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Abstract: Sea-ice mapping using Synthetic Aperture Radar (SAR) in the melt season poses challenges,
primarily due to meltwater complicating the distinguishability of sea-ice types. In response to this
issue, this study introduces a novel method for classifying sea ice during the Bohai Sea’s melting
period. The method categorizes sea ice into five types: open water (OW), gray ice (Gi), melting gray
ice (GiW), gray–white Ice (Gw), and melting gray–white Ice (GwW). To achieve this classification,
51 polarimetric features are extracted from L-, S-, and C-band PolSAR data using various polarization
decomposition methods. This study assesses the separability of these features among different
combinations of sea-ice type by calculating the Euclidean distance (ED). The Support Vector Machine
(SVM) classifier, when employed with single-frequency polarimetric feature sets, achieves the highest
accuracy for OW and Gi in the C-band, GiW in the S-band, and Gw and GwW in the L-band.
Remarkably, the C-band features exhibit the overall highest accuracy when compared to the L-band
and S-band. Furthermore, employing a multi-dimensional polarimetric feature set significantly
improves classification accuracy to 94.55%, representing a substantial enhancement of 9% to 22%
compared to single-frequency classification. Benefiting from the performance advantages of Random
Forest (RF) classifiers in handling large datasets, RF classifiers achieve the highest classification
accuracy of 95.84%. The optimal multi-dimensional feature composition includes the following:
L-band: SE, SEI, α, Span; S-band: SEI, SE, Span, PV-Freeman, λ1, λ2; C-band: SE, SEI, Span, λ3,
PV-Freeman. The results of this study provide a reliable new method for future sea-ice monitoring
during the melting season.

Keywords: polarimetric Synthetic Aperture Radar; multi-frequency; polarimetric feature; Bohai Sea;
melting period; sea-ice classification

1. Introduction

Sea ice, as a vital component of the oceanic system, exerts a substantial influence
on the ocean’s physical characteristics, including temperature, salinity, and density. This,
in turn, has a profound impact on ocean circulation and the broader climate system [1].
Furthermore, sea ice can have varying degrees of detrimental effects on multiple industries,
including shipping, offshore oil and gas exploration, as well as marine fisheries [2]. There-
fore, it is of paramount importance to conduct timely and precise monitoring of sea ice in
order to preempt and alleviate the losses resulting from sea-ice disasters. The classification
of sea ice, a pivotal element in the realm of sea-ice research, forms the cornerstone of
sea-ice monitoring efforts. Diverse information pertaining to sea ice, including data on
sea-ice concentration, extent, and thickness, can be derived from the outcomes of sea-ice
classification [3–5].
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Many current sea-ice studies focus on the freezing period, but research on sea ice
during the melting season is equally significant. The melting season is a dynamic and
crucial phase in the sea-ice system, marking the melting and degradation of sea ice. During
the melting process, sea ice absorbs a substantial amount of heat, playing a role in regulating
the temperature of the surrounding water and the atmosphere, helping to prevent rapid
temperature increases. Additionally, sea-ice melting alters seawater salinity and density,
affecting the surface ocean circulation. Melting ice also results in a reduction in sea-ice
coverage, resulting in an impact on the reflection of solar radiation and heat absorption
in the ocean. Therefore, the melting season has profound implications for the climate and
marine ecosystems in regions with sea ice [6]. During the melting period, the atmosphere
contains a higher water vapor content, which can result in the formation of clouds and
fog. Traditional visible light and infrared remote sensing data perform poorly in such
conditions. Microwave remote sensing, with its all-weather and all-day advantages, has
become a practical tool for monitoring sea ice [7]. Microwave remote sensing data provide
essential support for better understanding and addressing the impacts of climate change.

Starting from June 1978 with the launch of the first spaceborne Synthetic Aperture
Radar (SAR) satellite, Seasat, by the United States, humanity achieved around-the-clock
and all-weather monitoring of sea ice for the first time. With the subsequent launch of other
SAR systems and their extensive application in sea-ice monitoring, many countries and
regions have established operational sea-ice monitoring capabilities [8].

SAR has demonstrated excellent performance in various fields and has garnered
significant attention from many countries, becoming a highly competitive and rapidly
evolving technological field. Starting from 1990, SAR systems have evolved from the initial
L-band HH single-polarization system to multi-frequency systems (L, C, X) with four
polarization modes (HH, HV, VV, VH). Multi-dimensional SAR systems have broken free
from the constraints of single-polarization or dual-polarization SAR data. Compared to
single- or dual-polarization SAR, polarimetric Synthetic Aperture Radar (PolSAR) provides
more information about sea ice, including phase information and higher spatial resolution,
enhancing the potential of SAR in environmental monitoring [9–11].

SAR belongs to the category of imaging sensors, and in the context of sea-ice clas-
sification research based on SAR data, researchers can use SAR images for classification
and identification. For instance, R. De Abreu [12] discussed the differences in open water,
new ice, and gray ice on different polarization images and performed classification. Kwon
et al. [13] proposed a total variation optimal segmentation method for sea-ice SAR images,
reducing image processing time while improving segmentation accuracy. Johannessen
et al. [14], based on texture features in sea-ice SAR images, utilized neural network algo-
rithms and Bayesian discrimination for sea-ice image type recognition. Wang et al. [15]
introduced a segmentation and classification method for sea-ice SAR images based on
Markov random field theory and ice condition maps, which effectively suppressed the
impact of speckle noise and enhanced image segmentation and classification accuracy. Liu
et al. [16], using a second-order classification method based on covariance, classified sea-ice
SAR images from the RADARSAT-2 satellite over Liaodong Bay.

Furthermore, a multitude of research scholars have proposed various polarization
parameters for sea-ice classification [17–19], and the reliability of these parameters has
been widely recognized and applied within the academic community. For instance, Zhang
et al. [20] achieved accurate classification of Bohai Sea ice using H/α decomposition,
Freeman decomposition, and polarization basis transformation features based on C-band
RADARSAT-2 SAR data. Scheuchl et al. [21] utilized full-polarization data in the C-band to
extract polarization ratios and other polarization information for sea-ice type recognition
in SAR images. Dabboor et al. [22] developed a new SAR polarization feature for sea-ice
classification using the coherence matrix of fully polarized SAR images. Zhang et al. [23]
describes a three-component scattering model to decompose PolSAR data of sea ice. The
model is validated using C-band RADARSAT-2 quad-polarization data acquired over sea
ice in the Bohai Sea. Many researchers have also devised various deep learning methods
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suitable for sea-ice classification [24,25], and these methods have demonstrated effective
classification results in both polar regions.

Many of the aforementioned works have, to some extent, utilized SAR’s polarization
information and explored the effects of different features on sea-ice classification. How-
ever, these works have been based on single-frequency SAR data and lack an in-depth
study of the connection between the electromagnetic scattering characteristics of sea-ice
targets and electromagnetic wave frequencies. In order to better understand the electro-
magnetic scattering characteristics of sea ice at different frequencies and to improve the
accuracy and reliability of sea-ice classification, Rignot et al. [26] conducted experiments on
sea-ice classification using multi-frequency SAR data from the airborne AIRSAR system
in the Beaufort Sea. The experimental results demonstrated that using multi-frequency
polarimetric feature data can significantly improve sea-ice classification accuracy, with
classification accuracy increasing by 14% to 20% compared to single-frequency, single-
polarization data. Xie et al. [27] analyzed and discussed the advantages and limitations of
combining dual-band SAR polarimetric features for SAR sea-ice classification and recog-
nition, using C- and L-band fully polarized sea-ice SAR data acquired by the SIR-C SAR
system in the Weddell Sea, Antarctica. These studies collectively indicate that utilizing
multi-dimensional SAR data for sea-ice classification is an effective means to enhance SAR
sea-ice type recognition capabilities.

