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Abstract: As artificial intelligence technology advances, the application of object detection technology
in the field of SAR (synthetic aperture radar) imagery is becoming increasingly widespread. However,
it also faces challenges such as resource limitations in spaceborne environments and significant un-
certainty in the intensity of interference in application scenarios. These factors make the performance
evaluation of object detection key to ensuring the smooth execution of tasks. In the face of such com-
plex and harsh application scenarios, methods that rely on single-dimensional evaluation to assess
models have had their limitations highlighted. Therefore, this paper proposes a multi-dimensional
evaluation method for deep learning models used in SAR image object detection. This method
evaluates models in a multi-dimensional manner, covering the training, testing, and application
stages of the model, and constructs a multi-dimensional evaluation index system. The training stage
includes assessing training efficiency and the impact of training samples; the testing stage includes
model performance evaluation, application-based evaluation, and task-based evaluation; and the
application stage includes model operation evaluation and model deployment evaluation. The evalu-
ations of these three stages constitute the key links in the performance evaluation of deep learning
models. Furthermore, this paper proposes a multi-indicator comprehensive evaluation method based
on entropy weight correlation scaling, which calculates the weights of each evaluation indicator
through test data, thereby providing a balanced and comprehensive evaluation mechanism for model
performance. In the experiments, we designed specific interferences for SAR images in the testing
stage and tested three models from the YOLO series. Finally, we constructed a multi-dimensional
performance profile diagram for deep learning object detection models, providing a new visualization
method to comprehensively characterize model performance in complex application scenarios. This
can provide more accurate and comprehensive model performance evaluation for remote sensing
data processing, thereby guiding model selection and optimization. The evaluation method proposed
in this study adopts a multi-dimensional perspective, comprehensively assessing the three core stages
of a model’s lifecycle: training, testing, and application. This framework demonstrates significant
versatility and adaptability, enabling it to transcend the boundaries of remote sensing technology
and provide support for a wide range of model evaluation and optimization tasks.
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1. Introduction

Target detection technology has now become a key research direction in the analysis of
synthetic aperture radar (SAR) images [1]. SAR images, with their unique ability to provide
high-quality data under all-weather conditions, as well as various lighting and weather
conditions, play a vital role in multiple fields, such as environmental monitoring [2], urban
planning [3], and military reconnaissance [4]. However, researchers also face multiple chal-
lenges, including resource constraints [5], complex application scenarios [6], the diversity
of interference [7], and real-time requirements [8].
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To meet the complex needs of specific application scenarios, precise evaluation of
model performance has become a key factor in improving task success rates [9]. This
evaluation involves quantifying a model’s performance in various scenarios, its ability
to handle interference, its resource use efficiency, and the extent to which it meets real-
time needs. Through this process, the suitability and efficiency of a model under specific
conditions can be judged, thereby guiding targeted improvements. This not only helps
to improve model performance but also promotes the development of SAR image target
detection technology to meet the growing application demands.

However, despite research progress in the performance evaluation of SAR image target
detection models, there is still much unexplored space in this field. Xiao et al. [10] compared
amodel’s parameter quantity, AP value, accuracy, and recall rate when evaluating algorithm
performance, validating the proposed algorithm’s advantages of high precision and light
weight. Liu et al. [11] performed performance evaluation and quantitative assessment on
the camouflage effect of SAR images, conducting comparative experiments using detection
accuracy, recall rate, and detection precision as evaluation standards and assessing the
performance and camouflage effect of detection models. Wei et al. [12] proposed an SAR
image small-target detection model and evaluated its performance, including the model’s
accuracy, the number of targets detected, the number of targets not detected, single-image
detection time, and generalization ability. Yasir et al. [13] proposed a multi-scale SAR
image target detection model and evaluated its performance, including precision, accuracy,
recall rate, F1 value, and FPS, and experimentally verified that the model improved the
distinguishability and anti-interference ability of weak and small-scale target detection in
SAR images. Ihmeida et al. [14] mainly studied how to improve SAR image despeckling
processing through deep learning technology in order to enhance the performance of
change detection (CD), using evaluation metrics including overall accuracy (OA) and
F1 score, demonstrating the effectiveness of the despeckling model in enhancing change
detection performance.

Bouraya et al. [15] conducted comparative experiments on the performance evaluation
of various target detection algorithms for the COCO dataset, including AP, AP50, AP75,
APS, APM, and APL, and designed a weighted scoring model (WSM) to evaluate these
target detection algorithms. Bulut et al. [16] evaluated lightweight target detection models,
mainly for low latency requirements and resource-limited scenarios. The models evaluated
include YOLOv5-Nano, YOLOX-Nano, YOLOX-Tiny, YOLOv6-Nano, YOLOv6-Tiny, and
YOLOvV7-Tiny, with evaluation metrics including memory usage, model parameter size,
inference time, energy consumption, AP, etc. Stankovic et al. [17] studied the performance
evaluation of YOLO models used for the automatic detection of crops and weeds based on
detection accuracy for evaluation. The results showed good training performance, reaching
about 70% average precision in 100 training sessions. Among them, YOLOv5x performed
the best among the studied models, with evaluation metrics including precision, recall rate,
mAPO0.5, mAP, the number of parameters, etc. Wang et al. [18] evaluated and compared
the performance of eight mainstream detection models in bird target detection tasks, using
evaluation metrics including mAP, mAP50, mAP75, and FPS, finding that, compared to
single-stage target detection models, two-stage target detection models have stronger
robustness to changes in bird image foreground scaling and background interference. Heda
et al. [19] conducted human detection experiments, verifying the performance of different
models in the YOLO family, showing that yolov5 performed best in terms of mAP accuracy,
while YOLOv3 was the fastest but slightly less accurate, with evaluation metrics including
precision, recall rate, mAP, and detection time.

Gallo et al. [20] built a dataset of weeds and tested YOLOV7, assessing the model’s
performance, including with respect to mAP50, recall rate, and accuracy; the experiment
showed the potential of the YOLOv7 model in weed detection. Bergstrom et al. [21] consid-
ered three main image quality factors—resolution, blur, and noise—and their relationship
with the performance of deep learning-based target detection models, studying the impact
of these image quality variables on the average precision (mAP) of target detection models,
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and they evaluated the performance of models trained only on high-quality images, as well
as those fine-tuned on low-quality images. Additionally, the authors mapped the main
image quality variables to terms used in the General Image-Quality Equation (GIQE)—
namely, ground sample distance (GSD), relative edge response (RER), and signal-to-noise
ratio (SNR)—and assessed the applicability of the GIQE function form to modeling target
detector performance in the presence of significant image distortion. Gordienko et al. [22]
studied the performance of target detection on multimodal satellite images using the Ve-
hicle Detection in Aerial Imagery (VEDAI) dataset, adopting the YOLO (You Only Look
Once) framework, covering RGB, IR, and RGB + IR modalities, as well as different image
sizes ranging from 128 x 128 to 1024 x 1024. The evaluation method included 10-fold
cross-validation to ensure the model’s generalization ability, mainly relying on the average
precision (mAP) metric, especially mAP@Q.5 at an IoU (intersection over union) threshold
of 0.5, as well as the mAP range from 0.5 to 0.95; this shows that through this hybrid
approach, mAP can be significantly improved at specific image sizes, providing valuable
data-driven insights into how to optimize target detection systems. Tarekegn et al. [23]
explored the application of deep learning in automatic image preprocessing and target de-
tection, evaluating and comparing three state-of-the-art YOLO models, including YOLOVS,
YOLOvV7, and YOLOVS5. A large number of experiments were conducted using publicly
available underwater image datasets, with evaluation metrics including precision, recall
rate, mAP50, mAP, FPS, model size, etc. Huo et al. [24] addressed the weakly supervised
target detection (WSOD) problem in remote sensing images, proposing a complementary
detection network (CDN) and instance difficulty scoring (IDS) method. To evaluate model
performance, researchers conducted experiments on the NWPU VHR-10.v2 and DIOR
datasets, mainly using mean average precision (mAP) and correct localization (CorLoc) as
evaluation metrics. Additionally, compared to existing fully supervised and weakly super-
vised target detection methods, the proposed method achieved significant improvements
in mAP and CorLoc. Despite high computational complexity during training, the inference
time was comparable to that yield by comparative methods, indicating good performance
and feasibility in practical applications.

