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Abstract: Infrared small target detection plays a crucial role in both military and civilian systems.
However, current detection methods face significant challenges in complex scenes, such as inaccurate
background estimation, inability to distinguish targets from similar non-target points, and poor ro-
bustness across various scenes. To address these issues, this study presents a novel spatial–temporal
tensor model for infrared small target detection. In our method, we introduce the tensor tree rank to
capture global structure in a more balanced strategy, which helps achieve more accurate background
estimation. Meanwhile, we design a novel self-adaptive local prior weight by evaluating the level
of clutter and noise content in the image. It mitigates the imbalance between target enhancement
and background suppression. Then, the spatial–temporal total variation (STTV) is used as a joint
regularization term to help better remove noise and obtain better detection performance. Finally,
the proposed model is efficiently solved by the alternating direction multiplier method (ADMM).
Extensive experiments demonstrate that our method achieves superior detection performance when
compared with other state-of-the-art methods in terms of target enhancement, background suppres-
sion, and robustness across various complex scenes. Furthermore, we conduct an ablation study to
validate the effectiveness of each module in the proposed model.

Keywords: infrared small target detection; tensor tree decomposition; self-adaptive local prior;
spatial–temporal total variation

1. Introduction

In comparison to active radar imaging, infrared imaging offers the benefits of enhanced
portability and improved concealment. Meanwhile, compared with visible light systems,
it boasts a range of advantages, such as exceptional anti-interference features and the
ability to operate all throughout the day [1]. Owing to the superior benefits of infrared
imaging, infrared dim and small target detection plays a significant role in military and
civil applications, such as aerospace technology [2], security surveillance [3], and forest fire
prevention [4]. However, due to the lengthy detection distance, infrared targets usually
occupy only a few pixels and lack shape information and textural features. In addition,
infrared images in complex scenes often contain a variety of interferences (e.g., heavy clutter
and prominent suspicious targets), resulting in a weak signal-to-clutter ratio (SCR) [5].
Therefore, infrared small target detection remains a challenging issue and has attracted
widespread research interests.
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1.1. Related Works

In general, infrared small target detection algorithms primarily include single-frame
detection and sequential-frame detection [6]. For a long time, many single-frame de-
tection approaches have been developed to address the challenges in infrared small
target detection. Single-frame detection methods can be divided into four categories:
(1) background consistency-based methods; (2) human visual system (HVS)-based meth-
ods; (3) deep learning (DL)-based methods; and (4) low-rank and sparse decomposition
(LRSD)-based methods.

• Background consistency-based methods achieve target enhancement and background
suppression based on the assumption of background consistency. Typical methods
include the Top-hat filter [7], Max–Mean and Max–Median filters [8], and the high-
pass filter [9]. Hadhoud and Thomas [10] extended the LMS algorithm [11] and
proposed a two-dimensional adaptive least mean square filter (TDLMS). Cao and
Sun [12] utilized the maximum inter-class variance method to improve morphological
filtering. Although these methods are capable of achieving fast detection speeds, they
are unsuitable for application in complex scenes.

• Contrast is the most crucial factor encoded in our visual system; HVS-based methods
generally utilize visual saliency features to distinguish the target from the background.
Chen et al. [13] proposed a local contrast method (LCM) to describe the difference
between the target and its neighborhood. Inspired by LCM, many methods based
on local contrast improvement have been proposed. Starting from the perspective
of image patch difference, Wei et al. [14] presented a multiscale patch-based contrast
measure (MPCM). Shi et al. [15] proposed a high-boost-based multiscale local contrast
measure (HBMLCM). Han et al. [16] designed a multiscale tri-layer local contrast
measure (TLLCM) to compute comprehensive contrast. Han et al. [17] improved
the detection accuracy by utilizing the Laplacian filter and proposed a coarse-to-
fine structure (MCFS) for infrared small moving target detection. However, when
the image contains background edges and pixel-sized noises with high brightness
(PNHB), such algorithms usually display high false alarms.

• With the development of artificial neural networks, DL-based methods have received
extensive attention for their application in infrared target detection. Fan et al. [18]
improved the convolutional neural network to extract infrared image features, aiming
to improve detection accuracy and efficiency. Zhao et al. [19] designed an architec-
ture of generative adversarial network (GAN), which models the detection problem
issue as an image-to-image translation problem. In [20], a novel Dim2Clear net-
work (Dim2Clear) was proposed to solve the problem of noise interference. Recently,
Ying et al. [21] developed a label evolution framework with single point supervision.
Although DL-based methods can achieve good detection performance under training
scenes, their generalization to practical applications remains a challenge.

• In recent years, LRSD-based methods have achieved great success and can now ef-
fectively separate the low rank background and the sparse target of infrared image.
Gao et al. [22] first proposed an infrared patch-image model (IPI) by constructing
local patches. Consequently, infrared small target detection is transformed into an
optimization problem. However, as the nuclear norm minimization (NNM) uses
the same threshold to shrink singular values, an over-shrinkage problem may occur
in complex backgrounds full of interference [23]. Furthermore, besides the target,
edges and corners in the background are also considered as sparse components under
the l1-norm [24]. To handle the above problems, Dai et al. [25] constructed a non-
negative infrared patch-image model (NIPPS) by adding a non-negative constraint to
the sparse target. Wang et al. [26] introduced the total variation regularization that
better removes the noise and proposed a total variation regularization and principal
component pursuit model (TV-PCP). Zhang et al. [27] designed a nonconvex rank
approximation minimization (NRAM) by utilizing the l2,1-norm to constrain the re-
maining edges. Assuming that the background comes from multiple subspaces, the
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stable multi-subspace learning model (SMSL) [28] and the self-regularized weighted
sparse model (SRWS) [29] were proposed to improve detection performance. In order
to better extract the image structure information and meet the practical demand for
fast detection speed, Dai and Wu [30] adopted the tensor structure and proposed a
reweighted infrared patch-tensor model (RIPT). Zhang and Peng [31] combined the
partial sum of the tensor nuclear norm (PSTNN) and the local prior to effectively
improve detection efficiency. In [32], the tensor fibered nuclear norm based on the
Log operator (LogTFNN) was used to nonconvex approximate the tensor rank, which
helps suppress background and noise. Zhang et al. [33] constructed a non-local block
tensor and an adaptive compromising factor based on the image local entropy. Then,
a self-adaptive and non-local patch-tensor model (ANLPT) was proposed for infrared
small target detection.

Although the above LRSD-based single-frame detection methods have achieved good
results, they ignore temporal information. Traditional sequential-frame detection methods,
such as 3D matched filtering [34], dynamic programming algorithms [35], the spatiotem-
poral saliency approach [36], and trajectory consistency [37], face challenges in effectively
separating the background from the target. In addition, these methods usually require
prior knowledge, which is difficult to obtain in practical applications. In order to exploit
the spatial–temporal information that is neglected in LRSD-based single-frame detection
approaches, Sun et al. [38] stacked images from successive adjacent frames. Inspired by
this, Zhang et al. [39] proposed a novel spatial–temporal tensor model with edge-corner
awareness to further improve detection ability. Considering that the Laplace operator can
approximate the tensor rank more accurately, Hu et al. [40] proposed a multi-frame spatial–
temporal patch-tensor model (MFSTPT). Wang et al. [41] integrated the nonoverlapping
patch spatial–temporal tensor model (NPSTT) and the tensor capped nuclear norm (TCNN)
for detection results with low false alarms. Further, Liu et al. [42] designed a nonconvex
tensor Tucker decomposition method, in which factor prior was used to obtain accurate
background estimation and reduce computational complexity.

