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Abstract: Submillimeter wave radiometers are promising remote sensing tools for sounding ice cloud
parameters. The Ice Cloud Imager (ICI) aboard the second generation of the EUMETSAT Polar System
(EPS−SG) is the first operational submillimeter wave radiometer used for ice cloud remote sensing.
Ice clouds simultaneously contain three species of ice hydrometeors—ice, snow, and graupel—the
physical distributions and submillimeter wave radiation characteristics of which differ. Therefore,
jointly retrieving the mass parameters of the three ice hydrometeors from submillimeter brightness
temperatures is very challenging. In this paper, we propose a multiple species of ice hydrometeor
parameters retrieval algorithm based on convolutional neural networks (CNNs) that can jointly
retrieve the total content and vertical profiles of ice, snow, and graupel particles from submillimeter
brightness temperatures. The training dataset is generated by a numerical weather prediction (NWP)
model and a submillimeter wave radiative transfer (RT) model. In this study, an end to end ICI
simulation experiment involving forward modeling of the brightness temperature and retrieval of ice
cloud parameters was conducted to verify the effectiveness of the proposed CNN retrieval algorithm.
Compared with the classical Unet, the average relative errors of the improved RCNN–ResUnet
are reduced by 11%, 25%, and 18% in GWP, IWP, and SWP retrieval, respectively. Compared with
Bayesian Monte Carlo integration algorithm, the average relative error of the total content retrieved
by RCNN–ResUnet is reduced by 71%. Compared with BP neural network algorithm, the average
relative error of the vertical profiles retrieved by RCNN–ResUnet is reduced by 69%. In addition,
this algorithm was applied to actual Advanced Technology Microwave Sounder (ATMS) 183 GHz
observed brightness temperatures to retrieve graupel particle parameters with a relative error in the
total content of less than 25% and a relative error in the profile of less than 35%. The results show that
the proposed CNN algorithm can be applied to future space borne submillimeter wave radiometers
to jointly retrieve mass parameters of ice, snow, and graupel.

Keywords: ice cloud remote sensing; submillimeter wave radiometer; convolutional neural networks;
multiple species of ice hydrometeors; ice cloud imager (ICI)

1. Introduction

Ice clouds generally exist in the upper troposphere of the Earth’s atmosphere at
altitudes of 6 to 15 km [1] and are composed entirely or partially of ice particles [2]. Ice
clouds play a critical role in the radiation budget and water cycle of the Earth, with
the hydrological cycle being one of the most important subsystems in the atmosphere–
ocean–climate system that supports life on Earth [3]. Accurate retrievals of ice cloud
physical parameters (such as the ice water path (IWP) and ice water content (IWC) are
crucial for understanding the radiative effects and climate impacts of ice clouds [4]. The
ice hydrometeors in ice clouds contain three species: ice, snow, and graupel. Graupel is
precipitation that occurs when supercooled water droplets in air collect and freeze on falling
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snowflakes, forming 2–5 mm balls of crisp, opaque rime. Ice has many symmetrical shapes,
including hexagonal columns, hexagonal plates, and dendritic crystals; it is responsible for
various atmospheric optic displays and cloud formations. Snow comprises individual ice
crystals that grow while suspended in the atmosphere—usually within clouds—and then
fall, accumulating on the ground where they undergo further changes.

Compared to visible and infrared sensors, passive microwave sensors have superior
all weather sounding capabilities [5] and are suitable for remote sensing ice clouds. More-
over, lower microwave frequencies lack sufficient sensitivity to small ice crystals within
clouds [6]. The millimeter and submillimeter wavelengths ranging from 0.1 to 10 mm [7]
are comparable to the sizes of ice hydrometeors in clouds (ice particles in ice clouds are
mostly distributed from 20 to 600 µm [3]) and are sensitive to smaller ice hydrometeors,
making them ideal frequencies for sounding ice clouds. Atmosphere sounding microwave
radiometers include AMSU [8], MHS [9], and ATMS [10] onboard the National Oceanic and
Atmospheric Administration (NOAA) and EUMETSAT MetOp satellites and MWHS [11]
and MWTS [12] on the Chinese FengYun–3 satellite series. The highest frequency of these
radiometers is limited to 183 GHz, restricting their ability to observe only ice clouds with
large hydrometeors such as graupel. The ICI is the first sensor that uses millimeter and
submillimeter waves for radiometric measurements of ice cloud parameters [13] and will
be deployed on the EUMETSAT Polar System Second Generation (EPS–SG) [14] satellites
by approximately 2026. Compared to the operational microwave sensors, ICI provides
more frequency channels (from 183 GHz to 664 GHz) for sensing various ice hydrometeors.

The advantage of using a submillimeter wave radiometer for deriving ice cloud
physical information was first noted by Evans and Graeme [15,16]. In the United States, an
airborne ice cloud sensor, the compact scanning submillimeter wave imaging radiometer
(CoSSIR), was developed, and a series of airborne experiments were conducted. Utilizing
the Monte Carlo Bayesian algorithm, the IWC and IWP were retrieved from CoSSIR
observations. This finding validates the ability of passive submillimeter wave technology to
detect sounding ice clouds [17]. Jimenez et al. built an ice cloud database that included TBs
(simulated brightness temperatures) ranging from 183 to 874 GHz using the Atmospheric
Radiative Transfer Simulator (ARTS [18]) and retrieved IWPs using neural networks [19].
Weng and Grody indicated that under the premise of specifying the particle size distribution
of ice hydrometeors, the Dme (the median mass equivalent size of a particle) and IWP
parameters of ice clouds can be estimated from two–frequency millimeter/submillimeter
brightness temperatures (e.g., 340 GHz and 89 GHz) [20]. Dong et al. proposed a Bayesian
neural network (BNN)–based method to retrieve the IWP of ice clouds from submillimeter
wave brightness temperatures [21]. Li et al. introduced a submillimeter retrieval algorithm
based on the Voronoi ice crystal scattering model for retrieving ice cloud microphysical
properties such as the IWP [22]. The current ice cloud parameter retrieval algorithms can
achieve a relative error of approximately 50% for the IWP [23] and approximately 60% for
the IWC [24].