Pu et al. [25] proposed an image-to-image translation-based cross-domain learning
method for target detection tasks in synthetic aperture radar (SAR) images. To evaluate
model performance, the researchers used a variety of standard evaluation metrics, including
inception score (IS), Fréchet inception distance (FID), recall, precision, and mean average
precision (mAP). The experimental results showed that, compared to traditional data aug-
mentation methods, the proposed method achieved significant improvements in detection
accuracy and reduced missed detection rates. Huang et al. [26] proposed a CCDS-YOLO
multi-category synthetic aperture radar (SAR) image target detection model. To evaluate
model performance, the researchers conducted experiments on the filtered MSAR dataset,
using comprehensive evaluation metrics including precision, recall, average precision
(AP), mean average precision (mAP), etc. Hindarto et al. [27] conducted a comprehensive
evaluation of the performance of two popular deep learning algorithms, ConvDeconvNet
and UNET, in underwater fish target detection. The researchers used datasets containing
various fish species, considering factors such as detection accuracy, processing speed, and
model complexity. The results showed that ConvDeconvNet performed superiorly in
terms of detection accuracy, while UNET had a significant advantage in processing speed,
making it a viable option for applications requiring real-time performance. The cited study
also explored the trade-off between accuracy and speed and emphasized the importance
of using diverse datasets for training and testing models, as this significantly affects the
overall performance of a model. Hernandez et al. [28] worked on model performance
evaluation involving comparing the performance of five different deep learning target
detection models in identifying shrapnel in ultrasound images. The evaluation metrics
included mean average precision (mAP), intersection over union (IoU), and inference time.
These researchers used a dataset containing over 16,000 ultrasound images for training
and testing to determine which model maintained high accuracy while having the fastest
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inference speed. The results showed that the YOLOV? tiny model performed best in terms
of mAP and inference time and was, therefore, chosen as the most suitable model for this
application. Tekin et al. [29] studied the performance of small-target detection in regard
to aerial images, especially under conditions of degraded image quality (such as noise,
motion blur, and raindrops). These researchers used the YOLO series (YOLOv6, YOLOV?,
and YOLOVS) target detection models and evaluated their performance on original, de-
graded, and MPRNet image-enhanced images. The evaluation metrics used included
precision, recall, F1 score, and mean average precision (mAP). The experimental results
showed that image enhancement significantly improved the quality of target detection for
degraded images, especially for small targets. The YOLOv8 model performed best under
these conditions.

Ma et al. [30] provided a fair and comprehensive comparison platform for the field of
image-based 3D target detection. These researchers built a modularly designed code library,
devised robust training schemes, designed an error diagnostics toolbox, and discussed
current methods. They conducted an in-depth analysis of the performance of current
methods in different settings through these tools and discussed some open questions, such
as the differences in conclusions on the KITTI-3D and nuScenes datasets. The evaluation
metrics used included mean average precision (mAP), average precision (AP), and 3D IoU,
based on different IoU thresholds. Additionally, they proposed the TIDE3D toolbox for
the quantitative analysis of detailed features of detection models, including classification
errors, localization errors, duplicate errors, background errors, missing errors, ranking
errors, etc. Mora et al. [31] evaluated several techniques for accurately extracting 3D
object models, combining image-based deep learning target detection and point cloud
segmentation. These researchers compared various existing techniques, including bound-
ing box target detection, instance segmentation, and methods for estimating object masks
within bounding boxes. They conducted qualitative and quantitative analyses of these
techniques using multiple standards, including execution time, intersection over union
(IoU), chamfer distance (CD), and the distance between point cloud centers. Liu et al. [32]
proposed a lightweight deep learning model named empty road detection (ERD), and in
its evaluation, the researchers found that ERD could improve the frame processing rate of
EfficientDet, SSD, and YOLOvV5 by approximately 44%, 40%, and 10%, respectively. The
evaluation metrics used included the model’s accuracy, recall rate, precision, F1 score,
and latency with respect to the GPU and CPU. Additionally, the impact of ERD on the
frame rate in videos with different proportions of empty frames was also analyzed. Alin
et al. [33] evaluated the effects of different data augmentation methods when using the
YOLOVS5 algorithm in drone target detection. These researchers applied 14 types of data
augmentation techniques, including flipping, rotation, cropping, rotation, shearing, hue,
blur, grayscale, saturation, brightness, exposure, noise, cropping, and mosaic. After mea-
suring the precision-recall evaluation metrics for each type of data augmentation, the
results showed that the mosaic augmentation type provided the highest precision-recall
value of 0.993 in drone target detection, performing better than other augmentation types.
This study indicates that appropriately selecting data augmentation techniques can sig-
nificantly enhance target detection performance when using the YOLOV5 algorithm in
drone target detection. Wang et al. [34] evaluated the effectiveness of their proposed cross-
modal knowledge distillation method (CoLD) in synthetic aperture radar (SAR) image
target detection tasks. Specifically, the AP metric was used to assess the model’s overall
performance at different IoU thresholds, while AP50 was employed to evaluate the model’s
performance at IoU = 0.50; these two metrics collectively reflected the model’s accuracy
and generalization ability. Topuz et al. [35] evaluated the effectiveness of YOLO models
(YOLOv3, YOLOV5, YOLOv7, and YOLOVS) in detecting mitotic cells in various types
of cancer. The evaluation metrics used included intersection over union (IoU), F score
(combining precision and recall), and mean average precision (mAP), focusing on their
ability to accurately identify mitotic cells in histopathological images. YOLOVS stood out
as the most successful model, showcasing high recall values and robust performance across
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different cancer types, highlighting its potential in real-time clinical applications. Zihan
et al. [36] conducted a meta-analysis to comprehensively evaluate the performance of deep
learning in vision-based road damage detection, particularly emphasizing the uncertainty
calculation of F1 scores in evaluating deep learning model performance. The cited study
used the Delta method to estimate the standard error of the reported F1 scores, thereby
calculating the within-study variance, using random effects meta-analysis methods to
synthesize the results of multiple studies, providing a comprehensive evaluation of the per-
formance of deep learning models in road damage detection applications. Haimer et al. [37]
compared two state-of-the-art target detection models—YOLOv7 and YOLOv8—in terms of
detecting potholes in road images. To evaluate these models” performance, the researchers
used multiple target detection metrics, including precision, recall, mean average precision
(mAP), F1 score, accuracy, inference time, and confusion matrices. These metrics helped the
researchers measure the models’ ability to correctly identify and locate targets (potholes) in
images, as well as the models’ performance at different classification thresholds. Through
these evaluations, the researchers were able to determine which model offered the best bal-
ance between speed and accuracy. Bakir et al. [38] evaluated the robustness of YOLO object
detection algorithms in detecting objects in noisy environments. These researchers created
four case studies by injecting different proportions of Gaussian noise into the original
image dataset to evaluate the YOLOVS5 algorithm’s ability to detect objects in noisy images.
The evaluation metrics used included the confusion matrix, recall, precision, F1 score, and
mean average precision (mAP). The experimental results showed that as the proportion
of injected noise increased, the performance of the YOLO algorithm gradually declined,
especially when the noise ratio reached 100%, at which point performance significantly
decreased, most objects could not be detected, and the detected object labels were also
wrong. Mohd et al. [39] evaluated and compared the performance of YOLOv5, YOLOv6,
and YOLOvV7 models in road defect detection and classification. The evaluation metrics
used included the model’s training time, mAP@0.5 (mean average precision), accuracy, and
inference speed. The experimental results showed that the YOLOv7 model performed best
in terms of mAP@0.5 score, reaching 79.0%, and had the fastest inference speed, processing
255 test images in 0.47 min. Additionally, the cited paper explored the impact of different
data augmentation techniques and evaluated the potential of inference and fine-tuning to
enhance accuracy. Tummuri et al. [40] evaluated the performance of YOLOVS5 (You Look
Only Once version 5) in electronic device classification. The evaluation metrics included
precision, recall rate, F1 score, and mean average precision (mAP). The research results
showed that YOLOVS5 excelled in recognition accuracy, with a precision of 95.55%, a recall
rate of 95.84%, an F1 score of 96.54%, and an mAP of 94.63%. Additionally, YOLOv5
performed excellently in real-time processing, being capable of processing images at a rate
of 45 frames per second, and its mAP in real-time systems was more than twice that of
other systems.

In summary, the current stage of target detection model performance evaluation has
two main shortcomings: the limitations of single-dimensional evaluation and the lack of a
comprehensive evaluation mechanism.

(1) The limitations of single-dimensional evaluation

In the existing literature, the performance evaluation of target detection models is often
limited to the testing phase, neglecting the model’s training and actual application process.
This single-dimensional evaluation method fails to fully capture a model’s performance in
actual deployment. Especially for SAR image processing, models face different challenges
and performance requirements at the training, testing, and application stages. For example,
a model may exhibit excellent accuracy during the testing phase but require significant
computational resources during training or fail to effectively adapt to new data types and
complex scenes when processing actual SAR images. Without single-stage evaluation, we
cannot deeply understand the comprehensive performance and applicability of models
when dealing with SAR image data.
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(2) The lack of a comprehensive evaluation mechanism

Current evaluation methods often list multiple detection results simply, without
providing a comprehensive evaluation of a model’s overall performance or an in-depth
analysis of its applicability. The limitation of these methods is that although a model’s
performance can be observed from multiple dimensions, there is a lack of a comprehensive
performance evaluation system, making it difficult to guide model optimization and
practical application decisions. In the field of SAR image applications, whether a model
can adapt to different environmental conditions, its robustness in handling high data
diversity, and its performance in terms of resource consumption and execution efficiency
are key indicators for assessing whether it meets practical application needs. Without a
comprehensive evaluation mechanism, it is difficult to fully evaluate the true value and
potential application range of models in processing SAR images.