1.2. Motivation

Compared with background consistency-based approaches and HVS-based approaches,
low-rank and sparse tensor decomposition (LRSTD)-based methods can better enhance
small target features and suppress background clutter interference. Among these ap-
proaches, single-frame detection methods only consider single-frame image to construct
the optimization model and struggle to achieve accurate results in various challenging envi-
ronments with dynamic change or heavy clutter. Considering the significance of combining
contextual information in the spatial–temporal domain, this article primarily concentrates
on sequential-frame infrared target detection. While currently available methods have
achieved relatively good detection performance, there are still some issues that need to
be addressed.

First, due to the complex multilinear structure of the tensor, the exact approximation
of the background tensor rank is always a major difficulty. To improve the accuracy of
background estimation, these LRSTD-based methods [30,31,43] focus on designing more
accurate tensor rank constraints, such as the sum of nuclear norm (SNN), tensor nuclear
norm (TNN), and tensor train nuclear norm. Nevertheless, it has been proven that SNN fails
to accurately approximate the tensor rank [44]. According to the definition of TNN, it lacks
flexibility and the ability to measure low-rankness from multiple modes [45]. Although
tensor train rank has a well-balanced matricization scheme, it suffers from higher storage
requirements [46]. In summary, the approximation of the background tensor rank still needs
to be improved. Therefore, we apply tensor tree rank to separate target and background.
Compared with the above strategies, tensor tree decomposition is a more balanced method
that splits the modes of a tensor in a hierarchical way.

In addition to accurate background tensor estimation, the suppression of strong edges
and corner points is key to achieving good detection performance. The local structure
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prior is often used to suppress interference. The RIPT only focuses on the edge structure
information of the background, which may lead to false alarms. Likewise, the fixed prior
weights used in PSTNN and MFSTPT cannot effectively suppress clutter in diverse scenes
with different levels of interference. It is important to balance the enhancement of the target
and the suppression of the interference from edges and corners in different scenes. To
solve this problem, we propose a self-adaptive local prior method to adaptively suppress
background clutter. Moreover, we use spatial–temporal total variation (STTV) to explore
local smooth information. This strategy helps us to better remove the background noise.
By combining tensor tree decomposition, self-adaptive local prior, and STTV, our method
can accurately detect small targets. In the following sections, we refer to the proposed
method as the TTALP-TV method. We present the results of qualitative and quantitative
experiments to demonstrate that TTALP-TV surpasses other state-of-the-art methods in
terms of target enhancement and background suppression in various complex scenes.
Figure 1 presents the flowchart of our method. The main contributions of this article can be
summarized as follows:

(1) In order to approximate the tensor rank function more flexibly and accurately, we in-
troduce tensor tree decomposition to exploit spatial and temporal correlation through
a hierarchical structure.

(2) The self-adaptive local prior is proposed as a target weight, which can not only
better extract target information but also more effectively remove background clutter.
Simultaneously, we impose STTV regularization constraint on the background to
preserve image details and reduce noise interference.

(3) We integrate the tensor tree rank, self-adaptive local prior, and STTV for infrared small
target detection. An efficient optimization scheme using the alternating direction
multiplier method (ADMM) is introduced to solve the proposed model.
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The remaining sections of this article are organized as follows. Section 2 summarizes
the notations and preliminaries of tensor tree decomposition. Section 3 introduces the
TTALP-TV model and describes its optimization procedure in detail. In Section 4, we
demonstrate the effectiveness of the proposed algorithm through extensive experiments
and analyses. Finally, Section 5 concludes this article and discusses the future work.
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2. Notations and Preliminaries

This section introduces the essential notations and preliminaries used in this research.
In this paper, we use lowercase letters (e.g., x), boldface lowercase letters (e.g., x), boldface
capital letters (e.g., X), and Euler script (e.g., X ) to represent scalars, vectors, matrices,
and tensors, respectively. The Dth-order tensor X ∈ RI1×···×ID , and D = {1, · · · , D}. The
node-q tensor-matrix multiplication can be denoted as Y = X ×q U, where X ∈ RI1×···×ID ,
U ∈ RJ×Iq , Y ∈ RI1×···×Iq−1×J×Iq+1×···×ID , and q is the node in the tensor tree format.

The specific explanations of the symbols used are given in Table 1.

Table 1. Mathematical symbols.

Notation Explanation

X ∈ RI1×I2×I3 3th-order tensor
X (i, j, k )/xi,j,k Its (i, j, k )-th element
⟨X ,Y⟩ The inner product of two tensors, ∑i1,i2,i3

xi1,i2,i3 yi1,i2,i3

∥X ∥0 The l0-norm, the number of non-zero elements in X
∥X∥1 The l1-norm, the sum of non-zero elements in X

∥X∥F
The Frobenius norm, the square root of the sum of the squares of
all elements in X

∥X∥∗ The matrix nuclear norm, the sum of all singular values in X

Tensor Tree Network

Definition 1 (Tensor tree structure) [47]. For Dth-order data, we define a binary tree
T with root D as its dimension tree. Each node Cq ⊂ T, q = 1, · · · , Q possesses the
following attributes:

1. The node with only one entry is a leaf, i.e., Cp = {d}. The set of all leaf nodes can be
represented as follows:

F(T) =
{
Cp ⊂ T

∣∣ Cp is a leaf node of T, p = 1, · · · , P
}

(1)

where P is the number of leaves.

2. The node consisting of two disjoint successors is an interior node. The set of all interior
nodes is denoted by:

E(T) = T \ F(T) (2)

And Q − P represents the number of interior nodes.

3. The tree distance h(Cq) is the distance between the node Cq ⊂ T and the root, with a
maximum depth of H. At depth h, Ph and Qh denote the number of leaves and total
nodes, respectively.

Definition 2 (Matricization) [47]. Given a node of dimension indices Cq ⊂ D and its
complement Cq = D∖Cq, the matricization of a tensor X ∈ RI1×···×ID is defined as:

X[q] ∈ RICq×ICq (3)

where ICq = ∏
c∈Cq

Ic and ICq
= ∏

c∈Cq

Ic.