Previous studies treated various ice hydrometeors as single ice particles. However, in
the cloud microphysics model [25] and the RT model [18,26,27] of most operational NWP
and data assimilation (DA) systems, ice hydrometeors include three species—ice, snow,
and graupel—each with different submillimeter wave radiative transfer properties, making
it difficult for traditional algorithms to jointly retrieve all three species of ice hydrometeors.
CNNs [28] have strong feature extraction capabilities, and complex multilayer network
structures provide powerful nonlinear fitting capabilities. CNNs have been extensively
applied in remote sensing image classification and segmentation [29–31], and several
studies have attempted to use CNNs for atmospheric parameter retrieval [32–35].

In this study, we innovatively employed CNNs to jointly retrieve physical parameters
of ice, snow, and graupel particles in ice clouds from millimeter and submillimeter wave
brightness temperatures, and the networks demonstrated strong generalization capabil-
ities, producing accurate multiple species of ice hydrometeor retrievals under tropical
cyclone conditions with different seasons and intensities. An end to end ICI simulation



Remote Sens. 2024, 16, 1096 3 of 25

experiment involving forward modeling of the brightness temperature and retrieval of
ice cloud parameters was conducted to verify the effectiveness of the proposed CNN
retrieval algorithm. Additionally, the CNN retrieval algorithm was applied to the actual
ATMS 183 GHz brightness temperature to retrieve the graupel parameters.

The remainder of this article is organized as follows. Section 2 includes three sub-
sections: simulated brightness temperature verification, ice cloud dataset construction,
and TB generation. In Section 3, the proposed CNN algorithms, including the Unet and
RCNN–ResUnet networks, are introduced. The experimental results and detailed analysis
of both multiple species of ice cloud parameter retrieval from the simulated ICI data and
graupel parameter retrieval from the actual ATMS observation data are presented and
discussed in Section 4, while conclusions are drawn in Section 5.

2. Dataset
2.1. Simulated Brightness Temperature Verification

The reanalysis dataset ERA5 [36] developed by the European Centre for Medium–
Range Weather Forecasts (ECMWF) was used as the atmospheric initialization field to
run the Weather Research and Forecasting (WRF) model to conduct 6 h forecasts. Then,
according to the frequency channels and observation geometry of ICI, the atmosphere and
ice cloud parameters in the WRF output, including vertical profiles of pressure, temperature,
relative humidity, and the hydrometeor content M (in g/m3) for five hydrometeors (liquid,
rain, ice, snow, and graupel), were input into the discrete ordinate tangent linear radiative
transfer (DOTLRT) [27] model to simulate the ICI brightness temperature.

The WRF model uses 300 × 300 grids with 10 km × 10 km resolution. The WRF
latitude range of the SARIKA scenario (Figure 1) is 0~31◦N, and the longitude range is
93~125◦E. The parameterization schemes used are listed in Table 1.
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Figure 1. Brightness temperature (183.31 ± 7 GHz) comparison in the SARIKA scenario. (a) ATMS
observed brightness temperature, (b) TB with WRF graupel data, and (c) TB with ATMS L2 graupel data.

Table 1. The parameterization schemes of WRF.

Microphysics Longwave
Radiation

Shortwave
Radiation Surface Layer Land Surface Planetary

Boundary Layer
Cumulus

Parameterization

Purdue Lin
scheme RRTM scheme Dudhia scheme MM5 similarity Noah Land

Surface Model
Yonsei University

scheme
Kain–Fritsch

scheme

The DOTLRT model uses the discrete ordinate multiple stream method to solve
the differential radiative transfer equation (DRTE) to calculate the upwelling apparent
brightness temperature for a plane parallel atmosphere. DOTLRT uses the classical MPM93
model to calculate the absorption coefficient and the mie scattering method to calculate
the scattering coefficient of five species of hydrometeors, including cloud liquid, rain, ice,
snow, and graupel.

For validation, the simulation results were compared with the collocated actual ATMS
observed brightness temperature. Only the highest 183 GHz band, which is sensitive to ice
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clouds, was selected for comparison. Figure 1a shows the ATMS observed brightness tem-
perature of Typhoon SARIKA at 183.31 ± 7 GHz, and Figure 1b shows the corresponding
simulation. The simulated TB in the deep convection area of the typhoon is significantly
different from the observed TB, the distribution of the surrounding spiral clouds is not
consistent with the observed TB, and the cold temperature values of the ice clouds in the
simulation are also significantly greater than those in the observation area, which indi-
cates that the ice cloud parameters output by the WRF model are quite different from the
actual values.

To improve the accuracy of the ice cloud dataset, the graupel mass profile PGraupel
in the ATMS L2 product was introduced. PGraupel is the only valid ice cloud parame-
ter in the ATMS L2 product [37], as 183 GHz is sensitive only to graupel particles [38].
Figures 2 and 3 show the horizontal and vertical mass distributions of graupel particles
from the WRF output and ATMS L2 product for Typhoon SARIKA, where clear differences
can be observed. Historically, numerical models tended to produce excessive amounts of
large precipitation sized ice particles [39], and although some of these biases have been
continuously reduced, they are still likely to exist and be positive. Figure 1c shows the
simulated 183.31 ± 7 GHz brightness temperatures using NDE L2 graupel data instead
of WRF graupel data. The simulated brightness temperature with ATMS L2 graupel data
is obviously more consistent with the ATMS observation, and the scattering effect of the
surrounding spiral ice cloud is also more obvious. Table 2 lists the root mean square errors
(RMSEs) of the two TBs (using WRF and ATMS L2 graupel data) and the actual ATMS
observations at channels 17–22 for eight tropical cyclone cases. The statistical analysis
results are consistent with the visual effects. For all channels, the RMSEs of the simulation
using ATMS L2 graupel data are markedly smaller than those using WRF graupel data,
with reductions ranging from 29.39% to 78.16% for Typhoon SARIKA.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 25 
 

 

CHAMPI 
WRF data 8.58 7.33 6.15 5.07 3.95 3.18 

ATMS L2 data 2.81 2.05 1.90 1.81 1.77 1.94 

MINDULLE 
WRF data 17.81 13.51 10.38 7.83 5.66 4.20 

ATMS L2 data 4.35 3.58 3.13 2.69 2.25 2.18 

The TB verification experiments indicate the following: (1) compared with those in 

the WRF graupel data, the graupel mass profiles in the ATMS L2 products are more con-

sistent with reality; (2) the presence of graupel particles in ice clouds has the most obvious 

influence on the brightness temperature in the 183 GHz band; and (3) the TBs simulated 

by the DOTLRT model can accurately calculate the scattering characteristics of ice clouds 

in the deep convection area of typhoons. Therefore, in this study, WRF output data were 

combined with ATMS L2 graupel data to construct a synthetic ice cloud database. 