Therefore, to address the limitations of single-dimensional evaluation and the lack of a
comprehensive evaluation mechanism in the field of target detection, this paper proposes a
multi-dimensional evaluation method for deep learning models used in SAR image target
detection. The contributions of this paper are as follows:

e  Proposing a multi-dimensional evaluation metric system for deep learning models in
SAR image target detection, covering the training stage, testing stage, and application
stage. The training stage includes training efficiency and training sample impact; the
testing stage includes model performance, evaluation based on model application,
and evaluation based on model tasks; and the application stage includes evaluation
for model operation and model deployment.

e Proposing a multi-indicator comprehensive evaluation method based on entropy
weight correlation scaling, aimed at comprehensively evaluating multi-dimensional
indicators, providing a mechanism for balanced and comprehensive evaluation of
model performance.

e  Constructing a multi-dimensional deep learning target detection performance pro-
file, presenting the performance of target detection models in a multi-dimensional
visual manner.

The remainder of this paper is organized as follows: Section 2 introduces the mul-
tidimensional evaluation method for deep learning models aimed at SAR image target
detection; Section 3 introduces the multi-indicator comprehensive evaluation method based
on entropy-weighted relevance scaling; Section 4 presents the experiments and evaluation
results of this paper; and the conclusions of this paper will be given in Section 5.

2. Multidimensional Evaluation Method for Deep Learning Models for Synthetic
Aperture Radar Image Target Detection

2.1. The Implications of Multidimensional Evaluation Methods for Deep Learning Models

With the development of artificial intelligence technology, the demand for deep learn-
ing models tailored to specific scenarios and application backgrounds is increasing, es-
pecially for applications with limited resources, which require specific models to match.
Finding ways in which we can comprehensively, objectively, and systematically evaluate a
model have become an urgent issue to be addressed on the path of artificial intelligence
technology development, and there is still a large gap in the research in this area. Therefore,
establishing a complete multi-dimensional evaluation system is very necessary.

The multi-dimensional evaluation method of deep learning, that is, an application-
oriented, multi-dimensional evaluation method based on model applicability, aims to
provide model decision-makers with reliable, comprehensive, and systematic performance
and applicability assessments. Specifically, this evaluation method covers the key stages
of deep learning models according to the time dimension, including the training phase,
testing phase, and application phase.

The evaluation during the training phase is divided into two aspects: One is the
processual representation of the model from the beginning to the end of training, which
records the basic evaluation results of model training. The other is the assessment of the
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impact of different training samples on model performance, including aspects such as the
balance, scale, annotation quality, and contamination of the data sample set.

The testing phase evaluation is carried out after model training is completed, consisting
of the performance of a large number of tests of different dimensions and intensities to
ensure the diversity and comprehensiveness of this phase’s assessment. Typically, the input
of the model during the testing phase consists of samples prepared according to testing
dimensions, and the output is the model’s test results.

The application phase evaluation assesses the usability of a model intended for de-
ployment on end devices. This phase is closely integrated with the specific application
scenarios of the deep learning model, directly reflecting the degree of match between the
model and the application tasks, and the model can be adjusted accordingly based on the
results of the application phase evaluation.

2.2. Multidimensional Evaluation Method of Deep Learning Models
2.2.1. Principles for Constructing a Multidimensional Evaluation Indicator System for
Deep Learning

The construction of an indicator system is a task where “the benevolent see benev-
olence, and the wise see wisdom”. Different constructors and evaluators of indicator
systems will start from different perspectives, building various evaluation indicator sys-
tems. Based on the work of this article, the authors have summarized several principles for
constructing an evaluation indicator system. Figure 1 shows the process of constructing a
multidimensional evaluation system for deep learning models, which is mainly divided
into two parts. The first is the selection and construction of indicators for multidimensional
evaluation, including principles of the indicator construction framework, basic principles of
indicator construction, and hierarchical principles of indicator construction. The second is
the multidimensional evaluation indicator system for deep learning, including the training
phase, testing phase, and application phase.

Selection and Construction of Comprehensive Process Evaluation Metrics
|

Principles of Metric Construction ~ Fundamental Principles of Metric Hierarchy-Based Principles for
Framework Construction Metric Construction

Comprehensive Process Evaluation Metric System

! 1) !
Training Testing Application

Figure 1. Flow chart of the construction of a multi-dimensional evaluation system for a deep
learning model.

In the selection and construction of multidimensional evaluation indicators, we have
elaborated on three principles, among which the principles of the indicator construction
framework include comprehensiveness and multidimensionality, dynamism, and speci-
ficity. The principles for indicator construction are comprehensiveness, systematicness,
representativeness, accessibility, distinctiveness, and low overlap. The hierarchical princi-
ple of indicator construction indicates that the construction of evaluation indicators should
have a certain level of logical distinction.

This multidimensional evaluation system should comprehensively cover all key stages
of the model from training to application and integrate the evaluation indicators of each
stage to form a layered and progressive structure. In the process of constructing this evalu-
ation system, the key is to not only comprehensively consider the model’s task scope and
application environment but also meticulously sort out the logical connections between
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different levels within the evaluation system. Through this method, evaluation indicators
can work synergistically at different levels, ensuring the comprehensiveness and systemat-
icness of the evaluation. Such a methodology not only provides structured guidance for
evaluation but also enhances the credibility and practicality of the evaluation results.

(1) Principles of a Multidimensional Evaluation Index System Framework for Deep
Learning Models

(a) Comprehensiveness and multidimensionality: The multidimensional eval-
uation index system for deep learning models must be comprehensive and
embody multiple dimensions. The primary goal of any evaluation index is to
facilitate scientific decision making. Therefore, the construction of this system
must comprehensively and multidimensionally reflect the aspects of the evalu-
ated object that are of concern to decision-makers. A well-constructed system
enhances credibility and adequately guides decision making.

(b)  Dynamism: The deep learning model’s multidimensional evaluation index
system needs to be dynamic. As the model is applied to varying scenarios
or tasks, the performance evaluation perspectives and content of interest to
decision-makers will change. Consequently, the evaluation index system
should also be subjected to necessary adjustments and modifications.

(c) Targetedness: The multidimensional evaluation index system for deep learning
models should be specifically tailored to the different scenarios and tasks for
which the model is designed. The same model may require different evaluation
systems when applied to varying scenarios and tasks, necessitating a context-
specific analysis and the construction of an evaluation system.

(2) Basic Principles of a Multidimensional Evaluation Index System for Deep Learn-
ing Models

(a) Comprehensiveness: The selection of indicators should be as comprehensive
as possible, covering various aspects of deep learning models across time
dimensions.

(b) Systematic approach: The essence of the multidimensional evaluation of deep
learning models should be completely reflected. This includes covering key
stages of model evaluation and incorporating typical indicators.

() Representativeness: The chosen indicators should be able to reflect the charac-
teristics of a particular dimension and have general applicability.

(d)  Accessibility: The measurement of indicators should be straightforward, and
the required data for calculating these indicators should be easily obtainable
and reliable, facilitating easy computation.

(e) Distinctiveness: The indicator system should cover the main aspects of the
multidimensional evaluation of deep learning models while also being concise
and not overly numerous. There should be clear distinctions between different
indicators.

63) Low overlap: There should be minimal overlap between evaluation indicators
to avoid distortion of the evaluation results.