Many of the existing sea-ice classification studies mentioned above are primarily
based on the freezing period. With variations in sea-ice age, ice thickness, SAR system
wavelength, and incidence angle, the scattering mechanisms of sea ice also differ [28]. Fur-
thermore, during the melting period, the presence of surface meltwater on sea ice absorbs
electromagnetic waves, making the scattering characteristics on the sea-ice surface complex
and challenging to differentiate. This complexity leads to sea-ice classification methods and
features that are effective during the freezing period often yielding unsatisfactory results
during the melting period [21].

Therefore, two main factors hinder the accurate classification of sea ice during the
melting period. Firstly, there is already a wealth of polarization features available for sea-ice
classification, but the classification capabilities of multi-frequency polarization features for
sea ice during the melting period have not been fully explored. Secondly, although many
classifiers have been applied to sea-ice classification, the impact of different combinations
of classifiers and feature sets on sea-ice classification results remains uncertain.

To address the scientific questions mentioned above, this study contributes in the
following three ways: First, we conducted, for the first time, an experiment to acquire
multi-frequency, fully polarimetric PolSAR sea-ice data during the melting season in the
Bohai Sea region. The experimental data include three frequency bands: L, S, and C. Second,
we assessed the separability of polarimetric features for various sea-ice type combinations
and analyzed the distinctions and connections among polarimetric features in different
frequency bands. Third, we introduced a sea-ice classification method for the melting
season based on multi-frequency and multi-polarization PolSAR polarimetric feature
selection. We analyzed and discussed the impact of classifier–feature set combinations on
classification results.

The study is organized as follows: In Section 2, the data used in the study are intro-
duced, including airborne multi-frequency PolSAR data, Sentinel-2 data, and a description
of the process for interpreting sea-ice types during the melting period. Section 3 summa-
rizes the 51 polarimetric features used for sea-ice classification, explains how the best sea-ice
classification parameters are chosen using Euclidean distance, and provides detailed infor-
mation on the parameters of the selected classifiers. In Section 4, the separability strength
of polarimetric features in different sea-ice type combinations in each band is evaluated,
and the reasons for these differences are analyzed. Section 5 describes the classification
results obtained with different combinations of classifiers and features. Finally, Section 6
concludes the study and provides a discussion of the findings.
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2. Study Area and Data
2.1. Study Area

The research area for this study is located in Liaodong Bay, situated within the Bohai
Sea region of China, as illustrated in Figure 1. The Bohai Sea is not only home to numerous
crucial ports but also serves as a vital hub for China’s maritime trade. Furthermore, this
region is rich in resources, encompassing petroleum, natural gas, and fisheries, making it
strategically significant for China’s national defense and security. The Bohai Sea occupies a
pivotal geographical and strategic position in China’s economic development and interna-
tional interactions [2]. It is worth noting that sea ice in the Bohai Sea is of the annual type,
forming during the winter and persisting until early spring of the following year.
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Figure 1. Map of study area in the vicinity of Bayuquan in Liaodong Bay. The coverage of PolSAR
data is represented with red and yellow rectangles, and the coverage of Sentinel-2 images is delineated
by the blue rectangle, and the black rectangle in the Bohai inset map shows the geographical location
of the study area.

This study utilizes two different types of remote sensing data: multi-frequency PolSAR
data and Sentinel-2 optical data, with their respective coverage areas displayed in Figure 1.
The PolSAR data used in this study were collected by our research team near Bayuquan
in Liaodong Bay, Bohai Sea, on 27–28 February 2022, using remote sensing aircraft. The
geographic coordinates covered by the data range from 40◦8′N to 40◦22′N and from
121◦57′E to 122◦10′E. Prior to the experimental survey, the local maximum temperatures
had remained above 0 ◦C for three consecutive days, with a maximum temperature of
6 ◦C on the day of the experiment and 10 ◦C on the following day. This temperature trend
indicates that the sea ice in the acquired multi-dimensional SAR data was in a melting
phase, which is a crucial factor in our research focus.

The presence of sediment in the Bohai Sea may affect sea-ice classification. However,
the study area in this paper is located in the Liaodong Bay, with fewer old river mouths
and much lower suspended sediment content compared to Laizhou Bay, which serves as
the estuary of the Yellow River. The impact of suspended sediment on sea-ice classification
is more pronounced in the Laizhou Bay region, but it can be considered negligible for the
experimental area in this study.

2.2. Multi-Dimensional PolSAR Data

The SAR data used in this experiment were acquired by a Modern Ark 60 remote
sensing aircraft equipped with a multi-dimensional SAR system. The remote sensing
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aircraft is equipped with various payloads, including three-line array cameras, area array
cameras, and a multi-dimensional SAR system. The multi-dimensional SAR system is a
set of multi-frequency, fully polarimetric SAR systems that use a distributed phased array
antenna with electronically steerable radar beams. It is capable of acquiring high-resolution
backscatter data from the ground.

This study utilized data from three subsystems, L-band, S-band, and C-band, of a
multi-dimensional SAR system, comprising a total of five scenes. Scene 1 and Scene 2 were
collected on the 27th, while Scene 3, Scene 4, and Scene 5 were collected on the 28th. All
these scenes encompass all types of sea ice discussed during the melting period. Detailed
information about the SAR data is provided in Table 1.

Table 1. Multi-dimensional SAR parameters and basic information of data.

Band Resolution (m) Polarization Mode Scene Incidence Angle (◦) Acquisition Start Time UTC

L 1.0 HH/HV/VH/VV

Scene 1 31.89 2022-02-27 06:22:54
Scene 2 31.89 2022-02-27 06:23:23
Scene 3 31.86 2022-02-28 03:13:55
Scene 4 31.86 2022-02-28 03:17:25
Scene 5 31.86 2022-02-28 03:27:30

S 1.0 HH/HV/VH/VV

Scene 1 33.51 2022-02-27 06:22:54
Scene 2 33.51 2022-02-27 06:23:23
Scene 3 33.48 2022-02-28 03:13:55
Scene 4 33.48 2022-02-28 03:17:25
Scene 5 33.48 2022-02-28 03:27:30

C 0.5 HH/HV/VH/VV

Scene 1 33.51 2022-02-27 06:22:54
Scene 2 33.51 2022-02-27 06:23:23
Scene 3 33.48 2022-02-28 03:13:55
Scene 4 33.48 2022-02-28 03:17:25
Scene 5 33.48 2022-02-28 03:27:30

2.3. Sentinel-2 Data

Sentinel-2 is a high-resolution multispectral imaging satellite that carries a multispec-
tral imager capable of covering 13 spectral bands with a spatial resolution of 10 m. It consists
of two satellites, Sentinel-2A and Sentinel-2B [29]. In this study, optical data acquired by
Sentinel-2B were used. The data collection began on 27 February 2022, at 02:36:39 (UTC).
The data product level is L1C, which means it has undergone orthorectification and geo-
metric correction, resulting in atmospheric apparent reflectance products. The time interval
between the acquisition of Sentinel-2 optical data and the multi-dimensional SAR data is
less than 4 h, which assists in visual interpretation of sea-ice types and sample selection.
The following table provides detailed information on each band of the Sentinel-2B satellite.

2.4. Visual Interpretation of Sea-Ice Types

The current sea-ice naming standard for the Bohai Sea primarily focuses on sea-ice
types during the freezing period and does not provide detailed classification for sea-ice
types during the melting period [30]. While we did not have access to field measurements
to validate the results, in this study, we utilized Sentinel-2 data with a resolution of 10 m
to determine sea-ice types, enhancing the credibility of our approach. Simultaneously,
we sought the expertise of multiple sea-ice research specialists to assess the sea-ice types
in the experimental area, ensuring the accuracy of the sea-ice validation results. This
study specifically classifies the sea ice in the experimental data into five types: open water
(OW), gray ice (Gi), melting gray ice (GiW), gray–white Ice (Gw), and melting gray–white
ice (GwW). This classification accounts for sea-ice types during the melting period and
provides a more detailed breakdown of the sea-ice categories.