  
(a) (b) 

Figure 2. Comparison of the horizontal distribution of graupel in the SARIKA scenario. (a) Graupel 

data from the WRF model, and (b) graupel data from the ATMS L2 product.  

  
(a) (b) 

Figure 3. Comparison of the vertical distribution of graupel in the SARIKA scenario. (a) Graupel 

data from the WRF model, and (b) graupel data from the ATMS L2 product. 

2.2. Construction of the Ice Cloud Dataset 

The process for establishing the ice cloud dataset was as follows: first, historical trop-

ical cyclone track data along China’s eastern coast were downloaded from official mete-

orological websites (https://tcdata.typhoon.org.cn/zjljsjj.html, accessed on 19 March 2024); 

next, the ATMS observations containing the tropical cyclones were obtained from 

NOAA’s website (https://www.avl.class.noaa.gov/saa/products/welcome, accessed on 19 

March 2024); then, the atmospheric and ice cloud parameters matching with the ATMS 

data in time and space were generated using the WRF model; finally, the graupel profiles 

Figure 2. Comparison of the horizontal distribution of graupel in the SARIKA scenario. (a) Graupel
data from the WRF model, and (b) graupel data from the ATMS L2 product.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 25 
 

 

CHAMPI 
WRF data 8.58 7.33 6.15 5.07 3.95 3.18 

ATMS L2 data 2.81 2.05 1.90 1.81 1.77 1.94 

MINDULLE 
WRF data 17.81 13.51 10.38 7.83 5.66 4.20 

ATMS L2 data 4.35 3.58 3.13 2.69 2.25 2.18 

The TB verification experiments indicate the following: (1) compared with those in 

the WRF graupel data, the graupel mass profiles in the ATMS L2 products are more con-

sistent with reality; (2) the presence of graupel particles in ice clouds has the most obvious 

influence on the brightness temperature in the 183 GHz band; and (3) the TBs simulated 

by the DOTLRT model can accurately calculate the scattering characteristics of ice clouds 

in the deep convection area of typhoons. Therefore, in this study, WRF output data were 

combined with ATMS L2 graupel data to construct a synthetic ice cloud database. 

  
(a) (b) 

Figure 2. Comparison of the horizontal distribution of graupel in the SARIKA scenario. (a) Graupel 

data from the WRF model, and (b) graupel data from the ATMS L2 product.  

  
(a) (b) 

Figure 3. Comparison of the vertical distribution of graupel in the SARIKA scenario. (a) Graupel 

data from the WRF model, and (b) graupel data from the ATMS L2 product. 

2.2. Construction of the Ice Cloud Dataset 

The process for establishing the ice cloud dataset was as follows: first, historical trop-

ical cyclone track data along China’s eastern coast were downloaded from official mete-

orological websites (https://tcdata.typhoon.org.cn/zjljsjj.html, accessed on 19 March 2024); 

next, the ATMS observations containing the tropical cyclones were obtained from 

NOAA’s website (https://www.avl.class.noaa.gov/saa/products/welcome, accessed on 19 

March 2024); then, the atmospheric and ice cloud parameters matching with the ATMS 

data in time and space were generated using the WRF model; finally, the graupel profiles 

Figure 3. Comparison of the vertical distribution of graupel in the SARIKA scenario. (a) Graupel
data from the WRF model, and (b) graupel data from the ATMS L2 product.



Remote Sens. 2024, 16, 1096 5 of 25

Table 2. Comparison of the RMSEs (K) of the simulated brightening temperature (WRF graupel data
and ATMS L2 graupel data) and ATMS observation in the 165 GHz and 183 GHz band for eight
tropical cyclone cases.

Surface
Support 165.5 183.31 ± 7 183.31 ± 4.5 183.31 ± 3 183.31 ± 1.8 183.31 ± 1

SARIKA
WRF data 14.58 10.51 7.68 5.61 4.00 3.13

ATMS L2 data 4.37 3.22 2.93 2.55 2.18 2.21

NOCK–TEN
WRF data 11.03 8.57 6.69 5.21 3.82 2.92

ATMS L2 data 3.55 2.65 2.40 2.17 1.88 1.80

NEOGURI
WRF data 13.28 11.10 9.13 7.40 5.71 4.40

ATMS L2 data 2.90 3.24 3.12 2.92 2.57 2.48

FENGSHEN
WRF data 13.42 10.82 8.72 6.86 4.99 3.66

ATMS L2 data 3.35 3.43 3.18 2.83 2.35 2.18

FUNG–WONG
WRF data 12.42 9.91 8.09 6.47 4.87 3.72

ATMS L2 data 4.42 3.26 2.79 2.38 2.00 2.02

NANGKA
WRF data 9.75 8.16 6.76 5.56 4.45 3.64

ATMS L2 data 2.61 2.57 2.65 2.70 2.58 2.48

CHAMPI
WRF data 8.58 7.33 6.15 5.07 3.95 3.18

ATMS L2 data 2.81 2.05 1.90 1.81 1.77 1.94

MINDULLE
WRF data 17.81 13.51 10.38 7.83 5.66 4.20

ATMS L2 data 4.35 3.58 3.13 2.69 2.25 2.18

The TB verification experiments indicate the following: (1) compared with those
in the WRF graupel data, the graupel mass profiles in the ATMS L2 products are more
consistent with reality; (2) the presence of graupel particles in ice clouds has the most
obvious influence on the brightness temperature in the 183 GHz band; and (3) the TBs
simulated by the DOTLRT model can accurately calculate the scattering characteristics of
ice clouds in the deep convection area of typhoons. Therefore, in this study, WRF output
data were combined with ATMS L2 graupel data to construct a synthetic ice cloud database.