(3) Hierarchical Principle in Constructing a Multidimensional Evaluation Index System
for Deep Learning Models

In addition, the overall structure of the multidimensional evaluation for deep learning
models should possess a certain logical hierarchy. The multidimensional evaluation system
of deep learning models includes a tiered structure built around key stages from training
to deployment, integrated with evaluation indicators pertinent to each phase. During the
construction of the evaluation system, it is essential not only to consider the model’s task
scope and application context but also to take into account the overall logical relationships
within the evaluation system. This involves adhering to the logical connections between
different stages within the index system and constructing evaluation indicators from
various perspectives.
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2.2.2. Deep Learning Object Detection Model Iterative Development Cycle: Design,
Verification, Training, and Deployment

The iterative development and optimization cycle of deep learning object detection
models roughly consists of the following stages: a design phase, a design verification phase,
model training, training phase evaluation, model performance testing and performance
evaluation, application feasibility assessment, and model application. In Figure 2, the
red text indicates the key stages of this process—the training phase, testing phase, and
application phase. The purple text represents the feedback established during the testing
phase and the training phase, while the green text represents the feedback established
between the application phase and the design phase. This figure details the critical stages in
the iterative optimization process of deep learning models, highlighting the importance of
evaluations during the training, testing, and application phases. During the training phase,
evaluating the model involves not just assessing basic training outcomes, such as training
time, but also evaluating the model’s sensitivity to changes in training samples, including
in regard to dataset size and data contamination. The results of this phase will directly
impact performance during the testing phase. In the testing phase, the focus is on assessing
aspects such as the model’s robustness and generalizability. The test results and the model
training phase interact to form a closed-loop mechanism that guides model training. Finally,
in the application feasibility assessment phase, this step is crucial for verifying the model’s
feasibility and safety in actual deployment. Even if the model performs well during the
training and testing phases, its practical value may be significantly reduced if it cannot meet
the restrictions of application scenarios, among other factors. If the application scenario’s
restrictions are not met, it is necessary to redesign the network and return to the starting
point of the design to ensure a complete optimization closed loop. The specific details are
as follows.

Design Phase
Design Validation Phase
Model Training
. Application
Testing Phase Training Phase Evaluation Evaluation
Feedback
Feedback
Testing Phase
Feasibility Assessment for

Application

Model Application

Figure 2. Cyclical optimization evaluation process architecture for object detection models. This de-
scribes the process of cyclical optimization for object detection models. Initially, the model undergoes
design, followed by training and testing. Feedback is established between testing and training, and
then the model is subjected to an application feasibility assessment. Feedback between the application
feasibility assessment and the design phase is developed.

(1) Design phase: This is the preliminary stage of model construction, involving theoreti-
cal conception, goal setting, model architecture conceptualization, and preliminary
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selection of algorithms. The main purpose of this phase is to establish a clear research
plan and expected model performance goals.

(2) Design verification phase: At this stage, the model architecture and algorithms pro-
posed in the design verification phase are tested for theoretical feasibility, ensuring
they can meet the established research objectives.

(3) Model training: The designed and validated model is trained using actual training
samples.

(4) Training phase assessment: This assessment evaluates the efficiency of model training
and the impact of different training datasets on model performance.

(5) Model performance testing phase: After training is complete, the model is tested on a
predetermined test set to evaluate its generalizability, robustness, and key metrics.

(6) Testing phase feedback: There is a continuous feedback mechanism during the model’s
training and testing that is used to assess its performance. If the performance in the
testing phase does not meet requirements, this phase’s feedback will start retraining
the model.

(7)  Application feasibility assessment: Before being deployed in real scenarios, the model
is assessed to determine its performance in application settings. If it does not meet
application requirements, feedback from this stage will return the model to the design
phase for necessary adjustments and optimization.

(8) Model application: Finally, the model is deployed in actual application environments,
including servers and mobile devices.

With the development of artificial intelligence technology, the demand for SAR (syn-
thetic aperture radar) image object detection models is increasing, especially in resource-
constrained application scenarios, which require specific models to match them. Ways to
comprehensively, objectively, and systematically evaluate a model have become an urgent
problem to solve on the path of Al technology development, and there is still a large gap in
the research in this area.

Therefore, this paper proposes a multidimensional evaluation method for deep learn-
ing models aimed at SAR image object detection, focusing on three aspects: training phase
assessment, the model performance testing stage, and application feasibility assessment.
The goal is to address evaluation issues under the key feedback mechanism in the lifecycles
of SAR image object detection models, enabling researchers to accurately measure perfor-
mance bottlenecks of models and thereby develop more precise model iteration strategies.

2.2.3. Building a Multidimensional Evaluation Index System for Deep Learning Models
Aimed at Synthetic Aperture Radar Image Target Detection

In this study, we constructed a multidimensional evaluation indicator system for deep
learning models aimed at SAR (synthetic aperture radar) image target detection, as shown
in Figure 3. The solid frames represent evaluation indicators, while the dashed frames
represent evaluation dimensions. Evaluation indicators refer to the quantification of the
model’s performance on a specific task under a single and specific evaluation condition;
evaluation dimensions refer to a group of related evaluation conditions organized to reflect
the model’s performance under broader and more complex testing conditions.

The indicator system includes three key stages of model performance evaluation:
the training phase, the testing phase, and the application phase. Specifically, during the
training phase, it mainly divides into two aspects: first, the model’s training efficiency, and
second, the influence of training samples. In the assessment of training efficiency, we mainly
evaluated the basic attribute results of model training, including the evaluation of model
attributes and the impact of the objective function. The evaluation of model attributes
includes training time and convergence time; the impact of the objective function includes
the degree of loss reduction and the degree of fit. In assessing the influence of training
samples, we evaluated the model’s sensitivity to changes in the training dataset, including
with respect to the size of the dataset and contamination situations. The evaluation during
the testing phase includes model performance, evaluation based on model application,
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and evaluation based on model tasks. In the part of the evaluation based on model appli-
cation, we constructed specific interferences for SAR images, covering several common
interference types in SAR images. Furthermore, in the evaluation based on model tasks,
considering the main object of this article is target detection models, we designed covering
target occlusion and the ability to reject unknown targets as two evaluation dimensions. In
the application phase, we constructed evaluation indicators based on model operation and
model deployment. The evaluation indicators based on model operation mainly include
the assessment of hardware architecture differences and model response intensity; the eval-
uation based on model deployment mainly includes model attributes, software platform
dependency, hardware platform support, and differences in deep learning frameworks.

{ Model attribute |
-->| Training Efficiency H
Training I Objective function influence |
g Phase : e . Training data set size
=i Training Sample Impact —‘
Training data set contamination
. | [ —
Multi-dimensional —>  Model performance | | Task indicator |
Evaluation Metric System - ; e .
for Deep Learning Testing > Model-based application & Interference adaptability
. Phase
Models Targeting SAR Gon i
Image Object Detection - Model-based task —‘
Open-set adaptability
N Model - I Model response strength |
1 odel execution H
I Hardware architecture difference |
,| Application ||

Phase { Model attribute |
T - -
Deep learning framework difference:
| P g o s |
-->| Model deployment |—
I Hardware platform support |
I Software platform dependency |
Primary Secondary Tertiary
Indicator Indicator/Dimension Indicator/Dimension

Figure 3. The construction of a multidimensional evaluation indicator system for deep learning
models aimed at SAR image target detection, divided into three levels of indicators. The first-level
indicators represent the three key stages of evaluation, the second-level indicators/dimensions
represent the main aspects of evaluation in each stage, and the third-level indicators/dimensions
represent more specific subdivisions of the main aspects of evaluation at each stage.

(1) Training Phase Assessment: Indices and Dimensions

The training phase is the initial critical stage in the assessment of deep learning models.
The effectiveness of the training process significantly influences whether a model’s perfor-
mance aligns with the decision-maker’s expectations. The training phase encompasses the
following two secondary indices: “Training Efficiency” and ‘Impact of Training Samples’.
Under ‘Training Efficiency’, there are two tertiary indices, and ‘Impact of Training Samples’
includes two evaluation dimensions. The definitions of the metrics during the training
phase are outlined in Table 1.
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Table 1. Construction of multi-dimensional evaluation metrics for deep learning models designed for

SAR image object detection.

Level 3 Level 4 Indicator Definition Indicator
Indicator Indicator Direction
Training Time The time elapsed from the start of training to its Negative
. completion
Model Properties - - —
. The time taken for the loss function to stabilize .
Convergence Time e Negative
from its initial state
The measure of the extent to which the loss
Loss Reduction Level function decreases during the t.rammg process, Positive
calculated as a percentage relative to the initial
loss value
Impact of Objective Function The measurement of the model’s adaptation to
the data, assessed by comparing the
. performance difference between the model with .
Fitment Level .. . Negative
respect to training and testing data to evaluate
whether the model accurately captures the data’s
characteristics and patterns
Task Metrics mAP Mean average precision (mAP) Positive
. Evaluating whether the model can maintain
Hardware Architecture . . . -
. Compute Consistency similar or close computational results when Positive
Differences . . .
running on different platforms or devices
Tmage Throughput The number of images tha.t the model can Positive
process within a unit of time
. Power Consumption The amount of electrical energy consumed by Negative
Model Response Intensity the model when operating at full load
The proportion of computational resources (e.g.,
Compl.lt.e Rgsource CPU, GPU, memory, etc.) occupied by the model Negative
Utilization : .
during runtime
. . The amount of storage space occupied by the .
Model Properties Model Size model on an embedded disk Negative
The time it takes on an embedded platform from
Software Platform ) . .. .
Deployment Time model loading to successfully recognizing the Negative
Dependency .
first set of results
The number of supported operators by the o
Hardware Platform Support Operator Support embedded platform for the model Positive
Differences in Deep Learning Quantization The performance of the model after quantization e
s . Positive
Frameworks Characteristics operations

(2) Testing Phase Assessment: Indices and Dimensions

In the testing phase of the multidimensional evaluation of deep learning models,
various testing methods are employed for numerous different model application scenarios
and tasks, primarily using a black-box approach. This means testing the model under
conditions where the model parameters and the influence of the training dataset are un-
known, conducting adversarial tests to assess the model’s performance. The testing phase
involves black-box adversarial testing based on each testing dimension, acquiring results
for performance and adversarial intensity and thereby assessing the model’s applicability.