In Figure 2, the original states of the images for each band are displayed. Figure 3
shows the geographically registered images for each band, providing a visual observation
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of the differences in sea ice at the same location. As depicted in Figure 3, in optical imagery,
OW appears relatively dark when compared to other sea-ice types. This is because seawater
has a strong absorbent capacity for visible light. Gi and GiW have flat and wet surfaces,
often appearing as extensive, concentrated patches or small gray ice sheets in the image.
GiW, due to a higher degree of melting, appears darker than Gi. Gw is typically found
around and overlapping with Gi, has a rough surface, and exhibits a stronger reflectance in
visible light, making it appear brighter and gray–white in the image. Due to the presence
of meltwater, GwW may appear slightly dimmer than Gw but is rougher and has a higher
brightness compared to Gi.
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Figure 2. (a) Sentinel-2 true-color image (R = band 4, G = band 3, B = band 2, specific band information
is available in Table 2). The red rectangles in the image indicate the coverage area of the PolSAR
data in Scene 1 and Scene 2. For each waveband, the partially overlapping regions in (b) Scene 1 and
(c) Scene 2 are represented in Pauli RGB images.

Table 2. Detailed information for the bands of Sentinel-2B.

Band Central Wavelength
(nm)

Bandwidth
(nm)

Resolution
(m)

Band 1—Coastal aerosol 442.2 20 60
Band 2—Blue 492.1 65 10

Band 3—Green 559.0 35 10
Band 4—Red 664.9 30 10

Band 5—Vegetation red edge 703.8 15 20
Band 6—Vegetation red edge 739.1 15 20
Band 7—Vegetation red edge 779.7 20 20

Band 8—NIR 832.9 115 10
Band 8A—Narrow NIR 864.0 20 20
Band 9—Water vapor 943.2 20 60

Band 10-SWIR—Cirrus 1376.9 30 60
Band 11—SWIR 1610.4 90 20
Band 12—SWIR 2185.7 180 20

We have listed the sea-ice types present in the study area in Table 3 and provided
descriptions of the natural morphology of sea-ice as observed in optical images.

In the L-band imagery, some GiW exhibits relatively low brightness, which is close
to the brightness of OW. This is because GiW has the lowest ice thickness and a wet
surface, resulting in similar backscattering coefficients between GiW and OW. It is also
evident that Gi is often accompanied by Gw, and the two exhibit a noticeable difference
in brightness, with Gi having a distinct and visible outline. Similar to optical imagery,
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the highest brightness is observed in Gw, but it can be challenging to distinguish it from
GwW with the naked eye. In the S-band imagery, OW has the lowest brightness, making
it relatively easy to distinguish from sea ice. Compared to the L-band, the brightness
difference between Gi and Gw in the S-band is less pronounced, and both GiW and Gw
exhibit bright characteristics with minimal brightness difference. In the C-band imagery,
the brightness contrast between seawater and sea ice is most pronounced among the
three frequency bands. However, sea-ice types have similar backscattering coefficients
in the C-band, making it challenging to distinguish the brightness differences between
them visually.
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Figure 3. (a) Sample examples of different sea-ice types in Sentinel-2 imagery, (b) L-band, (c) S-band,
(d) C-band images in Scene 1; (e) expert interpretation map.

Table 3. Table describing the morphology of sea ice in the study area in Sentinel-2 image.

Ice Class Abbreviation Morphological Feature Description

Open water OW The surface is smooth and the color is darker.

Gray ice Gi First-year floating ice, characterized by a flat
surface, often appears gray.

Melting Gray ice GiW First-year floating ice with a wet, flat surface
appears darker and is relatively thin.

Gray-white Ice Gw Deformed first-year floating ice has a
rougher texture and appears gray–white.

Melting Gray-white Ice GwW Rough, gray–white first-year floating ice has
a surface with a coarse texture.

3. Methodology

In this study, we performed the following processing steps on the used PolSAR
data: first, we applied the Refined Lee Filtering method to reduce the impact of noise on
SAR data. Second, based on various polarization decomposition methods, we extracted
51 polarization features from each band. Third, to evaluate the discriminative power of
these polarization features for different sea-ice combinations, we calculated the Euclidean
distance of polarization features in different sea-ice combinations. Fourth, we constructed
feature sets and used the recursive feature elimination method to input the feature sets into
different classifiers. Finally, based on the classification results, we discussed and obtained
the optimal single-frequency and multi-frequency polarization feature sets suitable for
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sea-ice classification during the melting period. The following Figure 4 shows the flowchart
of sea-ice classification during the melting period based on multi-frequency PolSAR data.
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3.1. PolSAR Data Preprocessing and Polarimetric Feature Extraction

SAR data can be affected by various types of noise during collection and processing,
such as thermal noise and scattering noise. These noises can degrade the quality and
details of the images, making it difficult to distinguish the edges and fine details of sea
ice. First, the scattering matrix and coherence matrix are extracted from the SAR data in
single-look complex (SLC) format. Subsequently, the data undergo preprocessing using the
Refined Lee Filtering method with a selected window size of 7 × 7 [31]. Secondly, based
on H/A/α decomposition [17], Freeman–Durden decomposition [18], and Yamaguchi
four-component decomposition [19], we obtained a total of 51 polarization features, and
the feature information is listed in Table 4. Since the pixel sizes of the images in different
bands are different and the SAR data have not been geographically corrected, to ensure the
subsequent experiments, we needed to perform geo-referencing on the polarization feature
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data for the three bands. We selected the overlapping areas in the three bands as the input
data for the subsequent work, and the number of rows and columns in the overlapping
area was set to 3000. A total of 51 parameters are used in this study, as summarized in
Table 4.

Table 4. Polarimetric features in this study.

Polarization Decomposition Method Symbol Name

H/A/α decomposition

λ1, λ2, λ3 Eigenvalue
P1, P2, P3 Eigenvalue probability

H Entropy
A Anisotropy

A12 Anisotropy12
A (Lueneburg) Lueneburg anisotropy

SERD Single-bounce eigenvalues relative difference
DERD Double-bounce eigenvalues relative difference

SE Shannon entropy
SEP Polarimetric component of Shannon entropy
SEI Intensity component of Shannon entropy
PF Polarization fraction
PA Shannon entropy
RVI Radar vegetation index
PH Pedestal height
λ Average Target Power
α Alpha approximation

α1, α2, α3 Internal parameters of the Eigenvector
β, β1, β2, β3 Target orientation Angle
δ, δ1, δ2, δ3 Scattering diversity

γ, γ1, γ2, γ3 Polarization characteristic parameter
CCC Consistency correlation coefficient

Freeman–Durden decomposition
PS-Freeman Surface scattering (corresponding power)
PD-Freeman Double Bounce Scattering (corresponding power)
PV-Freeman Volume Scattering (corresponding power)

Yamaguchi four-component decomposition

PS-Yamaguchi Surface scattering (corresponding power)
PD-Yamaguchi Double-Bounce Scattering (corresponding power)
PV-Yamaguchi Volume Scattering (corresponding power)
PH-Yamaguchi Helix Scattering (corresponding power)

Other parameters
Span Total power of scattering matrix

C11, C22, C33 Components of the covariance matrix
ρ12, ρ13, ρ23 Correlation coefficient

3.2. Separability Index

Selecting the appropriate polarization features is a crucial step in sea-ice classification
research. If the spatial dimension of the features is too small, it may be insufficient to
identify the characteristics of sea ice, making it difficult to achieve the expected classification
results. Conversely, using too many parameters can lead to data redundancy, reducing
classification accuracy and increasing computational costs [32]. To quantitatively compare
the classification capabilities of the 51 polarization features mentioned above and select the
optimal features for each wavelength band, this study employs the Euclidean distance [33]
to measure the strength of separability between different sea-ice types. The definition of
Euclidean distance is as follows:

D =
|m1 − m2|√

σ2
1 + σ2

2

(1)

In this context, m and σ² represent sample mean and variance, and the Euclidean
distance (ED) satisfies D > 0. The larger the value of the Euclidean distance, the stronger
the separability between two types of samples, and vice versa. As indicated by the above
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formula, the greater the difference in means and the smaller the variance between regions,
the larger the ED, and thus, the stronger the separability. In this study, we calculated the
ED values for any two combinations among the five types, as follows: OW–Gi, OW–GiW,
OW–Gw, OW–GwW, Gi–GiW, Gi–Gw, Gi–GwW, GiW–Gw, GiW–GwW, and Gw–GwW,
making a total of 10 combinations. If the ED value of polarization features in the sea-ice
type combination is less than 0.6, we consider the separability of that feature within the
combination to be low. When the ED value is greater than or equal to 0.6 but less than 1.2,
we consider the separability to be medium. However, if the ED value is greater than or
equal to 1.2, we classify it as high separability within that combination.