2.2. Construction of the Ice Cloud Dataset

The process for establishing the ice cloud dataset was as follows: first, historical tropical
cyclone track data along China’s eastern coast were downloaded from official meteorological
websites (https://tcdata.typhoon.org.cn/zjljsjj.html, accessed on 19 March 2024); next, the
ATMS observations containing the tropical cyclones were obtained from NOAA’s website
(https://www.avl.class.noaa.gov/saa/products/welcome, accessed on 19 March 2024); then,
the atmospheric and ice cloud parameters matching with the ATMS data in time and space
were generated using the WRF model; finally, the graupel profiles in the WRF data were
replaced by the PGraupel in ATMS L2 products to form a synthetic ice cloud dataset containing
graupel, ice, and snow parameters.

The dataset covers all tropical cyclones passing through China’s coastal regions from
2016 to 2022 with data augmentation by rotation, and the training set contains 2686 ice
cloud scenarios after rotation (there were 1343 scenarios before rotation). As shown in
Table 3, the China Meteorological Administration (CMA) categorizes tropical cyclones into
six levels based on the maximum mean wind speeds near the surface center. According to
the classification criteria, the proportion of tropical cyclones in each intensity category in the
dataset is shown in Figure 4. The proportions of tropical cyclones in each intensity category
were ranked from high to low as follows: Tropical Storm (TS, 29.08%), Tropical Depression
(TD, 21.77%), Typhoon (TY, 15.48%), Severe Tropical Storm (STS, 14.70%), Strong Typhoon
(STY, 11.31%), and Super Typhoon (Super TY, 7.65%). To validate the generalization

https://tcdata.typhoon.org.cn/zjljsjj.html
https://www.avl.class.noaa.gov/saa/products/welcome
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capability of the CNN networks, the test set includes tropical cyclone scenarios across all
intensity levels, as listed in Table 4.

Table 3. Classification of tropical cyclone intensities by the CMA.

Name Stats

Tropical Depression (TD) Maximum mean wind speeds near the surface center of 10.8–17.1 m/s, corresponding to Level
6–7.

Tropical Storm (TS) Maximum mean wind speeds near the surface center of 17.2–24.4 m/s, corresponding to Level
8–9.

Severe Tropical Storm (STS) Maximum mean wind speeds near the surface center of 24.5–32.6 m/s, corresponding to Level
10–11.

Typhoon (TY) Maximum mean wind speeds near the surface center of 32.7–41.4 m/s, corresponding to Level
12–13.

Strong typhoon (STY) Maximum mean wind speeds near the surface center of 41.5–50.9 m/s, corresponding to Level
14–15.

Super typhoon
(Super TY)

Maximum mean wind speeds near the surface center ≥51.0 m/s, corresponding to Level 16 or
above.

Table 4. List of tropical cyclones in the test set.

Serial Number Name Time Maximum Mean Wind
Speed (m/s) Grade Strength

1 SARIKA 18 October 2016 05:50 33 TY

2 NOCK–TEN 24 December 2016 05:00 58 Super TY

3 NEOGURI 19 October 2019 15:00 42 STY

4 FENGSHEN 15 November 2019 15:50 50 STY

5 FUNG–WONG 20 November 2019 16:40 18 TS

6 NANGKA 12 October 2020 03:40 18 TS

7 CHAMPI 21 June 2021 15:50 13 TD

8 MINDULLE 5 October 2021 05:10 25 STS

The distributions of ice cloud parameters in different global climate models (GCMs)
can vary by up to an order of magnitude, which is a major source of uncertainty in
current atmospheric numerical models. These differences mainly originate from different
assumptions about frozen particle characteristics and thresholds for the conversion of
cloud ice to precipitation across models [40]. To improve climate and weather forecasting
capabilities, ice cloud parameters must be observed at a global scale [3], including vertical
profiles of ice water content (XWC) for different particle types and path integrated quantities
(XWP, where X can represent different particle types such as G for graupel, I for ice, and S
for snow). The specific definitions of these parameters are provided below.

The XWC refers to the vertical profile of the ice particle content, which represents the
density distribution of ice particles with height in units of g/m3.

The XWP is the total path of the ice cloud and is the integral of the XWC in height, in
g/m2, defined as follows:

XWP =
∫

XWC dz (1)
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Strong typhoon (STY) 
Maximum mean wind speeds near the surface center of 41.5–50.9 m/s, corresponding 
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Super typhoon 

(Super TY) 

Maximum mean wind speeds near the surface center ≥51.0 m/s, corresponding to 

Level 16 or above. 
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2.3. Constructing the TB Dataset

To verify the performance of the proposed CNN retrieval algorithm, we carried out
experiments on the joint retrieval of XWP and XWC from ice, snow, and graupel from
simulated ICI TBs and the retrieval of graupel parameters from the actual ATMS 183 GHz
observed TB. Therefore, we constructed two simulated brightness temperature datasets,
namely, the ICI TB and ATMS 183 GHz TB (as shown in Tables 5 and 6, Figures 5 and 6), both
of which were generated from the ice cloud dataset described in Section 2.2. The two simulated
TB and ice cloud datasets constitute the training dataset, which is used to train CNNs to
retrieve ice cloud parameters from ICI simulations and ATMS observations, respectively.

Table 5. ATMS graupel related frequency channels.

Channel Number Center Frequency (GHz) Equivalent Noise
Temperature Difference (K)

17 165.5 0.6

18 183.31 ± 7 0.8

19 183.31 ± 4.5 0.8

20 183.31 ± 3 0.8

21 183.31 ± 1.8 0.8

22 183.31 ± 1 0.9
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Table 6. ICI frequency channels.

Channel Number Center Frequency (GHz) Equivalent Noise
Temperature Difference (K)

1 183.31 ± 7.0 0.8

2 183.31 ± 3.4 0.8

3 183.31 ± 2.0 0.8

4 243.2 ± 2.5 0.7

5 325.15 ± 9.5 1.2

6 325.15 ± 3.5 1.3

7 325.15 ± 1.5 1.5

8 448 ± 7.2 1.4

Table 6. Cont.

Channel Number Center Frequency (GHz) Equivalent Noise
Temperature Difference (K)

9 448 ± 3.0 1.6

10 448 ± 1.4 2.0

11 664 ± 4.2 1.6
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(k) 664 ± 4.2 GHz.

