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Abstract: A massive bloom of the raphidophyte Heterosigma akashiwo occurred in summer 2022 in
San Francisco Bay, causing widespread ecological impacts including events of low dissolved oxygen
and mass fish kills. The rapidly evolving bloom required equally rapid management response,
leading to the use of near-real-time image analysis of chlorophyll from the Ocean and Land Colour
Instrument (OLCI) aboard Sentinel-3. Standard algorithms failed to adequately capture the bloom,
signifying a need to refine a two-band algorithm developed for coastal and inland waters that relates
the red-edge part of the remote sensing reflectance spectrum to chlorophyll. While the bloom was
the initial motivation for optimizing this algorithm, an extensive dataset of in-water validation
measurements from both bloom and non-bloom periods was used to evaluate performance over
a range of concentrations and community composition. The modified red-edge algorithm with a
simplified atmospheric correction scheme outperformed existing standard products across diverse
conditions, and given the modest computational requirements, was found suitable for operational
use and near-real-time product generation. The final version of the algorithm successfully minimizes
error for non-bloom periods when chlorophyll a is typically <30 mg m−3, while also capturing bloom
periods of >100 mg m−3 chlorophyll a.

Keywords: remote sensing; chlorophyll; San Francisco Bay; OLCI; Heterosigma; harmful algal boom

1. Introduction

San Francisco Bay (Bay) is the largest estuary system on the west coast of North
America, draining about 40% of California’s land area [1], while the surrounding population
of ~7 million people has the potential to put considerable stress on the ecosystem through
nutrient pollution [2]. As a result, monitoring water quality is a vital aspect of Bay-wide
management. One emerging concern is the proliferation of potentially harmful algal blooms
(HABs). HABs have great potential to impact estuaries such as the Bay, because estuarine
systems are both highly populated by humans and highly productive. Estuaries provide
numerous valuable ecosystem functions and are sites of intensive aquaculture, subsistence,
and commercial fisheries, all of which are threatened by HABs [3].

As described in [2], nutrient over-enrichment has led to ecosystem impairments in
the majority of the world’s estuaries [4–7]. This impairment often includes the presence
or expansion of HAB organisms responding directly to nutrient enrichment [8]. The Bay
has largely been resistant to proliferation of HABs, in part due to vigorous tidal mixing
and flushing and light limitation that precludes biomass accumulation [2,9]. Despite the
historical resistance to large HAB events in the Bay, multiple HAB threats exist. In particu-
lar, the dinoflagellates Heterocapsa (fish-killing; [10]), and Akashiwo sanguinea (harmful to
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birds; [3,11]) have on occasion produced expansive blooms in the Bay [12]. The raphido-
phyte Heterosigma akashiwo (fish-killing; exact toxic mechanism is presently unknown; [13])
is also present in the Bay but has not bloomed significantly since summer 2002 [14,15].
Heterosigma akashiwo re-emerged in the Bay in summer 2022, and again in summer 2023,
suggesting that recent conditions may be favoring more frequent blooms.

1.1. Remote Sensing of Coastal Waters

Several water quality indicators including turbidity, dissolved organic matter [16],
and chlorophyll a (chla) directly affect the optical properties of water, and can therefore be
estimated using satellites. However, satellite remote sensing has thus far generally been
under-utilized by resource managers in the Bay region. This is due in part to the optical
complexity of estuarine waters and the need for sensors with high spectral and spatial
resolution to adequately disentangle the remote sensing signal and achieve quantifiable
results (e.g., [16,17]). The most commonly used algorithms for retrieval of chla, including
standard ocean color (OC) products from the National Aeronautics and Space Admin-
istration (NASA) and the European Space Agency (ESA), generally rely on the ratio of
blue to green reflectance spectrum and were developed for the open ocean [18]. Coastal
waters exhibit unique challenges for these algorithms because of elevated levels of colored
dissolved organic matter (CDOM) that absorbs strongly in blue reflectance bands but does
not necessarily covary with chla. Additionally, elevated concentrations of suspended solids
in coastal waters tend to elevate reflectance in all wavelengths, but particularly longer
wavelengths, like green and red bands.