In addition, we calculated the average Euclidean distance values of polarization
features in the 10 combinations (Ice Type) to represent the overall separability strength of
that feature for all sea-ice type combinations.

Ice Type = ∑
i=10

Di (2)

where Di represents the ED values of polarization features in the ten combinations. When
the Ice Type ≥ 1.2, we consider that this polarization feature has strong overall separability
capability, meeting the requirements of sea-ice classification.

Simultaneously, we calculated the average Euclidean distance (AED) of all polariza-
tion features that met the classification requirements in the corresponding sea-ice type
combinations within each wavelength band, to represent the separability capability of the
polarization features in the corresponding sea-ice type combinations.

AED =
∑ Dj

N
(3)

where Dj is the ED of the polarization features that meet the classification criteria within
the selected sea-ice type combinations in this wavelength band, and N is the number of
polarization features that meet the classification criteria in this wavelength band. When
AED ≥ 1.2, we consider that the polarization features in this wavelength band have strong
separability in the corresponding sea-ice combinations.

3.3. Classifier

While many scholars have developed various deep learning-based classifiers for sea-
ice classification, achieving good classification accuracy, in this study, we still selected
four machine learning classifiers for sea-ice classification, including Maximum Likelihood
classification (ML), Support Vector Machines (SVM), Random Forest (RF), and Back propa-
gation neural network (BPNN) [34–37]. We chose these classifiers because deep learning
classifiers generate new features for classification based on existing features, making it
difficult for users to understand the working principles of the model and the role of internal
features. This also makes it challenging for users to intuitively assess the advantages
and disadvantages of polarization features in different wavelength bands in classification.
Moreover, the primary focus of this study is to evaluate the capabilities of polarization
features in sea-ice classification during the melting season. In future work, we can utilize
deep learning methods in conjunction with the polarization features discussed in this study
to achieve higher accuracy in classification results, but this is beyond the scope of this
study. The detailed information on the classifiers selected in this study, along with the
corresponding parameter settings, is as follows.

(1) ML: It is a statistical estimation-based classification method used to estimate the
parameters of a probability model and make classification decisions based on likeli-
hood. In this study, the likelihood threshold is chosen as a single value, and the data
proportion coefficient is set to 1.
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(2) SVM: It transforms the original features into a high-dimensional feature space to find
the optimal separating hyperplane. In this study, the radial basis function is used as
the kernel function for SVM.

(3) RF: It generates a large number of decision trees and randomly selects training samples
and features for each tree. Classification is determined by the outputs of all individual
classification trees, making it robust to noise. In this study, 100 classification trees are
planted, and the square root method is used to determine the number of features.

(4) BPNN: It is a highly flexible model capable of adapting to various types of data and
complex relationships. In this study, the activation function is chosen as logistic, the
training contribution threshold is set to 0.9, the weight adjustment speed is 0.2, the
number of hidden layers is 1, the number of iterations is 1000, and the RMS error is
set to 0.1.

In order to make the most of the classifiers, it is necessary to evaluate the differences
in classifier performance when using different feature combinations. Therefore, when
aiming for the best classification performance, it is important to consider both features and
classifiers jointly. In this study, we use the Recursive Feature Elimination (RFE) method [30]
to select the most representative features for classification. RFE is an effective method
for eliminating redundant features, and its main idea is to apply to a specified classifier
on subsets of decreasing feature size. We input the polarimetric feature sets constructed
for each waveband separately into the classifier to obtain ice classification results for
the corresponding number of features. In each iteration, we discard one feature with
the lowest Ice Type value and generate ice classification results along with classification
accuracy. This process is repeated N times, where N is the number of features in the input
polarimetric feature set. When the iteration process stops, we select the feature combination
with the highest classification accuracy as the optimal polarimetric feature set for that
waveband. We merge the optimal polarimetric feature sets for the three wavebands into
a multi-dimensional polarimetric feature set. Unlike discussing the optimal polarimetric
feature sets for single wavebands, we need to determine the optimal multi-dimensional
polarimetric feature sets for different classifier scenarios.

4. Feature Analysis

This section is divided into two parts. The first part evaluates the classification
capabilities of polarimetric features in different combinations of sea-ice types across various
frequency bands. The second part analyzes and compares the characteristics of polarimetric
features in each frequency band. It is important to note that this section focuses on the
discussion of the classification abilities of features that meet the classification requirements
in various combinations of sea-ice types, and polarimetric features in each frequency
band refer to the polarimetric features that meet these classification requirements in the
respective bands.

4.1. Single-Frequency Polarimetric Feature Analysis
4.1.1. L-Band

In the L-band, there are a total of 12 polarimetric features with Ice Type values greater
than or equal to 1.2, with SE showing the highest sea-ice classification capability, having
an Ice Type value of 2.75. The specific values of ED for these 12 polarimetric features in
different classification combinations can be found in Figure 5, and the polarimetric feature
images with the top three Ice Type values are displayed in Figure 6.

Observing Figure 6, it is evident that different types of sea ice exhibit distinct textures.
Especially, the contrast between the rough surface of Gw and the smooth surface of Gi is
quite clear. Using L-band polarization features provides an advantage in classifying sea
ice with significant differences in surface roughness, which is consistent with previous
research [38]. As shown in Figure 5, among these 10 type combinations, the AED values
satisfying strong separability include OW–Gw, OW–GwW, Gi–Gw, Gi–GwW, GiW–Gw,
and GiW–GwW. This indicates a relatively strong separability associated with Gw and
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GwW. However, L-band polarization features do not exhibit good separability in all sea-ice
type combinations. For instance, the AED value for the Gw–GwW combination is 0.75, and
none of the features meet the classification criteria, indicating poor separability between the
two. Although Gw and GwW exhibit distinct brightness characteristics in optical imagery,
in L-band SAR images, their backscattering coefficients are similar. The physical reason
could be that GwW and Gw share similar physical structures, with rough surfaces and
many cracks. Although GwW has some surface meltwater, it is minimal, and L-band
electromagnetic waves are less sensitive to it.
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While L-band polarization features exhibit strong separability in most sea-ice types,
they perform poorly in separating thin ice (Gi and GiW) from open water (OW). The AED
for OW–Gi and OW–GiW combinations in L-band polarization features is low, at only 0.30
and 0.87, respectively. The AED value for OW–Gi is the lowest among all type combinations,
with all feature ED values below 1.2. This is because L-band frequencies are shorter, and
electromagnetic waves have strong penetration capabilities [39], while Gi is relatively
thin. In the feature image, the numerical values for OW and Gi are very close, resulting
in poor separability. The same reasoning can explain the poor separability between OW
and GiW. In conclusion, L-band polarization features perform poorly in classifying thin
ice types [26,40], but they perform well in combinations with significant differences in
thickness and roughness, such as Gi–Gw, Gi–GwW, GiW–Gw, and GiW–GwW.
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4.1.2. S-Band

In the S-band, there are a total of nine polarimetric features that meet the classification
criteria, with SEI exhibiting the highest ice classification capability, having an Ice Type
value of 2.19. The specific ED values of the polarimetric features that meet the classification
criteria in various classification combinations are shown in Figure 7, and the polarimetric
feature images with the top three Ice Type values are displayed in Figure 8.
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S-band.