The testing phase is structured with two secondary dimensions, ‘Based on Model Appli-
cation’ and ‘Based on Model Task’, extending downward to include three tertiary dimensions—
‘Adaptability to Interference’, “Target Adaptability’, and ‘Open Set Adaptability’—as shown
in Table 2. Under ‘Adaptability to Interference’, this paper, in conjunction with previous
work [41] and considering the characteristics of SAR image samples, constructs evaluation
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dimensions, mainly comprising dense stripe suppression (DSS), equidistant stripe suppres-
sion (ESS), noise suppression (NS), noise convolution modulation interference (NCMI), step
frequency shifting interference (SFSI), equidistant false point target strings (EFPTS), and
highly realistic false target strings (HRFTS) [42]. Additionally, in the dimension ‘Based on
Model Task’, two tertiary dimensions are constructed, “Target Adaptability” and ‘Open Set
Adaptability’, which include target occlusion and rejection of unknown targets, respectively.

Table 2. Construction of multi-dimensional evaluation aspects for deep learning models used in SAR
image object detection.

Tertiary Dimension Quaternary Dimension
Training Dataset Size Sample quantity
Training Dataset Contamination Level Sample quality

Dense Stripe Suppression

Equidistant Stripe Suppression

Noise Suppression

Interference Adaptability Noise Convolution Modulation Interference

Step Frequency Shift Interference

Equidistant False Point Target Strings

Highly Realistic False Target Strings

Objective Adaptability Target Occlusion

Open-set Adaptability Unknown Target Rejection

(3) Application Phase Assessment Indices

The evaluation outcomes in the application phase significantly determine the degree
of alignment between the model and its specific application context. This is particularly
crucial when the model is deployed on platforms with limited computational resources.
Decision-makers can adjust the model based on the results of this phase’s assessment to
ensure compatibility with the application scenario. The construction of the application
phase assessment index system, as shown in Table 1, is mainly divided into two categories:
model deployment assessment and model operation assessment.

(a) Model operation assessment: This includes the following two tertiary indices: “Hard-
ware Architecture Differences” and ‘Model Response Intensity’. ‘Hardware Archi-
tecture Differences’ primarily focus on computational consistency. ‘Model Response
Intensity” encompasses three quaternary indices: image throughput rate, power con-
sumption, and computational resource utilization rate.

(b) Model deployment assessment: This primarily includes ‘Model Attributes’, “‘Soft-
ware Platform Dependency’, ‘Hardware Platform Support’, and ‘Differences in Deep
Learning Frameworks’. ‘Model Attributes” cover aspects such as model size, time
complexity, and space complexity.

3. Multi-Indicator Comprehensive Evaluation Method Based on Entropy Weight
Correlation Scaling and Complexity Analysis

3.1. Multi-Indicator Comprehensive Evaluation Method Based on Entropy Weight
Correlation Scaling

In the multidimensional evaluation of deep learning models for target detection in
SAR images, given the complexity of the evaluation indicator system and the diversity of
evaluation dimensions, this study proposes a multi-indicator comprehensive evaluation
method based on entropy-weighted relevance scaling. This method is termed “relevance
scaling” because, in integrating different evaluation indicators, it considers not only the im-
portance of each indicator itself but also the interrelationships between or relevance among
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indicators. In this way, the method can dynamically adjust the weight of each indicator in
the final score, optimizing according to the strength and direction of relationships between
indicators. This consideration of relevance helps to reduce the redundant influence of
highly correlated indicators, making the evaluation results more accurate and objective
while also closely meeting the demands of actual conditions, avoiding the problem of
neglecting the interactions between key indicators. By combining objective evaluation
results with the relevance between indicators, this method effectively reduces errors that
could be introduced by subjective assessment, enhancing the accuracy and objectivity of
the evaluation results. The specific evaluation formula is as follows:

1—e; Score!m
; corel O

= (g ) T L seordy

In the formula, A1 + A, =1, and the determination of r;; (i.e., the normative score) is a
key step. These scores are based on actual measurement results and are combined with the
matrix of expert experiential knowledge to form quantified scores. This method, which
combines actual measurements with expert knowledge, ensures that the evaluation process
is supported by data and professional judgment, increasing the accuracy and reliability
of the evaluation results. There are n samples and m evaluation indicators, where the
normative score S;; for the ith sample’s jth item is obtained by combining two parts of
weights. In the first item, ¢; is the entropy value of the jth attribute component, defined

*

as shown in Equation (2), where p;; = %, and p;; represents the proportion of the ith
i=1 Xij

datum under the jth attribute component. The second item is the relevance scaling factor
between evaluation indicators. For each evaluation indicator, its similarity score is denoted

by Score’fn’", where Scorey, is the initial similarity score, and h, is the trend coefficient.

¢j = —k; pijIn(py) )

1

For positive indicators x;;, the data normalization operation is as follows:

Xij —m; .
xhi=-———2(i=12,--,nj=1,2,---,m
i Mj—m]«( j )

For negative indicators x;;, the data normalization operation is as follows:

M; — x;j
= U= o
Xjj M, —m, (i=12--,m;j=12,--,m)
where M; = max {x;;};m; = min {x;;}.
1 1

In summary, the entropy-weighted relevance scaling method proposed in this study not
only integrates objective data and expert knowledge but also, by considering the relevance be-
tween evaluation indicators, provides a novel and effective approach to the multidimensional
evaluation of deep learning models in the field of SAR image target detection.

3.2. Complexity Analysis

In this study, we propose a multi-indicator comprehensive evaluation method based
on entropy weight correlation scaling. To ensure the feasibility of this method in practical
applications, we conducted a computational complexity analysis. Assuming the number
of evaluation objects is n and the number of indicators is m, the following is a complexity
analysis of the main computational steps:

1. Data Normalization



Remote Sens. 2024, 16, 1097

15 of 28

The data normalization step involves performing a normalization operation for each
indicator (1) for each sample (). This includes calculating the maximum and minimum
values for each indicator and converting each indicator value to a standardized form. Since
this operation needs to be performed for all evaluation objects, the complexity of data
normalization corresponds to O(n * m).

2. Entropy Calculation

In the entropy calculation step, we need to calculate the entropy value for each
indicator. This requires summing and performing logarithmic operations for the indicator
values of each sample. Since each indicator requires such calculations for all samples, the
complexity of entropy calculation also corresponds to O(n * m).

3. Correlation Scaling Factor Calculation

The calculation of the correlation scaling factor constitutes adjusting the mutual
influence among indicators. If the similarity score is based on simple statistics, such as the
Pearson correlation coefficient, then the complexity of this step also corresponds O(n * m),
as it involves pairwise comparisons of indicator values for all samples.

4.  Comprehensive Evaluation

The comprehensive evaluation step includes calculating the weight of each indicator
and performing a weighted sum. If the weight calculation is based on a simple linear
combination, then the complexity of this step also corresponds to O(n * m). However, if
the weight calculation involves more complex optimization algorithms, the complexity
may increase.

5. Overall Complexity

Considering the above steps, the overall computational complexity of our method
mainly depends on the complexities of data normalization, entropy calculation, correlation
scaling factor calculation, and comprehensive evaluation. In the most ideal scenario, if
all steps are based on simple mathematical operations, then the overall complexity of the
method can be considered to correspond to O(n * m).

4. Experimental Setup and Analysis
4.1. Dataset and Experimental Configuration
4.1.1. Dataset Introduction

In this experiment, the datasets used were the SAR ship dataset [43] for ships and
the SAR aircraft dataset [44] for aircraft, with the ratio of the training set to the validation
set and test set being 6:2:2. The SAR ship dataset primarily sources its data from China’s
Gaofen-3 SAR data and Sentinel-1 SAR data, comprising 102 Gaofen-3 and 108 Sentinel-1
SAR images, to construct a high-resolution SAR ship target deep learning sample library.
Currently, this deep learning sample library contains 43,819 ship slices. Additionally,
the aircraft dataset images come from the Gaofen-3 satellite, including 4368 images and
16,463 aircraft target instances, covering seven categories: A220, A320/321, A330, ARJ21,
Boeing 737, Boeing 787, and others. For open-set adaptability, the MSTAR dataset [45] was
used. The sensor of this dataset is a high-resolution, spotlight-mode synthetic aperture
radar with a resolution of 0.3 m x 0.3 m, operating in the X-band and using HH polarization
mode. This dataset primarily consists of SAR slice images of stationary vehicles, featuring
a variety of vehicle targets captured at different azimuth angles.