3. Algorithm Introduction
3.1. Unet

The Unet network [41] is a convolutional neural network with an encoder–decoder
structure that was proposed by Olaf Ronneberger et al. in 2015; its name comes from
the U shape of the network architecture. Unet was originally used for medical image
segmentation. After its proposal, many studies built new models on the basis of Unet
for new applications [42–45]. In this work, the Unet network was utilized for ice cloud
parameter retrieval as a benchmark algorithm.

As shown in Figure 7, the characteristics of the Unet network include the following:
1. The network structure consists of an encoder–decoder architecture, the encoder comprises
multiple downsampling layers to extract features and contextual information from the input
image, and the decoder consists of upsampling layers to gradually recover the resolution
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of the feature maps; 2. The encoder and decoder are connected through skip connections to
enable feature reuse, retaining spatial information from the original image—this approach
is beneficial for segmentation and localization prediction; 3. Before each downsampling,
the number of channels in the feature map is doubled to capture additional semantic
information, upsampling reduces the number of channels; 4. The network contains no fully
connected layers and contains only convolutional, pooling, and other operations, making it
more suitable for processing spatial information; 5. End to end training eliminates the need
for complex pre/postprocessing.
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3.2. RCNN–ResUnet

On the basis of the original Unet network, we incorporated recurrent convolutional
layers [46] and residual structure design [47] to construct the RCNN–ResUnet network
architecture, as shown in Figures 8 and 9. Specifically, the encoder and decoder modules in
RCNN–ResUnet both employ recurrent convolutional layers instead of regular convolu-
tion layers. Recurrent convolutional layers can accumulate feature information, which is
beneficial for image–related tasks. In addition, RCNN–ResUnet inserts residual units after
the recurrent convolutional layers to form recurrent residual convolutional modules. The
residual structure facilitates the training of deeper models.

Compared to the original Unet, the advantages of RCNN–ResUnet include the fol-
lowing: 1. Recurrent convolutional layers can accumulate features, enhancing feature
representation; 2. The residual structure mitigates gradient vanishing, facilitating train-
ing of deeper networks; 3. Without increasing the number of parameters, the retrieval
accuracy improved.
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4. Ice Cloud Parameter Retrieval Experiments

To verify the effectiveness and performance of the proposed CNN retrieval algorithms,
two ice cloud retrieval experiments were conducted. First, the CNN retrieval algorithms
applied the simulated ICI TB to jointly retrieve the physical parameters of ice, snow, and
graupel. The retrieval objects are path integrated quantities (XWP) and vertical profiles of
water content (XWC), where X represents different ice hydrometeors, such as I for ice, S for
snow, and G for graupel. In addition, to verify the effectiveness of this algorithm on real
satellite data, CNN algorithms were also applied to actual ATMS 183 GHz observed bright-
ness temperatures to retrieve graupel parameters. Because the highest ATMS frequency
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reaches only 183 GHz, previous studies have shown that this frequency is sensitive only to
graupel particles and cannot measure ice and snow [24].

4.1. Multiple Species of Ice Hydrometeors Retrieval from the Simulated ICI Brightness Temperature

Figure 10 shows the experimental procedure for the joint retrieval of multiple species
of ice hydrometeor parameters from the ICI simulation; the details are as follows:
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Figure 10. Flow chart of the joint retrieval of multiple species of ice hydrometeor parameters from
ICI simulation.

Step 1: Construct the CNN dataset consisting of pairs of the synthetic ice cloud database
and the corresponding simulated ICI brightness temperatures, as shown in Figure 6;

Step 2: Build the Unet and RCNN–ResUnet networks;
Step 3: The networks are trained and validated using the training set and validation

set, respectively;
Step 4: The well trained Unet and RCNN–ResUnet networks are used to retrieve multiple

species of ice hydrometeor parameters from the ICI simulation in the test set. The test set
includes eight tropical cyclone scenarios across all intensity levels, as listed in Table 4.

Step 5: The multiple species of ice hydrometeor parameters in the test set are used as
the “reference truth” to evaluate the retrieval errors.

4.1.1. Joint Retrieval of Water Paths of Multiple Species of Ice Hydrometeors

First, the CNN algorithm was applied to simulate the ICI brightness temperatures to
jointly retrieve the path integrated quantities of the three ice hydrometeors: GWP, IWP,
and SWP.

Figures 11–13 show the experimental results of jointly retrieving GWP, IWP, and SWP
for the SARIKA scenario using Unet and RCNN–ResUnet, respectively, where (a) is the
“reference truth” in the test data, (b) is the retrieval result of Unet, (c) is the retrieval result
of RCNN–ResUnet, (d) is the scatter plot of RCNN–ResUnet retrieval, (e) is the error of
Unet retrieval and (f) is the error of RCNN–ResUnet retrieval. It can be seen that for ice,
snow, and graupel particles, both Unet and RCNN–ResUnet can accurately retrieve the
spatial distribution characteristics of GWP, IWP, and SWP.
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Figure 11. GWP retrieval results for Typhoon SARIKA. (a) The reference truth; (b) Unet retrieval;
(c) RCNN–ResUnet retrieval; (d) scatter plot of RCNN–ResUnet retrieval; (e) error of Unet retrieval;
and (f) error of RCNN–ResUnet retrieval. The red line in (d) represents the function y = x.
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ror of the GWP is between 15% and 18% for all test data, with an average of 16.34%; the 

Figure 12. IWP retrieval results for Typhoon SARIKA. (a) The reference truth; (b) Unet retrieval;
(c) RCNN–ResUnet retrieval; (d) scatter plot of RCNN–ResUnet retrieval; (e) error of Unet retrieval;
and (f) error of RCNN–ResUnet retrieval. The red line in (d) represents the function y = x.
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Figure 13. SWP retrieval results for Typhoon SARIKA. (a) The reference truth; (b) Unet retrieval;
(c) RCNN–ResUnet retrieval; (d) scatter plot of RCNN–ResUnet retrieval; (e) error of Unet retrieval;
and (f) error of RCNN–ResUnet retrieval. The red line in (d) represents the function y = x.