Definition 3 (Tensor tree rank) [47]. Let T be a dimension tree of a Dth-order tensor, the
tensor tree rank is the set of ranks of the matricization for each node, in the form of:

ranktree =
{

kq

∣∣∣kq = rank
(

X[q]

)
, ∀ Cq ⊂ T

}
(4)
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Definition 4 (Tensor tree decomposition) [47]. Given X ∈ RI1×···×ID , for every node
Cq ⊂ T, X[q] can be written as:

X[q] = UqVT
q , Uq ⊂ RICq×kCq (5)

where kCq is the standard matrix rank of X[q]. For each Cq ⊂ E(T) with two disjoint
successors Cq1 and Cq2, the column vectors uq(:, l) of Uq can be expressed as:

uq(:, l) =
kq1

∑
l1=1

kq2

∑
l2=1

Gq(l, l1, l2)uq1(:, l1)
⊗

uq2(:, l2) (6)

where Gq(l, l1, l2) is the coefficient of the linear combination. Figure 2 graphically illustrates
the tensor tree decomposition of a 4th-order tensor, providing an intuitive understanding
of its structure.
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3. Methodology
3.1. Spatial–Temporal Infrared Tensor Model

According to the characteristic analysis in [22], the original infrared images can be
linearly modeled as:

fD = fB + fT + fN (7)

where fB, fT , fD, and fN denote the background image, target image, infrared image, and
noise image, respectively. Equation (7) only considers spatial data and ignores the target’s
motion in the temporal dimension, increasing the risk of missed detections or false alarms
in some complex infrared scenes. Moreover, compared with the matrix-based methods,
in the tensor domain, we can explore the intrinsic relationships of the data from multiple
perspectives and improve computational efficiency.

To ensure the comprehensive utilization of spatial and temporal information, we adopt
the approach in [38] to construct spatial–temporal image tensor. As shown in Figure 1,
the input image tensor D ∈ Rn1×n2×L is constructed by stacking consecutive L frames
in chronological order from the infrared sequence. Therefore, Equation (7) is written
as follows:

D = B + T +N (8)

where B, T , D, and N are the spatial–temporal tensor forms of fB, fT , fD, and fN , respec-
tively. Figure 3 shows that the singular value distribution curves of the image tensor along
mode 1, mode 2, and mode 3 rapidly decrease to zero. This indicates that background
tensor B is a low-rank tensor. Given that the infrared small targets usually occupy only
a few pixels in the entire image, it can be assumed that T is a sparse tensor. At the same
time, it is commonly assumed that the noise in infrared images is additive Gaussian noise
that satisfies ∥N∥F < δ. Therefore, the mathematical formula is as follows:

min
B,T

rank(B) + λ1∥T ∥0

s.t.∥D − B − T ∥F < δ
(9)
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where λ1 is a positive regularization parameter balancing the trade-off between the target
spatial–temporal tensor and the background spatial–temporal tensor. As the optimization
of l0-norm is NP-hard. In practice, it is usually substituted with the l1-norm:

min
B,T

rank(B) + λ1∥T ∥1

s.t.∥D − B − T ∥F < δ
(10)
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3.2. Self-Adaptive Local Prior Information

In infrared images, the strong edges and corner points in the background exhibit
sparsity similar to that of the target. This makes it difficult to completely distinguish them
from the target when relying solely on global sparse features. Thus, it is essential to extract
local prior and incorporate it into the optimization function to reduce background residuals.
For this reason, the structure tensor [48] was used to depict the local geometry structure of
infrared images. For an original infrared image D, the classic linear structure tensor can be
calculated as follows:

Jρ = Kρ ∗
(
∇Dρ

⊗
∇Dρ

)
=

(
J11 J12
J21 J22

)
=

(
Kρ ∗ I2

x Kρ ∗ Ix Iy
Kρ ∗ Ix Iy Kρ ∗ I2

y

)
(11)

λ1 = 1
2

(
J11 + J22 +

√
(J22 − J11)

2 + 4J12
2
)

λ2 = 1
2

(
J11 + J22 −

√
(J22 − J11)

2 + 4J12
2
) (12)

where Kρ denotes the Gaussian kernel function with variance ρ, ∗ denotes the convolution
operation, ∇ denotes the gradient, and

⊗
denotes the Kronecker product. The difference

between λ1 and λ2 reflects the image area to which the pixel belongs. When the pixel
belongs to the flat region, λ1 ≈ λ2 ≈ 0; when the pixel belongs to the corner region,
λ1 ≥ λ2 ≫ 0; and when the pixel belongs to the edge region, λ1 ≫ λ2 ≈ 0. The local prior
information extracted in RIPT [30] is calculated as follows:

E(x, y) = λ1 − λ2 (13)

where (x, y) represents the pixel position. However, as shown in row 3 of Figure 4, RIPT
only captures the edge structure information of the background, which may result in
background residuals and the loss of targets. Brown et al. [49] proposed the following
corner-strength function to highlight target information:

C(x, y) =
det(ST(x, y))
tr(ST(x, y))

=
λ1λ2

λ1 + λ2
(14)

where ST(·) means the structure tensor, and det(·) and tr(·) represent the determinant
and trace of the matrix, respectively. The PSTNN model [31] utilizes the maximum eigen-
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value as the background weight function, rather than Equation (13), and combines it with
Equation (14) to calculate the prior weight:

Wp(x, y) = C·E (15)
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Figure 4. Comparison of different local structure priors. Row 1 shows original infrared images.
Rows 2 to 6 depict different local prior maps, obtained by Equation (13), RIPT, PSTNN, MFSTPT, and
the proposed method, respectively. Columns (a–d) display the prior weights extracted using different
calculation methods for four infrared image sequences.

Row 4 of Figure 4 shows that the PSTNN suppresses the residual edge effect to
some extent, but there is still room for improvement. In MFSTPT model [40], a weighted
geometric average strategy was developed to integrate edge weighting from Equation (13)
and the corner-point weighting from Equation (14), which can be expressed as follows:

Wc(x, y) = n√Cp·Eq (16)

However, as demonstrated in row 5 of Figure 4, strong edges are still not constrained
effectively, despite the improved acquisition of target information. Based on the above
analyses, we believe that the previous methods do not fully exploit the pixel information
contained in λ1 and λ2. Another problem is that the weight-stretching parameter artificially
set in RIPT and MFSTPT cannot effectively balance the enhancement of the target and
the suppression of the background. The underlying reason is the lack of consideration
of the clutter information content in infrared images across different scenes. Therefore, a
self-adaptive local prior method is proposed to address the above issues. Inspired by the
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Frangi filter [50], we utilize the ratio and the difference of eigenvalues to highlight target
information and suppress background interference:

R(x, y) = |λ1|
|λ2|

β = mean
(

3
√

λ1 − λ2
) (17)

where R(x, y) represents the statistical measure of edges and corner points, and |λ1| > |λ2|.
In edge and corner-point regions, a larger difference between the eigenvalues results in a
higher R-value. In contrast, in flat regions, the similarity between the two eigenvalues leads
to a lower R-value. In addition, the β-value reflects the level of background interference
contained in the original image. In scenes with strong clutter, the β-value is larger. Instead,
as the background clutter decreases, the β-value will also be smaller. This can be used
to adaptively suppress edges and corners. Thus, the final self-adaptive prior weight is
described as:

Ws(x, y) = exp
(
−R2

2β

)
·
(

1 − exp

(
−λ12 + λ22

2c2

))
(18)

where c denotes the half of the maximum of
√

λ12 + λ22. The last row in Figure 4 shows
that the proposed self-adaptive weight effectively suppresses the residual effect of strong
edges and bright corner points, while also highlighting the target information. It can be seen
that the adaptive factor β enhances suppression in scenes with strong clutter, resulting in a
slight target shrinkage, but significantly reduces background residuals compared to other
methods. Then, we construct the spatial–temporal tensor Ws and normalize it as follows:

Ws =
Ws − wmin

wmax − wmin
(19)

where wmax and wmin denote the maximum and minimum values of Ws, respectively. In
order to accelerate the convergence speed and improve the computational efficiency, we
use the reweighted scheme [51] to add a sparse weight:

W k+1
sw =

c∣∣T k
∣∣+ ε

(20)

where c denotes a non-negative constant, ε represents a small positive number preventing
the denominator from being 0, and k is the number of iterations. Considering that self-
adaptive prior weight in Equation (19) can suppress edges and corner points, we obtain
Wrec by taking the reciprocal of the corresponding elements in Ws. Combined with the
sparse weight in Equation (20), we build the final local prior tensor as follows:

W = Wrec ⊙Wsw (21)

where ⊙ represents the Hadamard product.