4.1.2. Experimental Settings

This experiment was conducted using the Pytorch deep learning framework on the
Ubuntu 20.04 system, equipped with an i5-11400H CPU, an RTX3050 GPU, and 16 GB of
memory, ensuring efficiency and stability. The chosen models for this study are YOLOz3-
tiny, YOLOv5s, and YOLOVS], which were selected based on the following considerations:
First, these models range from lightweight to advanced complexity, facilitating performance
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evaluation across various computing environments. Second, they represent different
developmental stages in the YOLO series in the field of object detection, aiding in analyzing
how evolution impacts performance. Third, their adaptability spans a wide range of
application scenarios, from real-time processing to high-precision tasks. Fourth, as industry-
standard models, the YOLO series serves as a benchmark for performance assessment.
Fifth, they cater to the specific needs of SAR imagery, exploring the adaptability of models
with varying complexities. The parameter settings for training are shown in Table 3.

Table 3. The parameter settings for training.

Model

Parameter Name YOLOV3-Tiny YOLOvV5s YOLOvSI
Initial learning rate (Ir0) 0.01 0.01 0.01
Final learning rate (Irf) 0.01 0.01 0.01
Momentum 0.937 0.937 0.937
Box loss gain 0.05 0.05 7.5
Classification loss gain 0.5 0.5 0.5
IoU training threshold 0.2 0.2 0.2
Optimizer SGD SGD SGD
Image input size 640 x 640 640 x 640 640 x 640
Batches 16 16 16
Epochs 600 600 600

During the training phase, the dataset was divided into different levels (L1, L2, and L3)
based on the number of samples (90%, 60%, and 30%) and quality (with noise intensities
of —5 dB, 0 dB, and 5 dB) to evaluate the impact of training dataset scale and contami-
nation [29]. The testing phase focused on the model’s target adaptability and open-set
adaptability. Target adaptability included various degrees of occlusion (30%, 15%, and 5%
of the sample area), while open-set adaptability was tested using the MSTAR dataset [28]
to assess the model’s performance in detecting unknown targets. This experimental setup
is designed to comprehensively evaluate the selected models” performance and robustness
across different scenarios, ensuring the accuracy and reliability of the results. Furthermore,
the experimental results of this paper are detailed in Tables A1-A6 in Appendix A, and the
knowledge matrix based on expert experience is elaborated in Table A7 in Appendix A.

4.2. Analysis of Experimental Results
4.2.1. Normalized Scores at Various Stages of Key Phases

The experimental results are shown in Figure 4 and Table 4. In the multidimensional
performance profile of the deep learning model for target detection, there are 10 test
dimensions: training efficiency, influence of training samples, application mAP0.5, task
mAPO0.5, application-based mAPO0.75, task-based mAP0.75, application-based mAP0.5: 0.95,
task-based mAP0.5:0.95, model deployment, and model operation. The models evaluated
in the experiment are YOLOv3-tiny, YOLOv5s, and YOLOVSI. In the figure, we can see that
the YOLOv3-tiny and YOLOv5s models are stronger than YOLOvSI in the training and
application deployment stages, but YOLOVSI is more stable in the testing phase.

From the normative scores and performance profiles, we can see that, in terms of
training efficiency during the training phase, YOLOv3-tiny has the highest normative
score, which indicates that this model is more efficient in terms of resource consumption
and time cost compared to other models. YOLOv5s and YOLOvS8I have lower training
efficiencies due to their more complex model structures, which require more computational
resources and time. In terms of the influence of training samples, YOLOv8] and YOLOvb5s
score closely, indicating that these two models adapt well to changes in training samples
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(the size of the training dataset and contamination of the training dataset), showing similar
robustness to changes in size and quality of the training dataset, and are superior to
YOLOv3-tiny. YOLOv3-tiny scores slightly lower, indicating it is more sensitive to changes
in training samples.

@ voLov3-tiny @YOLOV5s @ YOLOVSI

Training Efficiency

Model Execution- - ¢Training Sample Impact

Model DeplQuaet Apptication mAPO.5

N J
Task mAP0.5 0.95 \\ _/Task mAP0.5

Application mAPO0.5 : 0.95\pplication mAP0.75

Task mAPO0.75

Figure 4. Multi-dimensional performance profile diagram for deep learning object detection models.

Table 4. Scoring of normativity at various stages.

Evaluation Phase Evaluation Metrics/Dimensions YOLOvV3-Tiny YOLOvV5s YOLOVSI
. Training Efficiency 71.38 65.05 52.22
Training Phase
Training Sample Impact 56.36 62.37 62.44
mAPO0.5 for Model Application 77.47 80.49 68.81
mAP0.5 for Model Tasks 67.14 65.54 68.29
Testing Phase mAPO0.75 for Model Application 58.04 64.65 49.42
mAPO0.75 for Model Tasks 45.95 44.87 4943
mAP0.5:0.95 for Model Application 51.35 58.14 43.49
mAPO0.5:0.95 for Model Tasks 43.03 42.31 47.71
L Model Deployment 82.99 85.37 75.75
Application Phase
Model Execution 52.37 50.59 49.82

In the testing phase, we tested model performance in two dimensions, model applica-
tion and model task. The test results will be discussed separately.

(1) Application-based mAP0.5: YOLOvSs scores the highest, indicating strong generaliza-
tion ability in practical applications and excellent performance in handling external
disturbances in various application scenarios.

(2) Task-based mAP0.5: YOLOVSI scores the highest, indicating it performs better in core
detection tasks, such as the precise identification and localization of targets, compared
to the other two models.

(3) Application-based mAP0.75: In the stricter mAP0.75 assessment, YOLOv5s still main-
tains the lead, indicating that, in applications requiring higher precision, YOLOv5s
can still maintain its performance.
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(4) Task-based mAP0.75: YOLOVSI performs best, indicating that, under higher IoU
thresholds, YOLOvVS8!'s adaptability to targets and open-set adaptability are far supe-
rior to those of the other two models.

(5) Application-based mAP0.5:0.95: YOLOvS5s performs best when considering various
IoU thresholds, which indicates it maintains good detection performance in a range
of complex backgrounds and application conditions.

(6) Task-based mAPO0.5:0.95: YOLOVSI shows strong capabilities in handling occlusions
and rejecting open-set categories. This evaluation, which measures a model’s perfor-
mance through the average precision under different IoU thresholds, demonstrates
that YOLOVS can effectively locate and identify targets under a series of strict stan-
dards, showing its high precision in complex detection tasks.

In the application phase, YOLOv3-tiny scores highest in model deployment, indicating
higher efficiency and convenience in real-world deployment. In terms of model operation,
YOLOv3-tiny and YOLOv5s score higher than YOLOVS], indicating that YOLOv3-tiny and
YOLOV5s offer higher operational stability in actual operation compared to YOLOvVSL

In summary, YOLOvb5s exhibits strong performance in most test indicators and per-
forms well in various scenarios. YOLOVSI has advantages in high-precision tasks. YOLOv3-
tiny excels in deployment and operational efficiency, which may make it the preferred
choice for scenarios with limited resources or the need for rapid deployment. The above
conclusions can provide reference and guidance for the selection of models in specific
application scenarios. If the deployment resources for the SAR image detection model are
severely limited and the detection accuracy requirement is not high, then YOLOv3-tiny is
more suitable for this scenario. If the SAR image detection application has fewer training
samples and severe training dataset contamination and there is a high demand for model
detection precision, then YOLOV5s is more suitable. If the deployment resources for the
SAR image detection model are abundant, training dataset samples are few, contamination
is severe, and there is a demand for stable and accurate detection precision, then YOLOvVSI
is more suitable.

4.2.2. Normalized Scores for Sub-Indices and Sub-Dimensions

The normative scores for the training phase in the multidimensional evaluation of
deep learning models for SAR image target detection are shown in Table 5. It can be seen
that, in terms of training efficiency, YOLOv3-tiny and YOLOvb5s are superior to YOLOVS],
with the YOLOv3-tiny and YOLOvV5s models being particularly prominent in terms of
training time and convergence time. Regarding the influence of training samples, YOLOv8I
is superior to YOLOvV5s and YOLOv3-tiny in most cases, indicating that YOLOVSI can
maintain good performance even when the quantity and quality of training samples are
poor. The weights of various metrics during the training phase evaluation are shown in
Tables A8 and A9.