Observing Figure 8a, it can be seen that seawater has the highest values in the Shannon
entropy image, followed by Gi and GiW, while Gw and GwW have the lowest and closest
values. Visually, there are distinct differences between seawater and sea ice. S-band
polarization features perform well in the four combinations of sea ice and seawater (OW–Gi,
OW–GiW, OW–Gw, OW–GwW). Specifically, the S-band polarization features meet the
classification requirements for AED in these four combinations. Moreover, except for
PV-Yamaguchi and λ3 in the OW–Gi combination, the ED values for S-band polarization
features are greater than 1.2 in all four combinations.

Among the sea-ice type combinations, the AED values for S-band polarization features
are less than 1.2 in the Gi–GiW, GiW–Gw, and Gw–GwW combinations. Particularly in the
Gw–GwW combination, the ED values for all features are less than 1.2. But in the Gi–Gw,
Gi–GwW and GiW–GwW combinations, the ED values for all features are more than 1.2.
S-band performs better in the separability of thinner sea ice compared to other bands.

4.1.3. C-Band

In the C-band, there are a total of 12 polarimetric features that meet the classification
criteria, with SE exhibiting the highest ice classification capability, having an Ice Type value
of 2.92. The specific ED values of the polarimetric features that meet the classification
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criteria in various classification combinations are shown in Figure 9, and the polarimetric
feature images with the top three Ice Type values are displayed in Figure 10.
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Observing Figure 10, we find that in the C-band polarization feature images, the
numerical values for all types of sea ice are close, but there are significant differences
compared to seawater. This is because the C-band radar wavelength is short, and seawater
exhibits relatively high radar wave absorption in this frequency band. Seawater forms a
strong contrasting state with sea ice, leading to clear differentiation between the two [41].

From Figure 9, we can see that the AED for all four combinations of sea ice and
seawater is greater than 2 in the C-band. The numerical values in the C-band for these
four combinations are higher than those in the S-band, indicating a stronger capability for
distinguishing sea ice from seawater in the C-band. However, compared to other bands,
C-band polarization features exhibit poorer separability among different sea-ice types.
For example, in the Gi–GiW, Gi–Gw, and GiW–Gw combinations, the AED values for the
selected polarization features are all less than 1. Particularly in the Gi–GiW combination,
the AED is only 0.52, the lowest among all combinations, and only α has an ED value greater
than 1.2 in this combination. However, C-band features perform well in the Gi–GwW,
GiW–GwW, and Gw–GwW combinations, with AED values all exceeding 1.2. Considering
the AED value for the OW–GwW combination, we can conclude that in the C-band, GwW
exhibits strong separability from other sea-ice types.

In summary, the L-band polarization features exhibit strong separability when dealing
with sea-ice types related to Gw and GwW. However, their ability to distinguish between
seawater and sea ice, especially in combinations with thin ice, is relatively weak. The
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S-band polarization features perform better in distinguishing between seawater and sea
ice compared to the L-band but not as effectively as the C-band. They excel in separability,
particularly in the case of thin ice. On the other hand, C-band polarization features show
strong separability between seawater and sea ice, but there is still room for improvement in
separability among different sea-ice types. In conclusion, the L-band is suitable for sea-ice
type classification, the S-band is suitable for identifying thin ice types, and the C-band is
suitable for sea-ice–water classification. This is consistent with the conclusion proposed
by Dierking W, suggesting that higher-frequency electromagnetic waves are more reliable
for sea-ice classification during the melting and freezing periods [42]. It is evident that
the frequency of electromagnetic waves has a significant impact on the separability of
sea-ice types.

4.2. Analysis and Comparison of Multi-Frequency Features

In order to analyze the properties of polarization features in each frequency band, we
have compiled a total of 15 polarization features that meet the classification requirements.
These features are as follows: λ1, λ2, λ3, P1, H, λ, α, α1, SE, SEI, SEP, PV-Freeman, PV-Yamaguchi,
C22, and Span.

Through an analysis of the scattering mechanisms of the aforementioned polarization
features, they can be broadly categorized into three groups:

(1) Total power parameters (λ, SE, SEI, SEP, Span);
(2) Volume scattering parameters (PV-Freeman, PV-Yamaguchi);
(3) Scattering mechanism parameters (λ1, λ2, λ3, P1, H, α, α1, C22).

In the three bands, there are seven common features that exhibit strong discriminative
capabilities. These features are SE, SEI, Span, λ1, λ2, λ3, and PV-Freeman. When ranking
the discriminative capabilities of these features based on their Ice Type values in each
frequency band, the top three features are consistently SE, SEI, and Span. This is in line
with the results discussed by Zhao et al. [43] regarding the importance of polarimetric
features in sea-ice classification. The order of these features varies slightly between different
frequency bands (with SE > SEI > Span in L-band and C-band, and SEI > SE > Span in the
S-band). This suggests that features related to total power play a significant role in the
classification of melting sea ice. The physical properties and structures of sea ice are closely
related to their interaction with microwave signals, which are reflected in features related
to power. Additionally, these parameters have a relatively lower dimensionality, making
them simpler and more manageable in the feature space, facilitating easier processing
and analysis.

The eigenvalues (λi (i = 1,2,3)) in the scattering mechanism parameters not only reflect
the intensity of different scattering mechanisms on the Earth’s surface but also capture
all the scattering information in the received echoes. Rich information can provide better
classification capabilities, and the calculation of many scattering mechanism parameters is
related to the eigenvalues λi, highlighting the significance of these eigenvalues.

Although the scattering mechanisms of sea ice typically involve surface scattering
and volume scattering, we observed that the surface scattering parameters in the three
bands do not show strong sea-ice classification ability. Furthermore, in the case of sea ice
during the melting period, the classification performance of volume scattering parameters
was significantly better than that of surface scattering parameters. This is attributed to
the presence of meltwater on the ice surface during the melting process, which enhances
microwave absorption and, in turn, complicates surface scattering characteristics, making
them more difficult to distinguish [44]. In contrast, volume scattering parameters typically
reflect the structural features inside the target, making them more suitable for distinguishing
sea ice during the melting period. The two volume scattering parameters selected in this
study are derived from Freeman decomposition and Yamaguchi decomposition. In all three
bands, the separability of the volume scattering component features obtained from Freeman
decomposition exceeded those obtained from Yamaguchi decomposition. This is because
the volume scattering modeling in Freeman decomposition follows a random distribution,
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resulting in a more uniform numerical distribution of sea ice. In contrast, the volume
scattering model in Yamaguchi decomposition is based on a sinusoidal distribution and
introduces new helical scattering. Therefore, in the sea-ice data during the melting period
in this experiment, the volume scattering energy in Freeman decomposition is greater than
that in Yamaguchi decomposition, making the differences in volume scattering between
different types of sea ice more pronounced and enhancing separability [45].

The above seven polarimetric features perform well in all three bands, indicating that
these features are not significantly affected by the differences in electromagnetic wave
frequencies, or the impact is relatively low when it comes to sea-ice classification.

The alpha approximation (α) demonstrates good separability in both the L-band
and the C-band. The calculation formula for α is closely related to parameters P1 and
α1 [17], and these three parameters exhibit strong separability in the L-band. The stronger
the difference in the shape of sea ice, the better the separability of α. This is consistent
with its performance in the separability of type combinations in the L-band and C-band,
such as in the L-band, where α has AED values of 2.06 and 3.63 in OW–Gw and GiW–
Gw combinations, respectively. Additionally, due to the different information acquisition
capabilities of the L-band and C-band in distinguishing sea ice from seawater, α exhibits
strong classification abilities in both bands.