To address these issues for coastal and inland waters, chla algorithms of varying com-
plexity (e.g., [17,19–22]) have been developed, and several have been proposed specifically
for the identification of harmful algal blooms (e.g., [23–26]). A recent analysis [22] directly
compared multiple models grouped loosely into blue-green band ratios, such as the stan-
dard OC products from NASA and ESA and Red–Near-Infrared approaches from various
authors. That analysis demonstrated that blue-green models perform poorly in turbid (e.g.,
coastal) waters, while the family of “red-edge” algorithms exhibits similar performance
after tuning with in situ matchups.

1.2. Red-Edge Algorithms

One particularly effective method for retrieving chla in coastal waters relies on the
use of the red-edge feature, a peak in reflectance occurring around 700 nm, which is
insensitive to CDOM and slightly sensitive to suspended solids [20,21]. The red part of the
visible spectrum is also less sensitive to issues with atmospheric correction, making these
algorithms easier to implement operationally while reducing potential sources of error. A
significant disadvantage is that water strongly absorbs in the red and near-infrared part of
the spectrum, so in the absence of significant chla biomass, there can be very little signal,
resulting in poor performance below about 1 mg m−3 chla [20].

With this background in mind, we target one specific algorithm, referred to as Red
Edge 10 (RE10), proposed by [20] and modified for Chesapeake Bay [21] to adapt for use in
the Bay. This algorithm was chosen because it can be adjusted for the optical properties of
specific blooms, it is computationally inexpensive, and it is amenable to operational use [21].
For comparison, we provide results from the standard OC-type algorithms [18], and also
evaluate three atmospheric correction methods commonly used for operational products:
the Case 2 Regional CoastColour (C2RCC) atmospheric correction, as implemented in the
Sentinel Applications Platform (SNAP) toolbox, the standard neural network approach
used by ESA, and a simple black pixel assumption [27–29]. We utilize ocean color data
from the Ocean and Land Color Instrument (OLCI) aboard the Sentinel-3 series (S3A and
S3B) of satellites. OLCI has reasonable spatial and temporal resolution (nominally 300 m,
~daily imagery from S3A and S3B), good signal-to-noise ratios, and appropriate bands
for red-edge algorithms. Our primary goals are to demonstrate the efficacy of a modified
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RE10 algorithm tuned for the Bay and to highlight potential for operational use to support
management decisions.

2. Materials and Methods
2.1. Study Area

The Bay can be simplified into a series of connected study areas: North Bay, comprising
San Pablo and Suisun Bays to the north, Central Bay, which provides direct connection to
the Pacific Ocean through the Golden Gate, and South Bay (Figure 1). The Bay is connected
to the Sacramento–San Joaquin Delta (Delta) to the northeast, and the Pacific Ocean to
the west. North Bay is characterized by a strong salinity gradient, and river water is the
primary regulator of bay-wide salinity [1]. North Bay is river-dominated, with salinities
ranging from 0 to 15, while South Bay is a marine lagoon, with salinities ranging from 5 to
35. North Bay also tends to have the most riverine-derived suspended sediment.
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Figure 1. Map of the study site, showing San Francisco Bay (Bay) and the three major basins as
defined in the text. Major U.S. Geological Survey (USGS) water quality monitoring stations are shown
as filled circles, while USGS underway mapping data are shown as blue segments. The direction of
the upstream location Sacramento–San Joaquin Delta is indicated by the arrow labeled “Delta”.

The North, Central, and South Bay regions can be approximately defined by the
location of bridges crossing the Bay; North Bay is the region of the Bay north of the
Richmond Bridge, Central Bay is the region between the Richmond and Bay Bridges, and
South Bay is the region south of the Bay Bridge. The Bay overall is a shallow wetland
system, with most of the Bay being less than 3 m deep, except for a dredged shipping
channel which runs through the middle of the Bay from north to south, reaching depths
greater than 10 m. Based on field observations, microscopic identification, and remote
sensing imagery, the onset of the 2022 H. akashiwo bloom occurred in Central Bay and
spread into South and North Bay.