The normativity scores during the testing phase are presented in Tables 6 and 7. In the
testing phase, based on the model application part, YOLOv5s performs the best, indicating
that this model has better interference adaptability and rejection capability than the other
two groups. Among them, in terms of occlusion adaptability, as the IoU proportion
decreases, YOLOVSI's performance is clearly superior to the other two groups. As shown
in Figure 5, we present experimental images of samples with various types of interference
and their detection results. In this section, we will detail the sample images that have
been processed for interference. In terms of model rejection capability, YOLOv3-tiny and
YOLOVS]I are significantly better than YOLOv5s. The weights of the different metrics in the
testing phase evaluation are shown in Tables A10-A12.
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Table 5. Training phase normativity score: This presents the normalized score of the tested target
detection model during the training phase. The calculation process of this score consists of, first,
calculating the weight of each indicator through the multi-indicator comprehensive evaluation
method based on entropy weight and correlation scaling method proposed in this paper based on the
test results. Then, the score is obtained via weighted calculation, according to the quantified scores of
the expert knowledge matrix.

Primary Indicator g\iaiz:g:/]rgimension YOLOV3-Tiny YOLOvV5s YOLOvSI
Training Time 16.13 13.44 5.37
Training Efficiency Convergence Time 15.60 11.14 8.91
Degree of Loss Reduction 18.67 19.77 20.37
Degree of Fit 20.98 20.70 17.57
Total Training Efficiency Score 71.38 65.05 52.22
Sample Quantity—Level 1 10.65 11.63 11.98
Sample Quantity—Level 2 11.08 12.09 12.25
Training Sample Impact Sample Quantity—Level 3 11.36 12.16 12.16
Sample Quality—Level 1 10.65 11.63 11.98
Sample Quality—Level 2 9.84 10.65 10.64
Sample Quality—Level 3 2.88 421 3.43
Total Training Sample Impact Score 56.36 62.37 62.44

Table 6. Normativity score during the testing phase.

mAPO0.5:0.95
Model 1;‘:;\‘:;‘:’;11 YOLOV3-Tiny YOLOVvS5s YOLOvSL
DSS 4.2445 5.166 3.9329
ESS 3.731 5.525 3.1409
Normalized Score for NS 7.2751 8.3305 8.776
Model Application NCMI 6.4202 7.1584 4.9436
SFSI 9.9991 10.7588 7.849
EFPTS 9.8003 10.5561 7.0468
HRFTS 9.8834 10.6405 7.7967
Total Score for Model Application 51.3536 58.1353 43.4859
Occlusion—Head 3.9801 44173 4.3273
Occlusion—Middle 0 0 1.6407
Normalized Score for Occlusion—Tail 3.1281 3.5663 3.6472
Model Tasks Small-scale Occlusion—L1 6.7026 7.3383 7.5092
Small-scale Occlusion—L2 7.7873 8.5652 8.8055
Small-scale Occlusion—L3 8.7161 9.4504 9.7588
Rejection Capability 12.713 8.9744 12.0165

Total Score for Model Tasks 43.0272 42.3119 47.7052
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Table 7. Normativity score during the testing phase.
mAP0.5 mAP0.75
Model éﬁ‘i‘:}i‘:i’;ﬁl YOLOv3 YOLOv5s YOLOvSl YOLOv3 YOLOv5s YOLOWSI

DSS 6.5284 6.7289 6.138 4.7612 5.4036 413
ESS 6.9925 8.9246 4.7328 3.6436 5.4442 3.1787
Normalized NS 10.7333 11.0408 11.4216 9.2327 10.9286 10.8952
S;Zf;;ifr NCMI 9.5685 9.8103 8.7977 6.7776 7.3736 5.4864
Application SFSI 14.3488 14.5329 13.0833 11.3215 11.9704 8.9862
EFPTS 15.1048 15.0328 12.2871 11.077 11.6592 8.1919
HRFTS 14.1947 14.4235 12.3534 11.2302 11.8681 8.5525
Total Score for Model Application 77.4710 80.4938 68.8139 58.0438 64.6477 49.4209

Occlusion—Head 9.634 10.3973 9.8579 1.9244 2.0234 1.918
Occlusion—Middle 0.0016 0.0016 0.0032 0 0 1.5449
Normalized Occlusion—Tail 10.7511 12.5757 12.4911 1.2363 1.3408 1.2945
Mi‘;:rlejf;fks Small-scale Occlusion—L1 10.8078 11.0012 10.9543 7.4049 8.1942 8.0173
Small-scale Occlusion—L2 9.4579 9.589 9.3601 9.9414 11.078 11.1506
Small-scale Occlusion—L3 10.9905 11.0329 10.9764 11.9733 12.7269 12.7772
Rejection Capability 15.5009 10.9424 14.6516 13.4701 9.5088 12.7321
Total Score for Model Tasks 67.1438 65.5401 68.2946 45.9504 44.8721 49.4346

Interference

Image

YOLOv3-tiny

YOLOV5s

YOLOvS1

(©)

Figure 5. The detection results for three models are shown, with the first row representing interference
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images and the remaining rows representing the detection result images of the models, with each

column representing the detection results under different interferences. (a) Dense stripe suppression,
(b) equidistant stripe suppression, (c) noise suppression, (d) noise convolution modulation interfer-
ence, (e) step frequency shifting interference, (f) equidistant false point target strings, and (g) highly
realistic false target strings.

In the application phase, YOLOv3-tiny, due to its smaller model size, is superior in
terms of the model deployment dimension to the other two groups, as shown in Table 8. In
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terms of model operation, YOLOvV3-tiny is better than YOLOv5s and YOLOVS], especially
in terms of power consumption, in which the score for YOLOv3-tiny is somewhat lower.
Therefore, YOLOv3-tiny is more suitable for deployment in mobile terminals, where
computational resources are limited and a certain speed of detection is required. The
weights of the various metrics in the application phase evaluation are shown in Table A13.

Table 8. Normativity score during the application phase.

YOLOvV3-

Indicators/Dimensions Tiny YOLOvV5s YOLOvSI
Model Size 22.30 25.09 11.15
Model Deployment Time 15.46 13.52 17.39
Deployment Operator Support 29.03 29.03 29.03
Quantization Characteristics 16.20 17.73 18.19
Total Score for Model Deployment 82.99 85.37 75.75
Compute Consistency 21.40 21.67 21.87
Model Execution Image Throughput 13.03 7.52 11.08
Power Consumption 7.79 7.21 3.75
Compute Resource Utilization 10.15 14.19 13.12
Total Score for Model Execution 52.37 50.59 49.82

5. Conclusions

As the application of target detection technology in the SAR image field becomes more
widespread, accurately evaluating model performance to meet the complex requirements
of specific application scenarios has become a key factor in increasing task success rates.
Currently, there are still many gaps in the field of target detection model evaluation. The
main issue faced is the limited scope of single evaluation dimensions, which are insufficient
for a comprehensive assessment of model performance; simultaneously, there is a lack of a
comprehensive evaluation mechanism with which to fully measure a model’s performance.

To address this issue, this paper proposes a multidimensional evaluation method for
deep learning models aimed at SAR image target detection. Initially, we constructed a
multidimensional evaluation indicator system for deep learning models targeting SAR
image target detection based on the overall idea of “using evaluation indicators as the
basis and evaluation dimensions as the extension, with both complementing each other”.
This system includes key phases of model evaluation—the training phase, testing phase,
and application phase. Then, we introduced a multi-indicator comprehensive evaluation
method based on entropy weight correlation scaling, combining the objective evaluation
results with the correlation among indicators, to provide a balanced and comprehensive
evaluation mechanism for model performance. Finally, by integrating expert experience
and knowledge matrices, we fused the test results and constructed a multidimensional per-
formance profile for deep learning target detection models, offering an intuitive reference
framework for the in-depth evaluation of model performance.

Although our research proposes a multidimensional evaluation method for deep
learning models for SAR image target detection tasks, future work will focus on continuing
to revise and perfect this multidimensional evaluation indicator system and multi-indicator
comprehensive evaluation model. Potential directions for future work include the follow-
ing: first, collecting and integrating more diverse SAR image data, including images under
extreme weather conditions, different time periods, and more complex interference pat-
terns, to improve a model’s generalizability and robustness; second, exploring lightweight
model designs and studying model compression and quantization techniques to reduce
computational demand and lower deployment costs, making a model more suitable for
resource-limited environments; third, researching cross-domain adaptability techniques
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to enable a model to transfer between and adapt to different SAR image fields, thus im-
proving the model’s universality; and finally evaluating model performance in real-time
or near-real-time environments, including processing speed, energy consumption, and
latency, to better simulate and meet the needs of actual application scenarios.