Figure 14a,b show the percentage errors of GWP, IWP, and SWP retrieved by Unet and
RCNN–ResUnet, respectively, for all eight test scenarios. Using Unet, the relative error of
the GWP is between 15% and 18% for all test data, with an average of 16.34%; the IWP
relative error ranges from 62% to 79%, with an average of 68.2%; and the SWP relative
error is between 54% and 83%, with an average of 69.14%. Using the RCNN–ResUnet, the
relative error of the GWP is between 12% and 16%, with an average of 14.48%; the IWP
relative error ranges from 47% to 58%, with an average of 51.38%; and the SWP relative
error is between 45% and 65%, with an average of 57.01%.
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Figure 14. Relative errors in the GWP, IWP, and SWP for all eight tropical cyclone scenarios. (a) Unet
and (b) RCNN–ResUnet.

Figure 14 indicates that the proposed CNN algorithms can effectively and jointly
retrieve the path integrated quantities of graupel, ice, and snow particles from the ICI
submillimeter wave brightness temperature. Compared with those of classical Unet, the
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retrieval errors of the revised RCNN–ResUnet are significantly lower—11% for GWP, 25%
for IWP, and 18% for SWP.

4.1.2. Joint Retrieval of Multiple Species of Ice Water Contents

Then, the CNN algorithms were applied to simulate the ICI brightness temperature to
jointly retrieve the profiles of the water content of the three ice hydrometeors: GWC, IWC,
and SWC.

Figures 15–17 show the retrieval results of GWC, IWC, and SWC for Typhoon SARIKA
using Unet and RCNN–ResUnet, respectively, where (a) is the reference truth value, (b) is
the retrieval result of Unet, (c) is the retrieval result of RCNN–ResUnet, (d) is the scatter
plot of Unet retrieval, and (e) is the scatter plot of RCNN–ResUnet retrieval. For ice, snow,
and graupel particles, both Unet and RCNN–ResUnet can retrieve the vertical distribution
characteristics of the GWC, IWC, and SWC with good accuracy.

Figure 18a,b show the percentage errors of the GWC, IWC, and SWC retrieved by Unet
and RCNN–ResUnet, respectively, for all eight test scenarios. Using Unet, the relative error
in the GWC is between 28% and 38% for all test data, with an average of 32.78%; the IWC
relative error ranges from 60% to 86%, with an average of 70.36%; and the SWC relative
error is between 67% and 100%, with an average of 76.14%. Using the RCNN–ResUnet, the
relative error of the GWC is between 14% and 22%, with an average of 18.41%; the IWC
relative error ranges from 55% to 82%, with an average of 68.84%; and the SWC relative
error is between 66% and 88%, with an average of 78.06%.

Figure 18 indicates that the proposed CNN algorithm can effectively and jointly
retrieve the water content profiles of graupel, ice, and snow particles from the ICI submil-
limeter wave brightness temperature. Compared with that of Unet, the retrieval error of
the revised RCNN–ResUnet is 44% lower for GWC and is almost the same for IWC and
SWC.
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Figure 15. GWC retrieval results for Typhoon SARIKA. (a) The reference truth; (b) Unet retrieval;
(c) RCNN–ResUnet retrieval; (d) scatter plot of Unet retrieval; and (e) scatter plot of RCNN–ResUnet
retrieval. The red line in (d,e) represents the function y = x.
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retrieval. The red line in (d,e) represents the function y = x.

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 25 
 

 

   

(a) (b) (c) 

  

(d) (e) 

Figure 17. SWC retrieval results for Typhoon SARIKA. (a) The reference truth; (b) Unet retrieval; (c) 

RCNN–ResUnet retrieval; (d) scatter plot of Unet retrieval; and (e) scatter plot of RCNN–ResUnet 

retrieval. The red line in (d,e) represents the function y = x. 

Figure 18a,b show the percentage errors of the GWC, IWC, and SWC retrieved by 

Unet and RCNN–ResUnet, respectively, for all eight test scenarios. Using Unet, the rela-

tive error in the GWC is between 28% and 38% for all test data, with an average of 32.78%; 

the IWC relative error ranges from 60% to 86%, with an average of 70.36%; and the SWC 

relative error is between 67% and 100%, with an average of 76.14%. Using the RCNN–

ResUnet, the relative error of the GWC is between 14% and 22%, with an average of 

18.41%; the IWC relative error ranges from 55% to 82%, with an average of 68.84%; and 

the SWC relative error is between 66% and 88%, with an average of 78.06%. 

Figure 18 indicates that the proposed CNN algorithm can effectively and jointly re-

trieve the water content profiles of graupel, ice, and snow particles from the ICI submilli-

meter wave brightness temperature. Compared with that of Unet, the retrieval error of 

the revised RCNN–ResUnet is 44% lower for GWC and is almost the same for IWC and 

SWC. 

  

(a) (b) 

Figure 17. SWC retrieval results for Typhoon SARIKA. (a) The reference truth; (b) Unet retrieval;
(c) RCNN–ResUnet retrieval; (d) scatter plot of Unet retrieval; and (e) scatter plot of RCNN–ResUnet
retrieval. The red line in (d,e) represents the function y = x.



Remote Sens. 2024, 16, 1096 17 of 25

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 25 
 

 

   

(a) (b) (c) 

  

(d) (e) 

Figure 17. SWC retrieval results for Typhoon SARIKA. (a) The reference truth; (b) Unet retrieval; (c) 

RCNN–ResUnet retrieval; (d) scatter plot of Unet retrieval; and (e) scatter plot of RCNN–ResUnet 

retrieval. The red line in (d,e) represents the function y = x. 

Figure 18a,b show the percentage errors of the GWC, IWC, and SWC retrieved by 

Unet and RCNN–ResUnet, respectively, for all eight test scenarios. Using Unet, the rela-

tive error in the GWC is between 28% and 38% for all test data, with an average of 32.78%; 

the IWC relative error ranges from 60% to 86%, with an average of 70.36%; and the SWC 

relative error is between 67% and 100%, with an average of 76.14%. Using the RCNN–

ResUnet, the relative error of the GWC is between 14% and 22%, with an average of 

18.41%; the IWC relative error ranges from 55% to 82%, with an average of 68.84%; and 

the SWC relative error is between 66% and 88%, with an average of 78.06%. 