2.2. Data Overview

To evaluate whether remote sensing could provide reasonable estimates of chla during
extreme events in an operational context, we focus on the H. akashiwo bloom that occurred
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from about August to September 2022. Satellite data were obtained from the European
Space Agency as full-resolution L1A (no atmospheric correction) or L2 (atmospherically cor-
rected, chla-derived) data products and processed in SNAP version 8.0 (see Supplementary
Table S1). The ground-based data used for validation and algorithm tuning included data
from discrete samples collected at the stations indicated in Figure 1, and high-resolution un-
derway mapping data from the U.S. Geological Survey (USGS) collected for June, August,
and September 2021, and July, August, and September 2022 [30,31].

2.3. Model Tuning Data

High-resolution mapping data include continuous (1 hz) underway chlorophyll fluo-
rescence (fChl; YSI EXO2) collected from near the surface (~1 m depth) through a pressure-
compensated manifold [26]. The in situ fChl measurements were median-filtered (20 s) and
compared to results from discrete laboratory measurements of >0.7 micron chla (collected
from ~1 m depth with a submerged centrifugal pump; ref. [31]) (Supplementary Figure S1;
Supplementary Table S2). High-resolution mapping data were further median-binned to
300 m spatial resolution, and the corresponding point location to the satellite overpass
was used for spatial matchups with a ±15 min window applied. Pixels overlapping land
in the satellite imagery were discarded, as well as pixels with Rayleigh-corrected top-of-
atmosphere (TOA) reflectance (ρ, dimensionless) >0.5, indicative of pixels too bright to be
water (e.g., physical structures). A total of 426 potential matchups from 2021–2022 were
used in this analysis (see Supplementary Table S3). For any individual algorithm, some
matchup points were removed due to various failures, typically related to atmospheric
correction (see Supplementary Figure S2).

2.4. Model Validation Data

Water quality measurements used for qualitative model validation included fChl
collected at regular point stations at 1 m depth for the USGS water quality cruises, corrected
with discrete chla [32]. Quality control data from the USGS are available for public use [32].

2.5. Chla Algorithms

Three atmospheric correction schemes and four chla algorithms were evaluated. For
the atmospheric correction, the standard ESA processing was used for Level 2 water
products (OL_2_WFR), which uses a neural network approach as part of the “Alternative
Atmospheric Correction”. Level 1 files (OL_1_EFR) for the same satellite overpasses
were separately processed using the Case 2 Regional CoastColour (C2RCC) atmospheric
correction as implemented in the Sentinel SNAP toolbox. SNAP was also used to provide
Rayleigh-corrected TOA reflectances (ρ, dimensionless) for bands at 665, 708.75, and 885 nm
from the C2RCC-processed imagery. The ρ(885) values were subtracted from ρ(665) and
ρ(708.75) prior to use in the red-edge algorithms described below. Chla was extracted
from ESA OL_2_WFR standard products using the OC4Me maximum band ratio semi-
analytical algorithm [33], and from ESA OL_1_EFR files using the C2RCC neural network-
derived chla [28]. Variations of the red-edge algorithms were used to estimate chla with the
reflectance data from the C2RCC processor.

For the red-edge algorithms, following [20], we started with the following equation:

[chla] = [35.75 × R2 − 19.30]1.124 (1)

where R2 is the ratio of dimensionless water reflectance (λ2/λ1), using the red bands
λ1 = 665 nm and λ2 = 708.75 nm, and the reflectances are based on the TOA, dark-pixel
corrected data. We refer to this original formulation as RE10.