3.3. Spatial–Temporal Total Variation Regularization

In real-world infrared scenes, heavy noise can be a significant interference, causing
false alarms in target detection. Fortunately, the TV model effectively reduces image
noise while simultaneously preserving the spatial piecewise smoothness. Introduced by
Rudin [52], TV regularization can distinguish between areas with significant variations,
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such as edges and textures, and smooth areas with large amounts of noise. For the matrix
X ∈ RI1×I2 , the TV norm can be mathematically expressed as follows:

∥X∥TV =
I1−1
∑

i=1

I2−1
∑

j=1

( ∣∣Xi+1,j−Xi,j
∣∣+∣∣∣Xi,j+1 − Xi,j

∣∣∣)
+

I1−1
∑

i=1

∣∣∣Xi+1,I2 − Xi,I2

∣∣∣+ I2−1
∑

j=1

∣∣∣XI1,j+1 − X I1,j

∣∣∣ (22)

It can be seen from Equation (22) that the matrix-based TV framework only depicts the
spatial continuity of the infrared targets and ignores the temporal continuity between suc-
cessive frames. For the exploration of temporal coherence and spatio-temporal smoothing
of small targets, the STTV can be obtained:

∥X ∥STTV = ∥DhX∥1 + ∥DvX∥1 + ∥DzX∥1 (23)

DhX = X (i + 1, j, k)−X (i, j, k) (24)

DvX = (X |i, j + 1, k)−X (i, j, k) (25)

DzX = X (i, j, k + 1)−X (i, j, k) (26)

where Dh, Dv, and Dz represent the horizontal, vertical, and temporal difference operators,
respectively. This spatiotemporal form of TV can be seen as an effective regular item,
and it exhibits a degree of resilience against noise while preserving the image details.
Furthermore, it not only emphasizes the spatial smoothness of the local region in the image
but also considers that the target remains temporally consistent among successive frames.

3.4. The Proposed TTALP-TV Model

In tensor robust principal component analysis (TRPCA) problems, the rank function
is a nonconvex objective to solve. Therefore, the approximation of low-rank background
tensor B in Formula (10) is a crucial issue. A recent study [53] shows that employing the
tensor tree-based TRPCA method can measure low-rankness of each mode and reduce
memory requirements. In this article, we leverage the advantages of tensor tree rank and
present the following optimization model:

min
B,T

wTranktree(B) + λ1∥T ∥1

s.t.∥D − B − T ∥F < δ
(27)

where ranktree(B) =
[
k1, · · · , kQ

]T is the tensor tree rank and the weighting vector wT

meets ∑Q
q=1 wq = 1. The direct minimization of tensor tree ranks in Formula (27) is NP-hard.

As such, we can use their matrix nuclear norms as convex surrogates:

min
B,T

Q
∑

q=1
wq

∥∥∥B[q]

∥∥∥
∗
+ λ1∥T ∥1

s.t.∥D − B − T ∥F < δ

(28)

Furthermore, we incorporate the local prior tensor and STTV regularization to obtain
the prior information and suppress background noise, respectively. The proposed TTALP-
TV model is as follows:

min
B,T

Q
∑

q=1
wq

∥∥∥B[q]

∥∥∥
∗
+ λ1∥W ⊙ T ∥1 + λ2∥B∥STTV

s.t.∥D − B − T ∥F < δ

(29)
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where λ2 is a positive regularization parameter.

3.5. Optimization Procedure

The objective function (29) can be solved effectively using the ADMM [54] method. By
introducing four auxiliary variables, X , Z1, Z2, and Z3, we obtain the following model:

min
B,T

Q
∑

q=1
wq

∥∥∥X[q]

∥∥∥
∗
+ λ1∥W ⊙ T ∥1 + λ2(∥Z1∥1 + ∥Z2∥1 + ∥Z3∥1)

s.t.∥D − B − T ∥F < δ,X = B, Z1 = DhB, Z2 = DvB, Z3 = DzB
(30)

Based on the inexact augmented Lagrangian multiplier (IALM) [55], Equation (30) is
written as:

LA(B, T ,X , Z) =
Q
∑

q=1
wq

∥∥∥X[q]

∥∥∥
∗
+ λ1∥W ⊙ T ∥1 + λ2(∥Z1∥1 + ∥Z2∥1 + ∥Z3∥1)

+⟨y1,D −B − T ⟩+ ⟨y2,X −B⟩+ ⟨y3, Z1 − DhB⟩

+⟨y4, Z2 − DvB⟩+ ⟨y5, Z3 − DzB⟩+ µ
2 (∥D − B − T ∥2

F

+∥X − B∥2
F + ∥ Z1 − DhB∥2

F + ∥ Z2 − DvB∥2
F + ∥ Z3 − DzB∥2

F

)
(31)

where y1, y2, y3, y4, and y5 are the Lagrangian multipliers, and µ represents a positive
penalty parameter. Using the ADMM framework, we can divide the Equation (31) into the
following subproblems:

(a) Updating X with other variables being fixed:

X = arg min
X

Q
∑

q=1
wq

∥∥∥X[q]

∥∥∥
∗
+ ⟨y2,X −B⟩+ µ

2 ∥X − B∥2
F

= arg min
X

Q
∑

q=1
wq

∥∥∥X[q]

∥∥∥
∗
+ µ

2

∥∥∥X −
(
B − y2

µ

)∥∥∥2

F

(32)

Let τ =
wq
µ and S = B − y2

µ , Equation (32) can be rewritten as:

X = arg min
X

Q

∑
q=1

τ
∥∥∥X[q]

∥∥∥
∗
+

1
2

∥∥∥X[q] − S[q]

∥∥∥2

F
(33)

For each node Cq ⊂ T, the solution of X[q] can be obtained by the singular value
thresholding (SVT) [56]:

X[q] = SVTτ

(
S[q]

)
= Usthτ

(
∑
)
VH (34)

where sthτ(s) = sgn(s)max(|s| − τ, 0) and H denotes the complex conjugate.
According to the tensor tree structure of X , Uq can be used to represent the up-

dated node value instead of directly updating X[q]. Moreover, after updating the two
successor nodes Cq1 ,Cq2 ⊂ Cq, we can update the transfer tensor Gq to represent Uq for
each interior node Cq ⊂ T, where Gq is obtained by applying SVT to the new tensor
C = S ×q1 Uq1 ×q2 Uq2 . In summary, we can utilize tensor tree decomposition to update X ,
and the solution details are summarized in Algorithm 1.
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Algorithm 1: The updating of X from leaves to roots.