Figure 18 indicates that the proposed CNN algorithm can effectively and jointly re-

trieve the water content profiles of graupel, ice, and snow particles from the ICI submilli-

meter wave brightness temperature. Compared with that of Unet, the retrieval error of 

the revised RCNN–ResUnet is 44% lower for GWC and is almost the same for IWC and 

SWC. 

  

(a) (b) 

Figure 18. Relative errors in GWC, IWC, and SWC under the SARIKA scenario. (a) Unet and
(b) RCNN–ResUnet.

4.2. Graupel Parameter Retrieval from the Actual ATMS Brightness Temperature

Figure 19 shows the experimental procedure for retrieving graupel parameters from
the actual ATMS 183 GHz brightness temperature; the details are as follows:

Step 1: The CNN dataset consisting of pairs of synthetic ice cloud databases and
corresponding simulated ATMS 183 GHz brightness temperatures is constructed, as shown
in Figure 5;

Step 2: The Unet and RCNN–ResUnet networks are built;
Step 3: The networks are trained and validated using the training set and validation

set, respectively;
Step 4: The well trained Unet and RCNN–ResUnet networks are applied to the

ATMS simulation in the test set and corresponding ATMS observation to retrieve graupel
parameters;

Step 5: The graupel parameters in the test set are used as the “reference truth” to
evaluate the retrieval errors.
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4.2.1. Retrieval of the Graupel Water Path (GWP)

First, the CNN algorithms were applied to the simulated ATMS 183 GHz brightness
temperature and the actual ATMS observation to retrieve the GWP.

Figure 20 shows the GWP retrieval experimental results of the ATMS simulation for
Typhoon SARIKA using Unet and RCNN–ResUnet, where (a) is the “reference truth” in the
test data, (b) is the retrieval result of Unet, and (c) is the retrieval result of RCNN–ResUnet.
Figure 21 shows the GWP retrieval experimental results for the actual ATMS observations,
where (a) is the “reference truth” in the test data, (b) is the retrieval result of Unet, (c) is
the retrieval result of RCNN–ResUnet, (d) is the scatter plot of Unet retrieval and (e) is the
scatter plot of RCNN–ResUnet retrieval. Even for the actual ATMS observations, both Unet
and RCNN–ResUnet trained by the ATMS simulation can accurately retrieve the spatial
distribution characteristics of the GWP.
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Figure 21. GWP retrieval results for the actual ATMS observation. (a) Reference truth; (b) Unet
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Remote Sens. 2024, 16, 1096 19 of 25

Figure 22a,b show the percentage errors of GWP retrieved by Unet and RCNN–
ResUnet, respectively, for all eight test scenarios, in which the blue bars represent the
errors of the ATMS simulation and the red bars represent the ATMS observations. As
shown in Figure 22a, when Unet is used in the ATMS simulation, the relative error in the
GWP is between 17% and 32% for all test data, with an average of 24.92%. According to
the Unet to ATMS observations, the relative error in the GWP is between 18% and 30% for
all the test data, with an average of 26.27%, reflecting an increase of only 5.4% compared
with the ideal value (ATMS simulation). As shown in Figure 22b, when RCNN–ResUnet is
used in the ATMS simulation, the relative error in the GWP is between 14% and 43%, with
an average of 28.56%. Using the RCNN–ResUnet for the ATMS observations, the relative
error in the GWP is between 19% and 40% for all the test data, with an average of 30.74%,
reflecting an increase of only 7.6% compared with the ideal value.

Figure 22 indicates that the proposed CNNs trained by the simulated brightness
temperature can effectively retrieve the GWP from the actual ATMS millimeter scale
brightness temperature. Compared with the ideal case, the retrieval error of GWP increases
by 5.4% for Unet and 7.6% for RCNN–ResUnet. UNet outperforms RCNN–ResUnet slightly
for all eight test scenarios, and the average error of RCNN–ResUnet is 17% greater than
that of Unet.

4.2.2. Retrieval of Graupel Water Content (GWC)

Then, the CNN algorithms were applied to the simulated ATMS 183 GHz brightness
temperature and the actual ATMS observation data to retrieve the GWC.

Figure 23 shows the GWC retrieval experimental results of the ATMS simulation for
Typhoon SARIKA using Unet and RCNN–ResUnet, where (a) is the “reference truth” in the
test data, (b) is the retrieval result of Unet, and (c) is the retrieval result of RCNN–ResUnet.
Figure 24 shows the GWC retrieval experimental results for the actual ATMS observa-
tions, where (a) is the “reference truth” in the test data, (b) is the retrieval result of Unet,
(c) is the retrieval result of RCNN–ResUnet, (d) is the scatter plot of Unet retrieval and
(e) is the scatter plot of RCNN–ResUnet retrieval. Even for the actual ATMS observations,
RCNN–ResUnet trained by the ATMS simulation can accurately retrieve the spatial distri-
bution characteristics of the GWC, while the difference between the retrieval of the UNet
and the reference truth is obviously greater.

Figure 25a,b show the percentage errors of the GWC retrieved by Unet and RCNN–
ResUnet, respectively, for all eight test scenarios, in which the blue bars represent the errors
of the ATMS simulation and the red bars represent the ATMS observations. As shown
in Figure 25a, when Unet is used in the ATMS simulation, the relative error in the GWC
is between 38% and 55% for all test data, with an average of 43.55%. According to the
Unet to ATMS observations, the relative error in the GWP is between 41% and 70% for
all the test data, with an average of 54.08%, an increase of 24% compared with the ideal
(ATMS simulation). As shown in Figure 25b, when RCNN–ResUnet is used in the ATMS
simulation, the relative error in the GWC is between 28% and 46%, with an average of
34.78%. Using the RCNN–ResUnet for the ATMS observations, the relative error in the
GWP is between 32% and 55% for all the test data, with an average of 40.88%, an increase
of 17.5% compared with the ideal value.

Figure 25 indicates that the proposed CNNs trained by the simulated brightness
temperature can effectively retrieve the GWP from the actual ATMS millimeter scale
brightness temperature. Compared with the ideal case, the retrieval error of GWP in-
creases by 24% for Unet and 17.5% for RCNN–ResUnet. RCNN–ResUnet outperforms
Unet for all eight test scenarios, and the average error of Unet is 32% greater than that
of RCNN–ResUnet.