Scattering entropy (H) reflects the randomness of the scattering return from the target
and the structure of the target. Similar to α, the greater the difference in the structure of
the target, the stronger the separability. Compared to other bands, L-band electromagnetic
waves can provide more information about the internal structure of sea ice, which is why
the L-band scattering entropy exhibits good classification capabilities among different
sea-ice types.

C22 exhibits good separability in the C-band. C22 represents the amplitude information
of the backscattering signal in VV polarization mode, reflecting the intensity and scattering
characteristics of VV polarization waves in SAR images. The greater the depolarization
of backscattering from sea ice, the easier it is to distinguish it from water because water’s
backscattering is mainly influenced by surface scattering, resulting in typically lower
cross-polarized responses [12]. It is precisely because C22 exhibits strong separability in
combinations of sea ice and seawater, thus meeting the classification requirements.

5. Sea-Ice Classification

In this section, we constructed single-frequency feature sets using the polarimetric
features that meet the classification requirements from Section 4.1. The organization of
features is shown in the following Table 5.

Table 5. The single-frequency feature sets.

Band Polarimetric Feature Total

L-band SE, SEI, Span, α, λ2, H, λ3, SEP, α1, λ1, PV-Freeman, p1 12
S-band SEI, SE, Span, PV-Freeman, λ1, λ2, λ, PV-Yamaguchi, λ3 9
C-band SE, SEI, Span, λ3, PV-Freeman, α, λ2, PV-Yamaguchi, λ1, λ, α1, C22 12

5.1. Single-Frequency Sea-Ice Classification
5.1.1. Single-Frequency Classifier Selection

These single-frequency feature sets were then input into four machine learning algo-
rithms separately to compare the overall accuracy. Table 6 presents the overall accuracy
achieved by combining single-frequency polarimetric features with different classifiers.

The results show that the SVM classification method outperforms other methods in
terms of overall accuracy and Kappa coefficient in all three bands. Therefore, we choose
the SVM classifier to discuss the composition of the optimal polarimetric feature set for
each band. We obtained classification results by using the single-frequency polarimetric
feature sets and the SVM classifier. We calculated the corresponding confusion matrices
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(shown in Tables 7–9) to analyze the classification capabilities of different bands for various
types of sea ice.

Table 6. Accuracy of sea-ice classification using different machine learning classifiers.

Classifier Band Overall Accuracy Kappa Coefficient

SVM
L 73.04% 0.5747
S 76.70% 0.6221
C 85.64% 0.7674

ML
L 66.37% 0.4828
S 72.47% 0.6078
C 81.81% 0.7146

RF
L 69.91% 0.5416
S 75.49% 0.6149
C 85.58% 0.7628

BPNN
L 69.70% 0.5274
S 75.37% 0.6211
C 85.49% 0.7619

Table 7. Confusion matrix table of L-band classification results (percentage).

Class OW Gi GiW Gw GwW Total

OW 81.54 20.24 33.52 0.00 0.19 55.10
Gi 10.84 64.93 15.70 0.36 10.96 17.38

GiW 7.39 5.82 50.11 0.33 0.38 11.99
Gw 0.16 3.26 0.21 68.85 22.97 7.94

GwW 0.07 5.75 0.46 30.45 65.50 7.59
Total 100 100 100 100 100 73.04

Table 8. Confusion matrix table of S-band classification results (percentage).

Class OW Gi GiW Gw GwW Total

OW 91.29 11.10 8.40 1.74 0.29 56.41
Gi 1.33 62.98 12.77 27.82 1.95 12.95

GiW 7.36 22.36 65.36 29.31 23.04 20.07
Gw 0.01 3.51 8.79 31.19 19.73 5.59

GwW 0.01 0.06 4.68 9.93 54.99 4.97
Total 100 100 100 100 100 76.70

Table 9. Confusion matrix table of C-band classification results (percentage).

Class OW Gi GiW Gw GwW Total

OW 99.54 0.16 0.31 0.02 0.02 58.62
Gi 0.03 69.17 17.96 26.08 5.01 13.72

GiW 0.19 12.35 63.29 0.96 6.57 10.82
Gw 0.01 14.07 3.04 67.10 25.76 9.61

GwW 0.24 4.25 15.40 5.84 62.64 7.23
Total 100 100 100 100 100 85.64

The “Total” column in the confusion matrix corresponds to the percentage of pixels
classified as a certain class in the total sample, and the bottom-most column represents the
overall accuracy. By comparing the three confusion matrices, we can observe that in the
C-band, OW and Gi have the highest production accuracy, GiW has the highest production
accuracy in the S-band, and Gw and GwW have the highest production accuracy in the
L-band.
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In the L-band, the cases where Gi and GiW are misclassified as OW are more pro-
nounced. The AED value for the OW–Gi and OW–GiW combinations is less than 1.2, with a
commission error of 20.24% for Gi being wrongly classified as OW and 33.52% for GiW.
Combining optical images with classification results, it can be observed that the misclassi-
fied GiW regions are mainly concentrated in areas with a high degree of melting, where the
brightness in optical images is low and similar to that of seawater. This indicates that the
L-band has poor classification capability for thinner sea ice (Gi, GiW) and is susceptible to
confusion with seawater, which is consistent with the conclusions discussed in Section 4.1.1.
Although the misclassification between Gw and GwW is more noticeable, both of them can
be well distinguished from OW and Gi. The classification accuracies for Gw and GwW
are 68.85% and 65.50%, respectively, the highest among the three bands. The L-band is
better suited for the classification of Gw and GwW sea ice, which have rough surfaces and
complex internal structures.

In comparison to the L-band, the S-band shows improved production accuracy for
OW and GiW, but its accuracy for Gw decreases significantly, with a classification accuracy
of only 31.19%. Gw is often misclassified as Gi and GiW, with commission errors of 27.82%
and 29.31%, respectively. In Section 4.1.2, we discussed that S-band polarimetric features
perform well in the Gi–Gw, Gi–GwW, and GiW–GwW combinations, with commission
errors for these combinations all below 5%. This observation supports the earlier conclusion.
The S-band, with a wavelength situated between the L-band and C-band, exhibits relatively
balanced performance in classification, with an overall accuracy lying between that of the
two bands.

OW exhibits the highest production accuracy in the C-band. Combining the production
accuracies of OW in the L-band and S-band, we can observe that using shorter-wavelength
bands results in higher classification accuracy for OW. In the C-band, the AED value for the
OW–Gi combination is 2.14, with commission errors for Gi and Gw being only 0.03% and
0.16%, respectively. The AED for the Gi–Gw combination is 0.85, with Gi being misclassified
as Gw at an error rate of 14.07%, and Gw being misclassified as Gi at an error rate of 26.08%.
While the C-band does not exhibit the highest production accuracy for GwW, it is only
slightly lower than the L-band.

To summarize, the commission error for various type combinations within each band
is consistent with the separability findings outlined in Section 4.1. Essentially, combinations
with low separability demonstrate noticeable commission errors, whereas combinations
with high separability result in minimal commission errors.

5.1.2. Single-Frequency Classification Results

In order to discuss the composition of the optimal feature sets for each band and
reduce data redundancy, we input the feature sets for each band into an SVM classifier
and sequentially reduce the number of input features (N) using the RFE method. We
then compare the classification accuracy at different numbers of features. The partial
classification results for each wavelength band, shown in Figures 11 and 12, illustrate
the classification accuracy of the five sea-ice types across different wavelength bands and
feature counts.