Input: S , τ

for p = 1, · · · , P[
Up, kp

]
= SVTτ

(
S[p]
)

end for
CH−1 = S ×1 U1 ×2 U2 · · · ×P UP
for h = H − 1, · · · , 0 do

for qh = 1, · · · , Qh do
if (the qh node is an interior one)[

Ûqh , k̂qh

]
= SVTτqh

(
C[qh ]

)
Gqh = reshape

(
Ûqh , k̂qh , k̂qh,1 , k̂qh,2

)
end if

end for
Ch−1 = Ch ×1 Û1 ×2 Û2 · · · ×(Qh−Ph) Û(Qh−Ph)

end for
X can be constructed from Gq and Uq
Output: X

(b) Updating B with other variables being fixed:

B = arg min
B

µ
2 (
∥∥∥D −B − T + y1

µ

∥∥∥2

F
+
∥∥∥X −B + y2

µ

∥∥∥2

F

+
∥∥∥ Z1 − DhB + y3

µ

∥∥∥2

F
+
∥∥∥ Z2 − DvB + y4

µ

∥∥∥2

F
+
∥∥∥ Z3 − DzB + y5

µ

∥∥∥2

F
)

(35)

The closed form solution of Equation (35) is expressed as follows:

B = F−1

(
F (L + θ1 + θ2 + θ3)

2 + ∑i∈{h,v,z} F (Di)
HF (Di)

)
(36)

where L = D − T +X + (y1/µ) + (y2/µ), θ1 = DT
h (Z1 + (y3/µ)), θ2 = DT

v (Z2 + (y4/µ)),
and θ3 = DT

z (Z3 + (y5/µ)). F and F−1 represent the fast nFFT operator and the inverse
nFFT operator, respectively.

(c) Updating T with other variables being fixed:

T = arg min
T

λ1∥W ⊙ T ∥1+
µ

2

∥∥∥∥D −B − T +
y1

µ

∥∥∥∥2

F
(37)

Using the element-wise shrinkage approach [57], T is updated by:

T = TH λ1
µ

(
D −B +

y1

µ

)
(38)

where TH(·) denotes the element-wise shrinkage operator.

(d) Updating Z1, Z2, and Z3 with other variables being fixed:

Z1 = arg min
Z1

λ2∥Z1∥1+
µ
2

∥∥∥ Z1 − DhB + y3
µ

∥∥∥2

F

Z2 = arg min
Z2

λ2∥Z2∥1+
µ
2

∥∥∥ Z2 − DvB + y4
µ

∥∥∥2

F

Z3 = arg min
Z3

λ2∥Z3∥1+
µ
2

∥∥∥ Z3 − DzB + y5
µ

∥∥∥2

F

(39)
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The Equation (39) can be solved by the element-wise shrinkage operator:

Z1 = TH λ2
µ

(
DhB − y3

µ

)
Z2 = TH λ2

µ

(
DvB − y4

µ

)
Z3 = TH λ2

µ

(
DzB − y5

µ

) (40)

(e) Updating Lagrangian multipliers y1, y2, y3, y4, and y5 with other variables being fixed:

y1 = y1 + µ(D −B − T )

y2 = y2 + µ(X −B)
y3 = y3 + µ(Z1 − DhB)
y4 = y4 + µ(Z2 − DvB)
y5 = y5 + µ(Z3 − DzB)

(41)

(f) Updating penalty parameter µ by µ = min(ρµ, µmax).

The complete process of the ADMM optimization method is given in Algorithm 2.

Algorithm 2: TTALP-TV algorithm

Input: The spatial–temporal tensor D ∈ Rn1×n2×L, parameters λ1, λ2, µ

Initialize: B0 = D, T 0 = Z0
i = 0, i = 1, 2, 3, y0

i = 0, i = 1, 2, 3, 4, 5, µ0 = 5e − 3, µmax =
1e6, ρ = 1.2, ζ = 1e − 6, maximum iteration step K = 100.
While not converged do
1: Update X k+1 by Algorithm 1
2: Update Bk+1 via Equation (36)
3: Update T k+1 via Equation (38)
4: Update W k+1 via Equation (21)
5: Update Z1

k+1, Z2
k+1, Z3

k+1 via Equation (40)
6: Update Lagrangian multipliers yk+1

i , i = 1, 2, 3, 4, 5 via Equation (41)
7: Update penalty parameter µ via

µ = min(ρµ, µmax)
8: Check the convergence condition

∥D−Bk+1−T k+1∥2
F

∥D∥2
F

≤ ζ

9: Update k = k + 1
End while
Output: Background component B and target component T .

3.6. Steps of Detection Method

Figure 1 elaborates the whole process of the proposed TTALP-TV model, which is
described as follows:

1. Self-adaptive local prior extraction. Given an infrared image, the self-adaptive prior
weight Ws is calculated by Equation (18).

2. Spatial–temporal tensor construction. The spatial–temporal infrared tensor D ∈ Rn1×n2×L

and local prior tensor W ∈ Rn1×n2×L are constructed by stacking consecutive L
frames in chronological order from the original image sequence and the prior weight
map, respectively.

3. Background and target separation. The spatial–temporal infrared tensor D is decom-
posed into background tensor B and target tensor T through Algorithm 2.

Image reconstruction. Contrary to the construction process, the target image fT is
reconstructed from T .
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4. Experimental Results

In this section, we first discuss the datasets used in infrared target detection experi-
ments. Then, we introduce evaluation metrics and analyze the effects of several important
parameters on the TTALP-TV model. Finally, we evaluate the detection ability and ro-
bustness of the proposed algorithm and compare it with eight state-of-the-art methods in
six complex scenes.

4.1. Experiment Data

The dataset used in the experiments consists of six infrared image sequences, including
complex scenes such as sky, sea, clouds, mountains, and buildings. The infrared sequences
1, 3, 4, and 6 are from [58,59]. In order to carry out an objective assessment of TTALP-TV
from diverse scenes, we simulated infrared sequences 2 and 5 using the strategy in [22].
As shown in Figure 5, the images are uniformly scaled to the same size to improve target
visibility. Meanwhile, each small target is marked by a red rectangle and magnified in the
bottom right corner of the image. It can be seen that, in most scenes, the targets occupy a few
pixels and lack shape information and texture features. Due to heavy clutter interference in
complex scenes, it is difficult to distinguish the target from the background. The specific
descriptions of sequences are presented in Table 2. Additionally, the entire experiment
framework was implemented using MATLAB R2020a in Windows 10 based on AMD Ryzen
7 5800H 3.20 GHz CPU with 16GB memory.
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Table 2. Characteristics of the dataset.

Sequence Frames Image Size Target Descriptions Background Descriptions

1 120 256 × 256 Slow-moving and small Ground background with fierce clouds
and noise

2 120 256 × 256 Slow-moving and weak airplane Ground background with sea and islands
3 120 256 × 256 Fast-moving, small and dim Ground background with bright buildings

4 120 256 × 256 Fast-moving, small and
regular shape Ground background with reflective mountains

5 120 256 × 205 Fast-moving, irregularly
shaped aircraft Ground background with reflective clouds

6 120 296 × 237 Fast-moving, small and dim Ground background with multilayer clouds

4.2. Evaluation Metrics and Baselines

We evaluate the detection performance of the TTALP-TV method using three evalua-
tion metrics: 3D receiver operating characteristic (3D ROC) [60], signal-to-clutter ratio gain
(SCRG), and background suppression factor (BSF). The 3D ROC curve consists of three
parameters, including false alarm rate Fa, detection probability Pd, and threshold τ. The Pd
evaluates the target detection capability, while the Fa assesses the background suppression
capability, as defined below:

Pd =
TD
AT

(42)
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where TD and AT denote the number of detected targets and the number of actual
targets, respectively.