4.2.3. The Sensitivity Experiments for the Retrieval of Graupel Parameters

To demonstrate the sensitivity of the established CNN model to brightness temperature
observation errors, sensitivity experiments for the retrieval of graupel parameters from
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ATMS observations have been conducted. In the sensitivity experiments, the simulated
ATMS brightness temperature for retrieval test was added with 0.5 times, 1 times, and
2 times the standard NEDT noise, respectively (the specific NEDT values of each frequency
channel are shown in Table 3). Table 7 shows the sensitivity experimental results for
GWP retrieval. As can be seen, compared with the result without noise, the Unet retrieval
errors with 0.5 times noise, 1 times noise, and 2 times noise increase by 1.48%, 3.93%, and
13.72%, respectively, and the RCNN–ResUnet retrieval errors increase by 1.79%, 5.46%, and
17.58%, respectively. Table 8 shows the sensitivity experimental results for GWC retrieval.
Compared with the result without noise, the Unet retrieval errors with 0.5 times noise,
1 times noise, and 2 times noise increase by 1.81%, 6.61%, and 20.09%, respectively, and the
RCNN–ResUnet retrieval errors increase by 3.02%, 11.33%, and 36.72%, respectively.
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Table 8. Sensitivity experimental results for GWC retrieval.

Average Relative
Error (%) No Noise Add Noise

(Half NEDT)
Add Noise

(NEDT)
Add Noise

(Double NEDT)

Unet 43.55 44.34 46.43 52.30

RCNN–ResUnet 34.78 35.83 38.72 47.55

The sensitivity experimental results show that the performance of the CNN model will
be significantly degraded if the observation noise is too large, but for the actual observation
noise of ATMS, the retrieval error increase is small, indicating that the robustness of the
CNN model can meet the needs of practical applications.

4.3. Comparison of the Retrieval Performance of Unet and RCNN–ResUnet

A comparison of the retrieval results of Unet and RCNN–ResUnet shows that
RCNN–ResUnet outperforms Unet in all multiple species of ice hydrometeor retrieval
experiments. In addition, for the vertical distribution of the ice hydrometeors, regardless
of whether the ICI simulation or actual ATMS observation was used, the retrieved images
(Figure 16, Figure 17, Figure 18, Figure 24, and Figure 25) of RCNN–ResUnet were obvi-
ously more consistent with the reference truth than those of Unet. Only for the GWP are
the retrieval errors of Unet slightly smaller than those of RCNN–ResUnet.

The above experimental results indicate that the improved RCNN–ResUnet can learn
more complex data features and perform better for more complex retrieval problems, such
as multiple species of ice hydrometeor retrieval and profile retrieval, while Unet only shows
good performance for simpler retrieval problems, such as the graupel water path (GWP).

There are several reasons why RCNN–ResUnet has better performance for complex
retrieval problems: 1. RCNN–ResUnet adds an extra recurrent unit on top of Unet to
capture contextual information in the images; 2. RCNN–ResUnet uses residual connections
and multiscale features, which can help the network learn and represent cloud features at
different scales better, while Unet has only regular skip connections; 3. The RCNN–ResUnet
network architecture is deeper and has stronger feature learning and representation capabil-
ities, while Unet is relatively shallow. By introducing recurrent units, residual connections
and other methods, RCNN–ResUnet has significantly improved model expression and
feature extraction abilities compared to Unet. Therefore, this approach achieves better
performance for the multiple species of ice hydrometeor retrieval task.

5. Conclusions and Discussion

For the first time, we present the use of deep convolutional neural networks for the
joint retrieval of multiple species of ice hydrometeors (ice, snow, and graupel) (XWP and
XWC) from millimeter and submillimeter wave brightness temperatures, particularly for
future ICI data. The improved RCNN–ResUnet uses a recurrent unit to enhance feature
representation and to better learn and represent cloud features at different scales with
residual connections and multiscale features. Networks were trained on the simulated
ICI brightness temperature dataset covering all tropical cyclones passing through China’s
coastal regions from 2016 to 2022, and samples including tropical cyclones across all
intensity levels were tested with great accuracy. Good experimental results were obtained
compared with those of the classical Unet. The average relative errors are 14.48% for GWP,
51.38% for IWP, 57.01% for SWP, 18.41% for GWC, 68.84% for IWC, and 78.06% for SWC.
Compared with the previous study of Eriksson et al. [23], the average relative error of the
total content retrieved by RCNN–ResUnet is reduced by 71%. Compared with the previous
study of Chen et al. [24], the average relative error of the vertical profiles retrieved by
RCNN–ResUnet is reduced by 69%.

The CNNs trained by the simulated brightness temperature were also applied to
the actual ATMS observed millimeter wave brightness temperature to retrieve the GWP
and GWC, with average relative errors of 30.74% for the GWP and 40.88% for the GWC,
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increasing by 7.6% and 17.5%, respectively, compared with the ideal values. The ATMS
observation retrieval experiment results show that the forward model that generates a
simulated brightness temperature dataset can calculate the actual radiative transfer process
with good accuracy, so the network learning from the simulation dataset can obtain a
good retrieval capability for real observations. This also shows the feasibility of applying
RCNN–ResUnet trained by ICI simulation to future ICI observation. We conclude that a
deep network is an appropriate learning paradigm for the statistical retrieval of multiple
species of ice hydrometeor parameters.

In addition, the retrieval results for multiple species of ice hydrometeors revealed
that the relative errors in ice and snow are much larger than those in graupel for both
networks. Compared to that of ice and snow particles, the relative error in the GWP is
only approximately one–quarter. From the reference truth value, the total amount and
particle size of ice and snow particles are much smaller than those of graupel, resulting
in the brightness temperature changes of 11 frequency channels of ICI caused by ice and
snow also being smaller than those of graupel. Therefore, in the training process of the
CNN network, the features of ice and snow in the data set are much weaker than those
of graupel and are even submerged by the strong features of graupel, which may be the
reason why the retrieval error of ice and snow is much larger than that of graupel. This
will be the direction of future improvement of joint retrieval algorithm based on CNN.

Future work will also improve retrieval accuracy and expand parameter types to provide
support for future submillimeter wave radiometers used for ice cloud remote sensing.
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