Figure 12a–c illustrate the production accuracy trends for L-band, S-band, and C-band
classifications, respectively, while Figure 12d depicts the overall single-frequency classi-
fication accuracy trend. The x axis represents the number of features in the dataset, with
an upper limit corresponding to the dimension of the respective polarization feature set.
The y axis represents the production accuracy. These trend graphs are valuable for compre-
hending the connection between the number of features and production accuracy as well
as the overall accuracy for a specific feature count and sea-ice type.
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Combining Figures 11 and 12, it can be observed that when N = 1, the overall accuracy
for all three bands is relatively low, and achieving high accuracy with a single feature is
currently challenging. As the number of features increases, the user accuracy for most
sea-ice types improves to varying degrees. For example, in the C-band, when N = 5, the
production accuracy for Gw is only 23.60%, but when N = 6, the production accuracy
reaches 65.51%, marking an improvement of 41.91%. The feature introduced at this point is
α which exhibits strong separability in the Gi–Gw combination with an ED value of 2.41.
Its strong separability contributes to the overall accuracy improvement. Simultaneously,
there are cases where production accuracy decreases with an increase in the number of
features. In the L-band, for instance, the production accuracy for OW decreases from an
initial 91.40% to a minimum of 80.10% as the number of features increases. This decrease in
accuracy is attributed to the fact that OW’s backscatter coefficient in the L-band is close to
the baseline noise and exhibits different regions in different polarization feature images.
As the number of features increases, this effect becomes more pronounced, leading to
decreasing production accuracy. When N is greater than 6, the overall accuracy trends in
the L-band and C-band are not very significant, with variations typically remaining within
approximately 1‰.

According to Figure 12d, the highest overall classification accuracies for the L-band,
S-band, and C-band are 73.56%, 77.74%, and 85.74%, respectively. When each band achieves
its highest classification accuracy, the corresponding number of features in the polarization
feature set are 9, 6, and 6 for the L-, S-, and C-band, respectively. Based on this, the
composition of the optimal polarization feature sets for each band is detailed in Table 10.

Table 10. The optimal single-frequency feature sets.

Band Polarimetric Feature Total

L-band SE, SEI, Span, α, λ2, H, λ3, SEP, α1 9
S-band SEI, SE, Span, PV-FREEMAN, λ1, λ2 6
C-band SE, SEI, Span, λ3, PV-FREEMAN, α 6

By comparing the overall accuracy of each band, we found that although the L-band
has higher classification accuracy for Gw and GwW, its overall accuracy is lower than that
of the S-band and C-band. “Overall” means that errors have been added for all types, so
the ice conditions have some impact on the overall accuracy [42]. In this experimental
scenario, Scene 1, experts statistically interpreted various types of sea ice in the image, with
the proportion of seawater samples accounting for 58.83%, and other types accounting
for about 10%. The classification accuracy of OW has the highest contribution to the
overall accuracy, so the high production accuracy of the C-band for OW gives it a higher
overall accuracy.

5.2. Multi-Frequency Sea-Ice Classification
5.2.1. Multi-Frequency Classifier Selection

Selecting one or more features directly related to the classification performance of
classifiers is crucial in determining the best classifier–feature combination for ice classifi-
cation [46]. Therefore, to assess the performance differences of these combinations, it is
essential. We arrange the optimal polarimetric feature sets for each band in descending
order according to the Ice Type values to form multi-dimensional polarimetric feature sets.
Similarly, we employ the RFE method to explore the combinations of different classification
methods using the best feature sets, where N is greater than or equal to 3. The classification
accuracy of different classifier–feature combinations is displayed in Figure 13.

By observing Figure 13, we can see that the number of features required and their
corresponding classification accuracy for different classifiers to achieve the highest overall
accuracy are as follows: when using the ML classifier, 14 features are needed, with a
classification accuracy of 91.12%; when using the SVM classifier, 12 features are needed,
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with a classification accuracy of 94.55%; when using the RF classifier, 15 features are needed,
with a classification accuracy of 95.84%; when using the BPNN classifier, 15 features are
needed, with a classification accuracy of 94.83%. This indicates that the RF classifier
achieves the highest overall accuracy.
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With the continuous increase in the number of features in Figure 13, except for the ML
classifier, the classification accuracy of other classifiers improves to varying degrees. When
N exceeds 12, other classifiers exhibit a decreasing trend in classification accuracy or a
relatively stable classification accuracy. However, the RF classifier’s classification accuracy
continues to improve and achieves the highest overall accuracy in this experiment. This
advantage may be attributed to its suitability for handling large datasets compared to other
classifiers [47].

5.2.2. Multi-Frequency Classification Results

In Table 11, we illustrate the composition of the optimal multi-dimensional polarimet-
ric feature sets for each classifier. In this table, we use the term “band-feature” to indicate
the wavelength range to which the features belong.

Table 11. Each classifier corresponds to the composition of the optimal multi-dimensional polarization
feature set.

Classifier Polarimetric Features Total

SVM C-SE, C-SEI, L-SE, C-span, S-SEI, S-SE, S-span, L-SEI,
S-PV-Freeman, L-span, S-λ1, S-λ2 12

ML C-SE, C-SEI, L-SE, C-span, S-SEI, S-SE, S-span, L-SEI,
S-PV-Freeman, L-span, S-λ1, S-λ2, C-λ3, L-α 14

RF C-SE, C-SEI, L-SE, C-span, S-SEI, S-SE, S-span, L-SEI,
S-PV-Freeman, L-span, S-λ1, S-λ2, C-λ3, L-α, C-PV-Freeman 15

BPNN
C-SE, C-SEI, L-SE, C-span, S-SEI, S-SE, S-span, L-SEI,

S-PV-Freeman, L-span, S-λ1, S-λ2, C-λ3, L-α, C-PV-Freeman,
C-α, C-λ2, S-PV-Yamaguchi, L-λ3

19
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Even when using the same classifier, multi-dimensional polarimetric feature sets
achieve higher classification accuracy with fewer features than single-frequency features.
For example, with the SVM classifier, when N = 3, the multi-dimensional polarimetric
feature set achieves an overall accuracy of 93.39%, significantly higher than the highest
single-frequency overall accuracy of 85.74%. When compared to the highest classification
accuracy in the three bands, the classification accuracy of the optimal multi-dimensional
polarimetric feature set can be improved by 9% to 22%. The optimal multi-dimensional
polarimetric feature set combines the excellent performance of the C-band in ice–water
discrimination and the L-band in classifying ice types, resulting in a higher overall accuracy.

6. Validation and Comparison
6.1. Generalized Performance Verification

To ensure that the new sea-ice classification method based on feature selection from
multi-dimensional SAR observational data proposed in this paper is equally applicable
to other scenes, we selected four additional scenes for result comparison and validation.
Among them, Scene 5, which has a different collection location and date from Scene 1, was
chosen for single-band classification results and for comparing the selection of multi-band
features and classifiers. The other three scenes were used to validate the feasibility of
the method.

We utilized the data from Scene 5 to extract the polarimetric features listed in Table 5.
The single-band polarimetric feature set was employed to obtain classification results,
and confusion matrices were calculated. Figure 14 illustrates the variation in overall
classification accuracy of the single-band feature set as N decreases.
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Observing Figure 14d, we find that, unlike Scene 1, in Scene 5, the overall classification
accuracy using the L-band feature set is the highest. This is because the classification
accuracy is related to the number of sea-ice samples in the data, and in Scene 5, the number
of sea-ice samples is much higher than that of seawater. Therefore, the L-band has higher
classification accuracy among sea-ice classes compared to the C-band, resulting in higher
overall classification accuracy. However, by observing Figure 14a–c, we can see that the
classification capabilities of single-band feature sets among different sea-ice types are
consistent with Scene 1. Specifically, OW and Gi have the highest classification accuracy
in the C-band, GiW has the highest classification accuracy in the S-band, and Gw and
GwW have the highest classification accuracy in the L-band. Moreover, the number of
features required to achieve the highest classification accuracy in each band is consistent
with Scene 1. Therefore, we can consider the single-band optimal feature set discussed in
this study to be applicable to some extent.