Fa =
FD
NP

(43)

where FD and NP denote the number of false detections and the number of image pixels,
respectively. Due to the intersections between ROC curves, we calculate the AUC values
of three 2D ROC curves, AUC(Fa ,Pd)

, AUC(τ,Pd)
, and AUC(τ,Fa), for a more accurate perfor-

mance assessment. The values of AUC(Fa ,Pd)
and AUC(τ,Pd)

range from zero to one, where
values closer to one indicate better target detection capability. Conversely, the value of
AUC(τ,Fa) ranges from one to zero, where the value closer to zero represents a better ability
to suppress background clutter. Therefore, the above three AUC values are combined to
comprehensively evaluate the overall accuracy (OA) and the signal-to-noise probability
ratio (SNPR), which are defined as follows:

AUCOA = AUC(Fa ,Pd)
+ AUC(τ,Pd)

− AUC(τ,Fa) (44)

AUCSNPR =
AUC(τ,Pd)

AUC(τ,Fa)
(45)

where AUCOA ∈ [0, 2] and AUCSNPR ∈ [0,+∞]. Meanwhile, higher AUCOA and AUCSNPR
denote a stronger ability to detect targets and suppress background clutter, respectively.

In addition, the SCRG and BSF can also be used to measure an algorithm’s ability to
enhance the target and suppress the background, respectively. Both SCRG and BSF are
calculated in the neighborhood of the target. As shown in Figure 6, if the target size is a × b,
then (a + 2d)× (b + 2d) denotes the size of the target neighborhood. In the experiments of
this paper, we follow [32] to set d = 65.
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The SCRG represents the SCR of the detection result and the original image, which is
expressed as:

SCRG =
SCRout

SCRin
(46)

where SCR reflects the degree of discrimination between the target and the background
clutter in the image, which can be calculated as:

SCR =

∣∣µ0 − µ1
∣∣

σ1
(47)

where µ0 denotes the target’s average gray value, µ1 denotes that of the target neighborhood,
and σ1 denotes the gray standard deviation of the target neighborhood.
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The BSF can evaluate the background suppression ability, which is defined as follows:

BSF =
σin

σout
(48)

where σout and σin represent the standard deviations of the target neighborhood in the
detection result and the original image, respectively.

4.3. Parameter Analyses

The settings of different parameters in the model have a great impact on the detection
performance. Therefore, this section aims to explore the appropriate parameters for the
TTALP-TV method in sequences 1–6. According to [61], we set λ2 = 0.01. Then, we detail
the effects of L and H on the detection capability of our proposed method.

4.3.1. Adjacent Frames Number L

In the construction of the spatial–temporal tensor, the adjacent frame number L deter-
mines the utilization of temporal domain information. In order to investigate the influence
of different L values on the detection performance of the TTALP-TV model, we adjust L
from 2 to 6 with a step of 1. Figure 7 shows the analysis results of various L values using
the 3D ROC. Increasing the L values can incorporate more temporal information, which
ensures the low-rankness of the spatial–temporal tensor. At the same time, over-large
adjacent frame numbers will lead to redundant and repetitive information, resulting in
high false alarms. Figure 7 shows that L = 3 is the most suitable for the proposed model.
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Figure 7. Three-dimensional ROC curves corresponding to different parameters of L in the
six sequences.

4.3.2. Tuning Parameter H

The compromising parameter λ1 controls the balance between the sparse target and the
low-rank background in the framework. Following [62], we set λ1 = H/

√
max(n1, n2) ∗ L ,

where H is a crucial tuning parameter. We change H from 4 to 12 with a step of 2. The
3D ROC analysis results of H are shown in Figure 8. It can be seen from Figure 8 that
when H values increase, the false alarms decrease, which indicates that H assists in the
suppression of background residuals. Meanwhile, if H is too large (e.g., H = 12), some
necessary information may be lost, resulting in the degradation of detection performance.
Based on the 3D ROC analysis results shown in Figure 8, we set H = 10.
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4.4. Ablation Study

In order to validate the effectiveness of the self-adaptive local prior and STTV regu-
larization in the proposed TTALP-TV method, we conducted an ablation study, as shown
in Figure 9. The TTALP-TV framework consists of three parts: the tensor tree-based spa-
tiotemporal tensor model, the self-adaptive local prior tensor, and STTV regularization.
As illustrated in Figure 9, we compare the 3D ROC analysis results of four versions of
the TTALP-TV method in sequences 1–6: (1) the tensor tree-based spatiotemporal tensor
model (TTSTT), (2) incorporating self-adaptive local prior tensor into the tensor tree-based
spatiotemporal tensor model (TTALP), (3) imposing STTV regularization constraint on the
background component in the tensor tree-based spatiotemporal tensor model (TTSTT-TV),
and (4) integrating the self-adaptive local prior tensor and STTV regularization into the
tensor tree-based spatiotemporal tensor model (TTALP-TV). Figure 9 shows that leveraging
the self-adaptive local prior does in fact improve target detection performance to a cer-
tain extent. Moreover, the STTV regularization constraint on the background helps better
remove background clutter and noise while preserving image details. The results of the
ablation experiments intuitively demonstrate the significance of any single module and
provide guidance for further attempts to improve the optimization model.
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4.5. Noise Robustness Validation of the Proposed TTALP-TV Method

Due to the influence of the real-world environment on the sensor, infrared images
usually contain noise. Therefore, it is essential to evaluate the robustness of the TTALP-
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TV model to noise. To evaluate the noise robustness of TTALP-TV under different noise
intensities, Gaussian white noise of σ = 5 and σ = 15 was added to six scenes, respectively.
The second and fourth rows of Figure 9 show the visual detection results of σ = 5 and
σ = 15, respectively. Figure 10 shows that TTALP-TV can accurately detect targets and
suppress noise of different intensities, demonstrating its robustness to noisy scenes.
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4.6. Comparison with State-of-the-Art Methods

In order to assess the advantages of the TTALP-TV method, we compare it with eight
representative baseline methods. These methods can be categorized into background
consistency-based methods (Top-hat [7]), HVS-based methods (TLLCM [16]), LRSD-based
single-frame detection methods (IPI [22], PSTNN [31], NTFRA [32], and ANLPT [33]) and
LRSD-based sequential-frame detection methods (ASTTV-NTLA [63] and NFTDGSTV [42]).
Table 3 lists the detailed parameter settings of these methods.

Table 3. Detailed parameters of nine methods.

Method Parameters

Top-hat Shape: disk, structure size: 5 × 5.
TLLCM Different filtering window: 3 × 3, 5 × 5, 7 × 7.

IPI Patch size: 50 × 50, step: 10, λ = 1/
√

min(m, n) , ε = 10−7.
PSTNN Patch size: 40 × 40, step: 40, λ = 0.7/

√
min(n1, n2) ∗ n3 , ε = 10−7.