Wynne et al. [21] adjusted RE10 by treating the offset correction (19.3 in RE10) as a
tunable parameter and proposed 14.30 as optimal for Chesapeake Bay:

[chla] = [35.75 × R2 − 14.30]1.124 (2)
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We refer to this version of the algorithm as RE22. For this analysis, we treated
the offset as a tunable parameter, and also considered the exponential term (1.124 in
Equations (1) and (2)) as tunable based on the theoretical description provide by [20]. In
the original formulation, the power function was derived from the relationship between
the phytoplankton-specific absorption coefficient, a*ph (m2(mg chl)−1), and the measured
chla concentration (mg m−3). Those authors noted that the RE10 algorithm is sensitive to
a*ph, and used representative spectra from various algal functional groups to derive the
exponential term.

We directly measured a*ph using standard methods [34] for H. akashiwo cultures that
were isolated from the bloom in 2022 (Figure 2). Lower a*ph values result in a proportionally
higher exponential term. We therefore allowed the exponential to vary up to a value of 1.375.
For the final algorithm, based on the optimization of multiple statistical criteria, we chose
a switching version of the red-edge algorithm that applies different tuning parameters to
chla <30 mg m−3 and >30 mg m−3, with a smoothing function to avoid a discontinuous
transition when 28 < chla < 32 mg m−3:

if [RE10 chla] < 28, [chla] = [35.75 × R2 − 20.15]1.124

else if [RE10 chla] > 32, [chla] = [35.75 × R2 − 20.15]1.375

else [chla] = ([35.75 × R2 − 20.15]1.124 + [35.75 × R2 − 20.15]1.375)/2 (3)

We refer to this algorithm as red-edge-San Francisco Bay (RE-SFB).
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2.6. Algorithm Performance

The accuracy of each tested algorithm was evaluated by calculating a series of com-
monly used statistical methods. These include the coefficient of determination (R2) for a
linear fit, which also provides the slope and intercept for the relationship, plus five other
performance parameters. The other methods are the root mean square error (RMSE), the
mean absolute error (MAE), the mean bias (MBIAS), the median absolute error (MedAE),
and the median bias (MedBIAS). These methods were selected following recommendations
outlined by [35] to evaluate satellite and in situ matchups. As noted by [35], MAE is
preferable to RMSE, as MAE is less sensitive to the distribution of error magnitudes and
sample size; we report RMSE primarily for comparison with previously published methods.
The MedAE and MedBIAS capture the typical error, while the MAE and MBIAS indicate
whether a method has outlier errors.

The RMSE follows standard statistical formulation, while the MAE and MBIAS were
derived following Seegers et al. 2018 [35]:

RMSE =

[
1
N ∑N

i=1 (Xi − Yi)
2
] 1

2
(4)

MAE = 10[
1
N ∑N

i=1 |(log10(Xi)−(log10(Yi)|] (5)

MBIAS = 10[
1
N ∑N

i=1((log10(Xi)−(log10(Yi))] (6)

where X and Y are the fitted and independent variables, respectively (i.e., the derived chla
and the field validation chla values). MedBIAS and MedAE were calculated using the same
equations as for MBIAS and MAE, with the substitution of median values for mean values.
Since the RE-SFB algorithm includes a 2-step fit, statistics were calculated for the ranges
0–30 mg m−3 and the full chla datasets.

3. Results
3.1. Field chla and Spectral Absorption Data

The H. akashiwo bloom resulted in considerably higher chla levels than typically ob-
served in SFB, which led to the development of the RE-SFB algorithm. Figure 2 provides
log-transformed histogram distributions of data from 2021, when there were no blooms,
and 2022, during the anomalous bloom event.

The data from 2022 show a clear bimodal distribution with “typical” chla
values < 30 mg m−3, similar to 2021, and strongly elevated chla concentrations associ-
ated with the bloom, exceeding 280 mg m−3 in surface waters. A value of 30 mg m−3

was therefore chosen as the breakpoint in the RE-SFB algorithm, allowing tuning for the
unusually high bloom concentrations separate from the more typical chla concentrations
recorded in the region.

