. Spatial Distribution Difference Comparison

Figure 7 illustrates the spatial consistency of different LC products in Southwest China.
Generally, high spatial consistency is more prevalent in typical homogeneous regions,
such as vast grasslands in the Western Sichuan Plateau and cropland and impervious in
the Sichuan Basin. In contrast, low spatial consistency is more widely distributed in the
complex terrain of Southwest China. For example, for the Yunnan–Guizhou Plateau, intense
crustal movements result in its rugged topography. The Guangxi Zhuang Autonomous
Region, as the region with the largest area of artificial forests in the Southwest, has frequent
human activities, and the distribution of land categories is extremely scattered, resulting
in highly intense LUCC. In the northeastern and southeastern parts of Chongqing, the
dual impact of complex topography and frequent cloud cover poses challenges to LC map
production. To provide a more intuitive understanding of spatial consistency, we selected
Caoshang in Chongqing city for an in-depth display of land cover patterns in this typical
region. In this region, characterized by a mixture of Forest, Impervious, and Cropland,
CLCD, GLC_FCS30, and CRLC exhibit similar LC patterns. Esri Land Cover shows a
greater extent of Impervious, while GlobeLand30 shows a higher proportion of Cropland
in this area.
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4. Discussion
4.1. Comparison and Analysis of Accuracy

Generally, the accuracy of the eight LC datasets is good, the value of OA are large
than 70%, and the accuracy metrics show consistency. In the 30 m resolution data, CLCD
data have the highest overall accuracy and Kappa coefficient. In the 10 m resolution
data, ESA World Cover data have the highest overall accuracy and Kappa coefficient.
Additionally, the producer accuracy and user accuracy of these two datasets also reach
high levels. Liu [60] examined five datasets in the South China region in 2020, including
CCI-LC, MCD12Q1, GlobeLand30, GlobCover, and CGLS-LC. The five products were
resampled to a resolution of 1 km, yielding consistency results similar to this study.
During area comparison, relying solely on area weighting and total area to calculate the
area of each category often introduces biases. In this study, error-adjusted estimates of
area and confidence intervals were calculated, providing more robust results. Notably,
our assessment result, focused specifically on Southwest China, partially revealed lower
accuracy compared to the national-scale assessment provided by the authors (Figure 4).
This highlights the importance of validating global products at regional scales. This
warrants caution when utilizing the product for localized assessments in these areas
where LC is fragmented, given higher challenges in classification.

There are various reasons for the discrepancies among different LC data, which may
include the difficulty in different LC categories, classification algorithms, as well as consid-
erations related to the spectral, spatial, and temporal resolutions of the datasets. In terms of
LC categories, the classification accuracy for Forest and Water bodies is higher. This may be
attributed to the distinct spectral characteristics of these two LC types, coupled with their
continuous and extensive distribution in the study area, making their boundaries easily
identifiable in remote sensing imagery. On the other hand, the accuracy of the classification
results for bare land, ice/snow, and wetland is lower. The similarity of these land cover
types to other categories with confusing spectral and textural features may give rise to this
discrepancy. Particularly in regions characterized by complex land classes and heterogene-
ity, accurately identifying these types becomes more challenging. Regarding the method for
generating LC products, machine learning remains the mainstream approach. FROM-GLC,
GLC_FCS30, CLCD, and ESA WorldCover employ a machine learning method known
as random forest method. GlobeLand30 utilizes the POK strategy. Due to the different
classification methods used, GlobeLand30 exhibits a significantly higher classification of
cultivated land compared to other LC products (Figure 7). In terms of data sources, the OA
of LC data derived from time-series remote sensing images surpasses that obtained from



Remote Sens. 2024, 16, 1111 16 of 19

single-period images. LC data produced using Sentinel data as the data source demonstrate
high accuracy. For example, ESA WorldCover integrates data from the Sentinel-1 radar
satellite and the Sentinel-2 optical satellite. Radar Imagery is less affected by clouds and
rain, performing well in regions with frequent cloud cover, such as the Southwest China.

Each LC map should take various factors into account early in the generation process,
including not only accuracy but also classification categories, mapping time, mapping
area, and more. Researchers should pay more attention to choosing LC data that suit their
specific needs.