ASTTV-NTLA L = 3, H = 6, λtv = 0.005, λs =
H√

max(M,N)∗L
, λ3 = 100.

NTFRA Patch size: 40 × 40, step: 40, λ = 1/
√

min(n1, n2) ∗ n3 , β = 0.05, µ = 200.
ANLPT Patch size: 50 × 50, step: 50, region: 10, channel: 3, µ = 10−3.

NFTDGSTV L = 3, H = 4, λ1 = 0.01, λ2 = H√
max(M,N)∗L

, λs = 0.001.

Proposed L = 3, H = 10, λ1 = H√
max(n1,n2)∗L

, λ2 = 0.01.

4.6.1. Visual Comparison

Figures 11 and 12 show the detection results of eight compared methods and our
method in six infrared sequences. From Figures 11 and 12, we can see that Top-hat has
a lot of clutter and noise residuals in its detection results. The main reason for this is
that the structure size of the Top-hat is fixed, meaning it cannot adapt to the dynamics
of complex scenes. In contrast, TLLCM suppresses clutter to a certain extent but still has
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background residuals in complex scenes. Compared with the background consistency and
HVS methods, the matrix-based LRSD method IPI contains fewer background residuals,
but its background is gray. As can be seen from Figures 11 and 12, the PSTNN and ANLPT
methods can achieve relatively better target detection performance (e.g., sequences 1, 4,
and 6), but they are basically unable to completely suppress background.
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At the same time, we can see that NTFRA can better preserve targets and suppress
background interference but fails in complex scenes with highlighted line edges (e.g.,
sequences 3–4). These single-frame detection methods effectively utilize spatial infor-
mation to separate the target from the background. However, using only inter-frame
information results in low robustness to various complex scenes with dynamic changes and
heavy clutter. Therefore, many researchers have combined spatial–temporal information
to improve detection ability and remove background interference. It can be seen from
Figures 11 and 12 that ASTTV-NTLA and NFTDGSTV present exceptional target detec-
tion and background suppression abilities in scenes with little clutter interference (e.g.,
sequence 2). However, when faced with complex scenes with high-brightness clutter and
heavy noise (e.g., sequences 3, 4, and 6), their detection performance will degrade signifi-
cantly. In contrast, the proposed TTALP-TV method is not only able to accurately extract
the target and preserve a relatively complete shape, but it can also mostly suppress strong
edges and bright corner-point noise in complex scenes.
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4.6.2. Quantitative Analysis

In addition to the qualitative analysis in Figures 11 and 12, we adopt 3D ROC, AUCOA,
AUCSNPR, SCRG, and BSF, a total of five evaluation metrics, to compare nine methods
quantitatively. Figure 13 shows the 3D ROC curves of all comparison methods in complex
and noisy scenes (e.g., sequences 1–6). In order to clearly depict the differences among
the nine methods, the logarithmic scale is used for the false alarm rate axis. As shown in
Figure 13, the proposed TTALP-TV method is closer to the top-right corner, indicating that
it has superior detection performance. The single-frame detection method ANLPT also
achieves good detection performance in sequence 5. Meanwhile, other sequential-frame
detection methods, ASTTV-NTLA and NFTDGSTV, exhibit performance similar to our
method in sequence 2 and sequence 6, but were not good enough in the rest of the sequences.
To further assess which method has the best performance, we use AUCOA and AUCSNPR
to evaluate target detection ability and background suppression ability, respectively. In
each sequence, the highest value is highlighted in red, and the second highest value is
marked in green. Tables 4 and 5 show that our method achieves the highest AUCOA and
AUCSNPR values.

In Tables 6 and 7, the SCRG and BSF of nine methods in six sequences are displayed,
with the highest and second highest values of SCRG and BSF marked in red and green,
respectively. The results show that the ANLPT model achieves the highest SCRG values
in sequence 5. On the other hand, the SCRG and BSF values of our model surpass other
methods for more complex scenes (e.g., sequences 1–4 and 6). In summary, the above quan-
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titative analyses demonstrate the effectiveness of our algorithm in both target enhancement
and background suppression, particularly in complex scenes.

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 13. Three-dimensional ROC curves of nine methods in sequences 1–6. 

Table 4. AUC୓୅ and AUCୗ୒୔ୖ of nine methods in sequences 1–3. 

Method Sequence 1 Sequence 2 Sequence 3 𝐀𝐔𝐂𝐎𝐀 𝐀𝐔𝐂𝐒𝐍𝐏𝐑 𝐀𝐔𝐂𝐎𝐀 𝐀𝐔𝐂𝐒𝐍𝐏𝐑 𝐀𝐔𝐂𝐎𝐀 𝐀𝐔𝐂𝐒𝐍𝐏𝐑 
Top-hat 1.9279 13.9053 1.9722 36.1500 1.6818 9.5483 
TLLCM 1.8827 115.6874 1.9228 158.0823 1.3038 39.1759 

IPI 1.8275 5.8048 1.9445 18.0709 1.7117 3.4998 
PSTNN 1.9945 187.9084 1.9943 180.1801 0.8804 39.4834 

ASTTV-NTLA 1.9943 182.1271 1.9947 197.3122 1.8817 8.4660 
NTFRA 1.9944 186.0783 1.9947 195.7341 0.4936 0.6221 
ANLPT 1.9946 193.5168 1.9943 181.1781 1.9942 178.3936 

NFTDGSTV 1.8983 10.8409 1.9762 42.2723 1.9065 12.3141 
Proposed 1.9948 198.0273 1.9948 198.0127 1.9944 183.0405 

Table 5. AUC୓୅ and AUCୗ୒୔ୖ of nine methods in sequences 4–6. 

Method Sequence 4 Sequence 5 Sequence 6 𝐀𝐔𝐂𝐎𝐀 𝐀𝐔𝐂𝐒𝐍𝐏𝐑 𝐀𝐔𝐂𝐎𝐀 𝐀𝐔𝐂𝐒𝐍𝐏𝐑 𝐀𝐔𝐂𝐎𝐀 𝐀𝐔𝐂𝐒𝐍𝐏𝐑 
Top-hat 1.9456 18.4296 1.8556 31.0480 1.8923 14.3259 
TLLCM 1.8404 98.9758 1.4616 74.5013 1.4474 77.1831 

IPI 1.8934 9.3979 1.7779 4.8744 1.5130 2.0540 
PSTNN 1.9936 161.9100 1.1649 81.6425 1.7827 162.4838 

ASTTV-NTLA 1.8760 8.0798 1.9490 22.9404 1.9047 10.5164 
NTFRA 1.8710 47.7343 1.0384 37.7261 0.8706 45.0366 
ANLPT 1.9944 184.8268 1.9947 196.1699 1.9947 196.9744 

NFTDGSTV 1.9435 17.7605 1.7477 5.9553 1.7946 4.8739 
Proposed 1.9948 198.0272 1.9947 198.0339 1.9948 198.0076 

In Tables 6 and 7, the SCRG and BSF of nine methods in six sequences are displayed, 
with the highest and second highest values of SCRG and BSF marked in red and green, 
respectively. The results show that the ANLPT model achieves the highest SCRG values 
in sequence 5. On the other hand, the SCRG and BSF values of our model surpass other 
methods for more complex scenes (e.g., sequences 1–4 and 6). In summary, the above 
quantitative analyses demonstrate the effectiveness of our algorithm in both target en-
hancement and background suppression, particularly in complex scenes. 