The breakpoint (Equation (3)) allows tuning of the algorithm for high biomass that was
dominated by a single species during these events. Gilerson et al. [20] optimized RE10 by
adjusting the exponential term by ~6.5% from empirically fit data and provided confidence
intervals that result in ~50% variability at high (>10 mg m−3) chla concentrations. Those
authors noted that the exponential term is sensitive to the chlorophyll-specific absorption
(a*ph) of the dominant biomass. Figure 3 shows the a*ph spectra from the 2022 H. akashiwo
bloom versus the spectra used in the original RE10 algorithm (refer to [20] Figure 9 for
more details). H. akashiwo cultures exhibited much lower a*ph (675) absorption, which
would result in a proportionally higher exponential term when fitted to those data. We
therefore used the published exponential term from RE10 below the transition, and the
optimized exponential term for chla > 30 mg m−3.
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Figure 3. Specific absorption coefficient spectra of cryptophytes (black), diatoms (red), and green
algae (green) compared to the raphidophyte H. akashiwo (blue), the species that bloomed in the
Bay in 2022. The absorption for H. akashiwo beyond 750 nm was zero or negative, resulting in a
discontinuous line.

3.2. Matchup between Field chla and OC4Me, RE10, RE22, RE-SFB

The matchups between field data (2021–2022) for the Bay and previously published
algorithms are shown in Figure 4 (observed versus modeled data) and Figure 5 (quantile–
quantile plots of the same data). Three of the algorithms, OC4Me, C2RCC, and RE10,
exhibit saturation at high chla concentrations. RE22 is better but tends to underestimate
values higher than ~30 mg m−3 chla. OC4Me shows the least coherence (more random
distribution about the 1:1 line) compared to the other algorithms.

The quantile–quantile plots (Figure 5) present the data with observed and modeled
data sorted from lowest to highest values. These plots provide a graphical representation
of the fidelity of the satellite algorithms across the range of observed chla. Values falling
below the 1:1 line represent underestimates, while values above the 1:1 line represent
overestimates. This graphical representation highlights the saturation of OC4Me, C2RCC,
and RE10, i.e., above a certain concentration, the data flatline. RE22 and C2RCC show the
best performance with good coherence (close to the 1:1 line) but with overestimates at low
concentrations and underestimates at high concentrations for RE22. C2RCC is robust at
low concentrations (up to ~10 mg m−3 chla) but underestimates high concentrations, while
OC4Me consistently underestimates chla across the range of observed values, and RE10 is
reasonably accurate (but offset high) up to about 30 mg m−3 chla.
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Figure 6 provides the same plots for the optimized RE-SFB algorithm. Compared
to the other algorithms, the fit is qualitatively better, with no saturation at high chla and
with the closest correspondence to the 1:1 line for the quantile–quantile plots. There is
slight underestimation at the lowest chla values and slight to moderate overestimation for
values >30 mg m−3.
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3.3. Error Metrics for the Algorithms

Summary statistics (described in Section 2.5) are provided in Tables 1–3 for each
algorithm, with Table 1 including the full dataset, Table 2 using data up to 30 mg m−3,
and Table 3 using data greater than 30 mg m−3. For the full dataset, RE-SFB consistently
outperforms the other algorithms, with low MBIAS and MedBIAS (values close to 1.0).
The median bias describes the central tendency of the data, while the mean bias describes
whether matchups with large errors are unevenly distributed. The MAE and MedAE
provide metrics of overall algorithm performance (MAE for the full range, MedAE for
typical chla concentrations). The MAE and MedAE can be interpreted as approximately the
percent error associated with a particular algorithm; for example, the value of MAE = 1.469
for RE-SFB (Table 1) implies that a typical matchup has ~46.9% error when all matchups
are considered.
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Table 1. Summary statistics for the five algorithms plotted in Figures 4–6 using the full dataset.

Algorithm n * R2 Slope RMSE MAE MBIAS MedAE MedBIAS

OC4Me 415 0.615 0.654 0.370 2.235 1.707 2.127 1.840
C2RCC 351 −0.003 −0.012 0.544 3.314 0.870 3.421 1.266

RE10 426 0.319 1.786 0.425 2.316 1.843 2.301 2.084
RE22 426 0.380 1.418 0.381 2.136 1.488 2.074 1.799

RE-SFB 425 0.891 0.865 0.203 1.469 0.964 1.398 0.991

* Variable n is a result of (typically) atmospheric correction failure.