Author Contributions: Conceptualization, J.L. and H.L.; methodology, H.L. and PW.; software, PW.,
L.N. and Q.H.; validation, PW., X.Z. and J.L.; formal analysis, PW. and H.L.; data curation, PW.;
writing-original draft preparation, H.L. and P.W.; writing-review and editing, PW., H.L. and Z.X;
funding acquisition, J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No.
62271166) and the Interdisciplinary Research Foundation of HIT (No. IR2021104).

Data Availability Statement: In the experiments presented in this paper, three datasets were used.
The download links are as follows: The MSTAR dataset can be downloaded from the following link:
[https:/ /pan.baidu.com/s/1SAdmYAOHPhe AHI8CLP9dQg] with the extraction code h2ig. The
download link for the SAR-ship-dataset is https:/ /github.com/CAESAR-Radi/SAR-Ship-Dataset.
The download link for the SAR-aircraft dataset is https://github.com/hust-rslab/SAR-aircraft-data.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table Al. Training phase test results.

Model Type Training Efficiency Test Results
Training Time 2.076 h
Convergence Time 747391 s
YOLOvV3 .
Loss Reduction Degree 81.79%
Fitment Level 1.025
Training Time 2901 h
Convergence Time 9888.17 s
YOLOV5 -
Loss Reduction Degree 86.64%
Fitment Level 1.026
Training Time 8.296 h
Convergence Time 13.392s
YOLOvVS8 .
Loss Reduction Degree 89.24%
Fitment Level 1.0372

Table A2. Sample quantity and sample quality test results.

Sample Quantity-mAP@[0.5:0.05:0.95] Test Results

Model L1 L2 L3
YOLOV3-tiny 0.6819 0.6405 0.5897
YOLOVvV5s 0.7446 0.6988 0.6314
YOLOvSI 0.7671 0.7078 0.6313

Sample Quality-mAP@[0.5:0.05:0.95]
YOLOvV3-tiny 0.6819 0.5168 0.2205
YOLOV5s 0.7446 0.5593 0.3228

YOLOvSI 0.7671 0.5586 0.2631
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Table A3. Testing phase test results.
Model DSS ESS NS NCMI SFSI EFPTS HRFTS
mAPO.5 Test Results for Each Model
YOLOV3-tiny 0.4916 0.5635 0.8794 0.6728 0.9275 0.9022 0.9058
YOLOV5s 0.5067 0.7192 0.9046 0.6898 0.9394 0.8979 0.9204
YOLOVSI 0.4622 0.3814 0.9358 0.6186 0.8457 0.7339 0.7883
mAP0.75 Test Results for Each Model
YOLOV3-tiny 0.3787 0.2845 0.5809 0.4913 0.7694 0.7268 0.7499
YOLOv5s 0.4298 0.4251 0.6876 0.5345 0.8135 0.765 0.7925
YOLOvSI 0.3285 0.2482 0.6855 0.3977 0.6107 0.5375 0.5711
mAPO0.5:0.95 Test Results for Each Model
YOLOV3-tiny 0.3222 0.2826 0.5239 0.4482 0.6668 0.6334 0.66134
YOLOv5s 0.39215 0.41849 0.5999 0.49974 0.71746 0.68225 0.712
YOLOVSI 0.29855 0.23791 0.63198 0.34512 0.52342 0.45544 0.52171
Table A4. Open-set class adaptability test results.
Ob]'ecl:\t/I Detection Sample Quantity Uniﬁ?vtﬁr(;fass Unknoyvn Class
odel Detections Detection Rate
YOLOV3-tiny 2748 195 7.10%
YOLOv5s 2748 946 34.42%
YOLOvSI 2748 335 12.19%
Table A5. Model execution test results.
Model Model Size Deployment Operator Quantization
(MB) Time (h) Support Characteristics
YOLOV3-tiny 17.7 1.283 100 0.6822
YOLOV5s 144 1.716 100 0.7466
YOLOvSI 87.7 0.6 100 0.7657
Table A6. Model deployment test results.
Compute Power ‘ Compute
Model Type Consistency FPS Consumption .R.eso.urce .
W) Utilization (%)
YOLOV3 97.3 105.02 7.3 58.08
YOLOvV5 98.5 60.62 7.5 41.58
YOLOVS 99.45 89.29 8.7 46

Table A7. Expert knowledge matrix.

Indicators

Range of Test Results and Scoring Rules

Training Time

0-0.5 h: 100 points
0.5-1 h: 90 points
1-1.5 h: 80 points
1.5-2 h: 70 points
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Table A7. Cont.

Indicators

Range of Test Results and Scoring Rules

Training Time

2-2.5 h: 60 points
2.5-3 h: 50 points
3—4 h: 30 points
>4 h: 20 points

Convergence Time

0-5000 s: 100 points
5000-6000 s: 90 points
6000-7000 s: 80 points
7000-8000 s: 70 points
8000-9000 s: 60 points
9000-10,000 s: 50 points
>10,000 s: 40 points

Degree of Loss Reduction

Loss reduction percentage is equivalent to percentage score

Degree of Fit

100 — (test result — 1) * 100

mAP

Test result is equivalent to percentage score

Model Size

1-10 MB: 100 points
10-15 MB: 90 points
15-20 MB: 80 points
25-30 MB: 70 points
30-35 MB: 60 points
>35 MB: 40 points

Deployment Time

0-0.5 h: 100 points
0.5-1 h: 90 points
1-1.5 h: 80 points
1.5-2 h: 70 points

Operator Support

Equals percentage score

Quantization Characteristics

Quantized mAP value * 100

Compute Consistency

Test result * 100

Image Throughput

Test result/reference value (reference is 200)

Power Consumption

Reference value — test result * 10 (reference is 100)

Compute Resource Utilization

Reference value — percentage * 100 (reference is 100)

Appendix B

Table A8. Training phase evaluation metric weights.

Level 3 Indicator Level 4 Indicator Weights
Model Properties Training Time 0.2689
Convergence Time 0.2229
Impact of Objective Loss Reduction Level 0.2283
Function Fitment Level 0.2798
Table A9. Training phase evaluation dimension weights.
Tertiary Dimension Quaternary Dimension Weights
Sample Quantity—Level 1 0.1563
Training Dataset Size Sample Quantity—Level 2 0.1731
Sample Quantity—Level 3 0.1927
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Table A9. Cont.

Tertiary Dimension Quaternary Dimension Weights

Sample Quality—Level 1 0.1563

"éraining' DaFaset Sample Quality—Level 2 0.1905

ontamination Level
Sample Quality—Level 3 0.1307
Table A10. Test phase evaluation metric weights (mAP0.5).

Tertiary Dimension Quaternary Dimension Weights

DSS 0.1328

ESS 0.1240

NS 0.1220

Interference Adaptability NCMI 0.1422

SFSI 0.1547

EFPTS 0.1674

HRFTS 0.1567

Occlusion—Head 0.1238

Occlusion—Middle 0.1639

Objective Adaptability Occlusion—Tail 0.1599

Small-scale Occlusion—L1 0.1395

Small-scale Occlusion—L2 0.1213

Small-scale Occlusion—L3 0.1255

Open-set Adaptability Rejection Capability 0.1657

Table A11. Test phase evaluation metric weights (mAP0.75).

Tertiary Dimension Quaternary Dimension Weights

DSS 0.1257

ESS 0.1280

NS 0.1589

Interference Adaptability NCMI 0.1379

SFSI 0.1471

EFPTS 0.1524

HRFTS 0.1497

Occlusion—Head 0.1344

Occlusion—Middle 0.1580

Objective Adaptability Occlusion—Tail 0.1188

Small-scale Occlusion—L1 0.1360

Small-scale Occlusion—L2 0.1532

Small-scale Occlusion—L3 0.1528

Open-set Adaptability Rejection Capability 0.1464
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Table A12. Test phase evaluation metric weights (mAP0.5:0.95).

Tertiary Dimension Quaternary Dimension Weights
DSS 0.1317
ESS 0.1320
NS 0.1388
Interference Adaptability NCMI 0.1432
SFSI 0.1499
EFPTS 0.1547
HRFTS 0.1494
Occlusion—Head 0.1383
Occlusion—Middle 0.1640
Occlusion—Tail 0.1470

Obijective Adaptabilit
) P y Small-scale Occlusion—L1 0.1412

Small-scale Occlusion—IL2 0.1389
Small-scale Occlusion—L3 0.1334
Open-set Adaptability Rejection Capability 0.1368

Table A13. Application Phase Evaluation Metric Weights.

Level 2 Indicator Level 4 Indicator Weights
Compute Consistency 0.2200
Image Throughput 0.2482

Model Execution
Power Consumption 0.2886

Compute Resource Utilization  0.2430

Model Size 0.2788
Model Deployment Deployment Time 0.1932
Operator Support 0.2903

Quantization Characteristics 0.2375
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