  

Figure 13. Three-dimensional ROC curves of nine methods in sequences 1–6.

Table 4. AUCOA and AUCSNPR of nine methods in sequences 1–3.

Method
Sequence 1 Sequence 2 Sequence 3

AUCOA AUCSNPR AUCOA AUCSNPR AUCOA AUCSNPR

Top-hat 1.9279 13.9053 1.9722 36.1500 1.6818 9.5483
TLLCM 1.8827 115.6874 1.9228 158.0823 1.3038 39.1759

IPI 1.8275 5.8048 1.9445 18.0709 1.7117 3.4998
PSTNN 1.9945 187.9084 1.9943 180.1801 0.8804 39.4834

ASTTV-NTLA 1.9943 182.1271 1.9947 197.3122 1.8817 8.4660
NTFRA 1.9944 186.0783 1.9947 195.7341 0.4936 0.6221
ANLPT 1.9946 193.5168 1.9943 181.1781 1.9942 178.3936

NFTDGSTV 1.8983 10.8409 1.9762 42.2723 1.9065 12.3141
Proposed 1.9948 198.0273 1.9948 198.0127 1.9944 183.0405

Table 5. AUCOA and AUCSNPR of nine methods in sequences 4–6.

Method
Sequence 4 Sequence 5 Sequence 6

AUCOA AUCSNPR AUCOA AUCSNPR AUCOA AUCSNPR

Top-hat 1.9456 18.4296 1.8556 31.0480 1.8923 14.3259
TLLCM 1.8404 98.9758 1.4616 74.5013 1.4474 77.1831

IPI 1.8934 9.3979 1.7779 4.8744 1.5130 2.0540
PSTNN 1.9936 161.9100 1.1649 81.6425 1.7827 162.4838

ASTTV-NTLA 1.8760 8.0798 1.9490 22.9404 1.9047 10.5164
NTFRA 1.8710 47.7343 1.0384 37.7261 0.8706 45.0366
ANLPT 1.9944 184.8268 1.9947 196.1699 1.9947 196.9744

NFTDGSTV 1.9435 17.7605 1.7477 5.9553 1.7946 4.8739
Proposed 1.9948 198.0272 1.9947 198.0339 1.9948 198.0076
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Table 6. SCRG and BSF of nine methods in sequences 1–3.

Method
Sequence 1 Sequence 2 Sequence 3

SCRG BSF SCRG BSF SCRG BSF

Top-hat 17.87 1.46 1.48 1.17 0.86 0.89
TLLCM 99.67 4.40 2.85 1.97 5.17 4.08

IPI 131.12 12.07 2.49 2.12 7.57 4.79
PSTNN 114.29 7.98 2.59 1.98 1.15 3.24

ASTTV-NTLA 219.24 15.33 2.63 2.52 9.01 4.63
NTFRA 81.11 6.20 2.34 2.27 0.16 1.56
ANLPT 178.28 11.19 2.59 1.95 9.37 4.23

NFTDGSTV 174.78 14.05 2.78 2.78 13.47 6.65
Proposed 235.51 17.83 3.56 3.46 19.51 8.86

Table 7. SCRG and BSF of nine methods in sequences 4–6.

Method
Sequence 4 Sequence 5 Sequence 6

SCRG BSF SCRG BSF SCRG BSF

Top-hat 7.79 3.66 14.00 4.29 9.63 2.17
TLLCM 20.94 6.33 32.75 10.46 27.26 6.69

IPI 19.83 11.11 26.56 11.49 25.01 7.94
PSTNN 25.85 12.63 29.74 17.10 62.06 10.56

ASTTV-NTLA 18.18 10.45 36.50 15.77 71.84 14.40
NTFRA 20.50 10.64 23.89 17.50 13.06 9.49
ANLPT 22.97 10.82 41.95 16.01 77.48 14.15

NFTDGSTV 23.18 12.18 29.53 12.56 55.45 12.09
Proposed 27.39 13.88 40.79 17.83 96.11 18.30

4.6.3. Running Time

In addition to the above evaluation metrics, computational efficiency is also a crucial
factor in infrared target detection algorithms. Table 8 presents the average running time of
all comparison methods on six sequences (per frame). It should be noted that the image
size of sequences 1–4 is 256 × 256, and the image size of sequences 5–6 is 256 × 205 and
296 × 237, respectively. In general, the larger image size results in the longer running
time. Based on Table 8, we can find that Top-hat has the shortest time cost. This is because
Top-hat adopts a simple model architecture. It is worth noting that tensor-based algorithms
are significantly quicker than the matrix-based IPI algorithm. Among the tensor-based
methods, the running time of sequential-frame detection methods (e.g., ASTTV-NTLA,
NFTDGSTV) is longer than that of single-frame detection methods (e.g., PSTNN, NTFRA,
ANLPT). This is mainly because sequential-frame detection methods require more time to
process the temporal domain information. From Table 8, it can be seen that the proposed
method has a longer running time than ASTTV-NTLA and NFTDGSTV. This is because
computing the self-adaptive prior in TTALP-TV increases costs in terms of time. Based on
the qualitative and quantitative results shown in Figures 11–13 and Tables 4–7, it can be
concluded that our method has better detection performance than the compared methods.
Therefore, the extra running time of our method is acceptable.

Table 8. Running time(s) of the nine methods.

Method Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Sequence 6

Top-hat 0.0958 0.0989 0.1008 0.1013 0.1098 0.1011
TLLCM 1.1209 1.0979 1.1193 1.1235 0.8603 1.2962

IPI 5.1073 4.7903 5.1192 5.8094 3.9534 5.9438
PSTNN 0.3605 0.2402 0.3105 0.3168 0.2845 0.2813

ASTTV-NTLA 2.0889 2.1002 2.0552 2.1045 1.4487 2.2719
NTFRA 1.4493 1.3904 1.4145 1.4965 1.2829 1.6751
ANLPT 1.5682 1.5437 1.4939 1.5961 1.2954 1.5260

NFTDGSTV 1.9258 2.0223 1.9534 1.8297 1.8025 2.4437
Proposed 2.3115 2.2845 2.3740 2.3182 1.7406 2.5226
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5. Conclusions

In this article, the TTALP-TV model is proposed for infrared small target detection in
complex scenes. Based on the theorem that the tensor tree decomposition can exploit the
data structure in a more balanced strategy, we introduce tensor tree rank to obtain more
accurate background estimation. It reduces storage costs and retains spatial and temporal
correlation through a hierarchical method. In addition, a novel local prior weight is pro-
posed for adaptively assigning weights to targets, which helps to better distinguish targets
from similar objects. Meanwhile, STTV is used as a joint regularization term to remove
noise while preserving image details. Therefore, the separation of target and background is
converted into an optimization problem. Finally, we provide an efficient ADMM-based
framework for solving the proposed TTALP-TV model. Extensive experiments demonstrate
that the proposed algorithm not only can accurately detect the target but also effectively
suppresses background clutter and noise in various complex scenes. However, the real-time
performance of our method still needs to be improved due to the prior weight calculation
in the model. In the future, our work will focus on establishing more efficient mechanisms
to further simplify the calculation and improve detection efficiency.
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