Table 2. Summary statistics for the five algorithms plotted in Figures 4–6 using the data < 30 mg m−3.

Algorithm n * R2 Slope RMSE MAE MBIAS MedAE MedBIAS

OC4Me 354 0.019 0.171 0.370 1.934 1.450 1.760 1.760
C2RCC 257 0.001 0.082 0.544 2.815 1.026 2.534 2.534

RE10 359 0.350 0.385 0.425 2.310 1.998 2.408 2.408
RE22 359 0.477 0.390 0.381 2.111 1.636 2.106 2.106

RE-SFB 359 0.489 0.841 0.197 1.460 0.963 1.395 0.927

* Variable n is a result of (typically) atmospheric correction failure.

Table 3. Summary statistics for the five algorithms plotted in Figures 4–6 using the data > 30 mg m−3.

Algorithm n * R2 Slope RMSE MAE MBIAS MedAE MedBIAS

OC4Me 61 0.001 0.026 0.984 7.324 0.155 6.470 0.155
C2RCC 94 0.568 0.077 0.666 3.972 0.297 4.702 0.213

RE10 67 0.625 0.067 0.549 3.138 0.432 3.323 0.308
RE22 67 0.771 0.335 0.390 2.172 0.569 2.350 0.458

RE-SFB 66 0.801 0.588 0.233 1.548 1.178 1.412 1.012

* Variable n is a result of (typically) atmospheric correction failure.

An algorithm used operationally should show good performance during typical
(non-bloom) conditions as well as during bloom conditions. Table 2 shows that RE-SFB
outperforms the other algorithms for this dataset over the typical range (Figure 2) of
<30 mg m−3 chla. MBIAS and MedBIAS are close to unity, while the overall fit (MAE)
improves slightly compared to the full dataset (Table 1).

Table 3 again shows the best performance at high chla using RE-SFB, with considerably
improved RMSE and bias compared to the other algorithms. Overall, the error metrics
provide quantitative evaluation of what can be observed qualitatively in Figures 4–6. The
unoptimized algorithms suffer from saturation at high chla, and both over- and underesti-
mation across the full range of values. RE-SFB minimizes overall error and performs well
at both moderate and elevated chla. Further improvements could be made to optimize any
specific subset of the error metrics, but we elected to generally optimize RE-SFB so that it is
not over-fitted to a specific bloom event.

3.4. Spatial Distribution of the Bloom

Figure 7 provides an example of the spatial variability of the bloom, as observed
using RE22 and RE-SFB. The differences in spatial patterns are consistent with algorithm
performance, i.e., RE-SFB reduces chla relative to RE10 and RE22 below 30 mg m−3, while
better representing extreme bloom concentrations for values > 30 mg m−3.
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4. Discussion

Development of an accurate chla algorithm for San Francisco Bay is a critical require-
ment for event response to unusual bloom events, such as the H. akashiwo bloom of summer
2022, and routine monitoring of non-bloom conditions. More broadly, chla is commonly
used to assess potential impairment of the system [2], and satellite imagery is routinely
used for monitoring and assessment of other large estuaries (e.g., [36–39]). Given the
optical complexity of estuaries, it is perhaps not surprising that red-edge algorithms gen-
erally outperform MBR algorithms such as OC4Me, which are optimized for the global
oceans [18]. One caution in using the red-edge family of algorithms is that they perform
poorly below chla concentrations of ~1 mg m−3 chla [21]. The lowest observed chla value
used for this analysis was 2.73 mg m−3, so no potential matchups were removed, but the
RE-SFB algorithm does show increasing bias at low chla levels (Figure 6).