4.2. The Advantage and Limitation of Sampling Method

Compared to simple random sampling, sampling methods that combine proportional
allocation and stratified random sampling better cater to the quantity of rare LC samples,
taking into account the spatial heterogeneity of the land surface and the scale differences
among various products. At the end, we obtained 9579 sample points. The number of
sample points satisfy the minimum sample size requirement. For regions with highly
unbalanced LC category areas, it is worth considering improvements to the sampling
method. In terms of sample location selection, additional reference data can be utilized to
reduce the sample size while maintaining relatively objective results.

In addressing potential sources of error, despite using multi-source remote sensing
data as references, the confidence in obtaining sample points is low due to the scarcity
of high-quality images of the Sichuan Basin (Figure 1a). Although the research team
conducted field observations, the obtained sample quantity constitutes a relatively small
proportion of the total samples. Future efforts should incorporate additional measures to
bolster confidence in the samples, such as collecting more reference data or conducting
further field investigations. While adhering to globally recognized sampling methods,
there are still some shortcomings in our sample point selection. For example, the impact of
sample location poses a challenging problem that is not easily quantifiable. In the sampling
of LUCC, attention is focused not only on the accuracy of classification but also on the
rationality of the classification boundaries. Due to spatial heterogeneity, these boundaries
are inherently fuzzy. Designing evaluation metrics becomes a crucial consideration. In
this study, the approach used involves sampling from sufficiently large and uniform land
surfaces. However, based on the literature review, there are alternative approaches, such as
using semivariogram functions to assess the spatial representativeness of measurement
points, which is a consideration that precedes our research.

4.3. Reference of Regional-Scale LC Products

Accurate monitoring of LCC is pivotal in developing science-based strategies for man-
aging conservation needs and promoting sustainable development. Many environmental
problems in Southwest China, such as the continuous expansion of rocky desertification,
have hindered the increase in carbon sinks and severely limited the sustainable develop-
ment of the region [61]. In recent years, China has implemented various forest protection
policies in Southwest China, effectively preserving the existing forest ecosystem. This
ecosystem plays a crucial role in supporting our carbon-neutral policy. These policies’
development and maintenance rely on precise LC data for guidance. Specifically, under-
standing the accuracy of land overlay data in Southwest China greatly helps us to obtain
LCC signal. We advocate that these effects should be considered when developing land-use
policies. For example, the huge impact of these bias corrections on China’s carbon dynamic
assessment since 1900 proves [31]. Therefore, emphasizing accurate descriptions of LCC
becomes paramount in carbon budget accounting, biodiversity assessment, and ecosystem
services evaluation.

This study validates the accuracy of existing medium- to high-resolution LC data in
Southwest China, with the goal of aiding scholars in selecting appropriate data for their
research. Each LC map should take various factors into account early in the generation
process, including not only accuracy but also classification categories, mapping time,
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mapping area, and more. Researchers should consider not only the accuracy of products
but also comprehensively choose LC data that suit their specific needs.

5. Conclusions

In this study, we synthesized the findings from validating and comparing eight LC
datasets. By employing a stratified random sampling method, the research offers a detailed
assessment of the accuracy and area estimates of these LC products.

The result shows the SRS method to obtain sampling points for validating existing
medium- to high-resolution LC data. Based on the map classes, we stratified the classifica-
tion, allocate samples to each stratum through proportional assignment, aiming to minimize
the standard errors associated with accuracy estimates for each class. The accuracy of the
eight LC datasets was relatively high, with ESA WorldCover being the highest among them.
There was also a significant difference between UA and PA. Among them, the “Forest”
and “Water” categories performed well among all classes, while the “Barren”, “Ice”, and
“Wetland” categories exhibited relatively lower accuracy. The area of each category was
determined based on classification estimates derived from reference data, using unbiased
or consistent accuracy and area estimators to determine the area for each category.

In this research, the different spatial resolutions of land cover datasets are evaluated by
different indicators such as OA, PA, UA, and Kappa coefficient. Our results provide a guide
for users to selected the most suitable land cover dataset based on various research topics
in Southwest China. Moreover, fully leveraging the results of accuracy assessment and
consistency evaluation, combining the strengths of multiple sources of LC data products
for data fusion is crucial in providing a comprehensive and more accurate LC data product
for regional studies. This is an important aspect of future work.
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