Based on the arrangement of all features in the single-band feature set in Table 10,
sorted in descending order of AED, we constructed a multi-band feature set. This multi-band
feature set was sequentially input into different classifiers, and the classification results
under different feature scenarios were discussed. The variation in overall classification
accuracy is illustrated in Figure 15.
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From Figure 15, it can be observed that the RF classifier also achieved the highest
classification accuracy. Applying the corresponding feature sets from Table 11 to other
scene data and using different classifier–feature combinations, the classification results
are shown in Figure 16. In all four scenes, the highest classification accuracy is achieved
using the RF classifier, with accuracies of 91.74%, 89.74%, 92.84%, and 93.4%. Therefore, the
proposed method in this study can achieve high-precision classification of sea ice during
the melting period in the Bohai Sea.
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6.2. Comparison of Other Methods

We simulated Sentinel-1 satellite’s HH + HV dual-polarization data using C-band data
and ALOS-2’s HH + HV dual-polarization data using L-band data. There are two scenes,
namely Scene 1 and Scene 5. Additionally, we employed full-polarization data from the
C-band and applied the classification methodology from a previous study on Bohai Sea ice
classification [48]. The classification accuracy results for both scenes are shown in Table 12.

Table 12. Dual-polarization data and previous research classification accuracy table.

Band Polarization Mode Scene Overall Accuracy

L
HH + HV Scene 1 58.57%
HH + HV Scene 5 63.68%

C

HH + HV Scene 1 64.52%
HH + HV Scene 5 55.23%

HH + HV + VH + VV Scene 1 79.31%
HH + HV + VH + VV Scene 5 68.89%

By comparing the classification accuracy of dual-polarization data in Table 12 with the
accuracy achieved using the multi-feature combinations discussed in this study, it is evident
that the accuracy is higher with multi-band full-polarization data in different scenarios.
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This confirms the superiority of full-polarization data over using only dual-polarization
data. The comparison with previous studies on C-band data further validates the feasibility
of using multi-band data for sea-ice classification during the melting period.

7. Discussion and Conclusions

In this study, we proposed an ice classification method based on multi-dimensional
SAR data feature selection. The new method was applied to the Bohai Sea and successfully
classified OW, Gi, GiW, Gw, and GwW during the ice melting period.

To obtain multi-frequency, full-polarization PolSAR ice data during the ice melting
season, the research team conducted a series of flight experiments over the Bohai Sea
on 27–28 February 2022. They used a Modern Ark 60 aircraft equipped with a multi-
dimensional SAR system and successfully acquired PolSAR data in the L-band, S-band,
and C-band. This marked the first time that airborne SAR data were collected during the
ice melting season in the Bohai Sea, providing valuable multi-frequency polarization data
for ice research.

As the foundation of classification, the selection of polarization features is crucial.
Firstly, we calculated the Euclidean distances between different types of sea ice and as-
sessed the separability of 51 polarization features in the L-band, S-band, and C-band. The
following conclusions were drawn: the L-band is suitable for ice type recognition, the
S-band is suitable for classifying thin ice, and the C-band is suitable for ice–water classifica-
tion. The results demonstrate that the L-band has 12 features, the S-band has 9 features,
and the C-band has 12 features, totaling 33 polarization features with strong separability.
Among them, SE, SEI, and Span have shown outstanding performance in all three bands.
Additionally, there are seven common polarization features that exhibit strong classification
abilities in all three bands, and it is evident that volume scattering parameters are more
suitable for classifying ice during the melting season than surface scattering parameters.

Furthermore, we constructed the eligible polarization features into polarization feature
sets for each frequency band. Combining the RFE method, we input the feature sets into the
SVM classifier and obtained classification results for different feature counts in each band.
The results revealed that in the C-band, OW and Gi had the highest classification accuracy,
GiW achieved the highest classification accuracy in the S-band, while Gw and GwW had
the highest classification accuracy in the L-band. This can be attributed to the strong
electromagnetic wave absorption of seawater at low frequencies. In the L-band images, the
backscatter coefficient of seawater is lower, approaching the base noise level, resulting in
lower classification accuracy for OW. Sea ice usually has a rough surface, and the L-band
has better electromagnetic wave penetration capability, providing richer information about
the internal structure of sea ice. Therefore, it achieves higher classification accuracy for
rough sea-ice types like Gw and GwW, which is consistent with the findings in [35,36].

Finally, we utilized the SVM classifier to obtain single-frequency classification results
and discussed the identification of the optimal single-frequency polarization feature set.
We constructed a multi-dimensional polarization feature set by combining the optimal
polarization features from the L-band, S-band, and C-band. Using the RFE method, we
input these feature sets into four different machine learning classifiers. By comparing the
ice classification accuracy at different feature counts, we discussed the composition of the
optimal multi-dimensional SAR polarization feature set for different classifiers. In the
case of using the SVM classifier, the multi-dimensional polarization feature set exhibited
improved classification accuracy compared to the three single-frequency polarization
feature sets, with improvements ranging from 9% to 22%. The highest classification
accuracy among different feature–classifier combinations was achieved when using the RF
classifier at 95.84%. We validated our proposed method using verification data, and the
results similarly demonstrated that our method is effective for classifying sea-ice types OW,
Gi, GiW, Gw, and GwW during the melting season in the Bohai Sea.

According to the experimental results in this paper, we observed that the SVM classifier
achieves higher classification accuracy when using a single-band feature set. In this case,
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the feature set contains fewer features with strong data correlation, making SVM more
robust in handling the data. When using a multi-band feature set, which contains more
features than the single-band feature set and is more complex, the RF classifier’s accuracy
is superior to other models. It is mentioned that RF is more suitable for handling complex
datasets, which aligns with the conclusions drawn in our paper.

We verify the generalization performance of the model by using four-scene validation
data. The results of the validation indicated that the classification accuracy exceeded
89.74% across various scenarios. Additionally, we simulated Sentinel-1’s HH + HV dual-
polarization data using C-band data and ALOS-2’s HH + HV dual-polarization data using
L-band data. The results demonstrate that the comprehensive use of full-polarization
data is superior to using only dual-polarization data. The comparison with previous
studies on C-band data further validates the feasibility of using multi-band data for sea-ice
classification during the melting period.

It might be challenging to obtain multi-band synchronous satellite data for sea-ice
classification. However, in regions with high-frequency satellite coverage, such as polar
areas, it is possible to leverage data from multiple satellites to achieve near-real-time sea-ice
classification. Sea-ice melting is a slow process, and with the continuous increase in satellite
data in the future, a coordinated approach using near-real-time data from multiple satellites
is a possibility. This study focuses on exploring the classification capabilities of different
bands in sea-ice classification, and the conclusions drawn from single-band data can be
applied to satellite data. The conclusions obtained from the multi-frequency data can be
used as reference for the subsequent development of multi-frequency satellites.

In conclusion, the novel sea-ice classification method based on PolSAR observation
data feature selection proposed in this study has effectively classified sea ice during the
melting season in the Bohai Sea. Currently, many deep learning models are applied to
sea-ice classification, and these models often require a large amount of data for support to
achieve good results. However, obtaining synchronized data for multi-band full polariza-
tion is challenging, and the dataset in this study may be insufficient to support the use of
such networks. The future direction of improvement for this work involves accumulating
a large amount of multi-band data. This can be achieved by conducting more airborne
SAR flight experiments while simultaneously collecting near-real-time data from areas
with high-frequency satellite coverage, including data from C-band, L-band, and S-band
satellites. Applying airborne remote sensing methods to satellite remote sensing can be
beneficial for improving the accuracy of sea-ice classification during the melting period.
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