A second potential bias in RE-SFB is that red-edge algorithms are sensitive to the
specific chla absorption term (a*ph). Gilerson 2010 [20] and Wynne et al. 2023 [21] used
a fixed exponential term that was generally optimized for coastal organisms, while RE-
SFB adjusted that term specifically for the H. akashiwo bloom. This may result in non-
optimal performance if large blooms of other organisms occur in the future (e.g., Akashiwo
sanguinea, [12]), although published absorption spectra suggest that A. sanguinea exhibits
similar a*ph(670) as H. akashiwo [40]. This potential bias is somewhat mitigated with the
use of a two-step algorithm, as the values for chla < 30 mg m−3 are not optimized to a
specific organism.

A major difference between OC4Me, C2RCC, and the red-edge algorithms was the
atmospheric correction. The standard ESA processing for OC4Me uses a neural network
for the atmospheric correction but then switches to the standard MBR algorithm to derive
chla (there is also a neural network-derived chla product which was not evaluated). C2RCC
is different in that both the atmospheric correction and derived chla product are based on
neural networks. Past evaluations of atmospheric correction schemes have demonstrated
C2RCC to perform well in optically complex coastal waters [41], as well as in San Francisco
Bay [42]. It was therefore surprising that it performed relatively poorly in this analysis
with the worst MAE values of the algorithms tested. All of the red-edge algorithms used a
variation of the black pixel assumption [29], which subtracts the radiance from the darkest
nearby pixel or subtracts the radiance at a presumed zero water-leaving radiance band in
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the near-infrared from the other bands. As noted by Wynne et al. 2022 [21], this atmospheric
correction scheme tends to retrieve the most pixels in complex coastal and estuarine waters
and is fairly insensitive to residual aerosol error in the red and near-infrared bands because
ratios of spectrally close bands are used. This is evident in the variable number of successful
matchups, with both OC4Me and C2RCC exhibiting failed matchups due to atmospheric
correction issues (Table 1). A significant advantage for an operational algorithm is that
this atmospheric correction is fairly simple compared to many other algorithms, reducing
the processing burden and therefore speeding up data production. More computationally
intense processing associated with typical Level 2 ocean color products often results in
delays for operational products.

While RE-SFB was developed and tested with a relatively small dataset and two years
of data, it is based on the successful application of red-edge algorithms to complex
coastal waters. Future work could examine the sensitivity of the a*ph exponential term
(Equation (3)) and/or addition of more matchup data. However, the results presented are
robust with a reasonably sized matchup dataset (n = 425) across a wide dynamic range
of chla concentrations. The final algorithm provides typical accuracy of ±~46–47% based
on MAE. While this certainly leaves room for improvement, it is comparable to other
operational algorithms in both the Chesapeake Bay (MAE for RE22 is 1.57; [21]), and for
analysis of global datasets using standard algorithms (MAE of 1.62–2.05 for eutrophic
waters; [35]).

5. Conclusions

This analysis demonstrates the efficacy of red-edge algorithms for the detection of
extreme bloom (chla) events in optically complex coastal waters. Tuning for San Francisco
Bay improves performance compared to previous versions [20,21] and benefits from a
simplified atmospheric correction scheme, allowing for rapid data processing and dissemi-
nation. The use of OLCI provides a reasonable compromise between satellite return rate
(~daily) and spatial resolution (300 m) for San Francisco Bay.

While higher resolution sensors, such as the Operational Land Imager aboard Landsat-
8/9 [43] and the Multi Spectral Instrument (MSI) aboard Sentinel-2, provide greatly im-
proved spatial resolution [43,44], the return rate (~7–14 days) and lack of appropriate
bands for OLCI preclude operational use for events such as the H. akashiwo bloom, which
evolved over a period of days. Wynne et al. [21] argued for the inclusion of RE10 or similar
algorithms as a standard product for the operational NOAA CoastWatch program; this
analysis provides further evidence that the broad application of red-edge algorithms to
complex coastal waters would greatly benefit end-users.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16061103/s1, Figure S1: discrete vs. underway chla; Figure S2:
map showing underway mapping stations used for matchups; Table S1: satellite imagery used in this
analysis; Table S2: discrete matchup data; Table S3: High resolution in-water 300 m median binned
matchup chla. Reference [45] is cited in the Supplemental Material.
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