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Abstract: Despite notable advancements achieved on Hyperspectral (HS) pansharpening tasks
through deep learning techniques, previous methods are inherently constrained by convolution
or self-attention intrinsic defects, leading to limited performance. In this paper, we proposed an
Attention-Interactive Dual-Branch Convolutional Neural Network (AIDB-Net) for HS pansharpening.
Our model purely consists of convolutional layers and simultaneously inherits the strengths of
both convolution and self-attention, especially the modeling of short- and long-range dependencies.
Specially, we first extract, tokenize, and align the hyperspectral image (HSI) and panchromatic
image (PAN) by Overlapping Patch Embedding Blocks. Then, we specialize a novel Spectral-Spatial
Interactive Attention which is able to globally interact and fuse the cross-modality features. The
resultant token-global similarity scores can guide the refinement and renewal of the textural details
and spectral characteristics within HSI features. By deeply combined these two paradigms, our
AIDB-Net significantly improve the pansharpening performance. Moreover, with the acceleration by
the convolution inductive bias, our interactive attention can be trained without large scale dataset and
achieves competitive time cost with its counterparts. Compared with the state-of-the-art methods, our
AIDB-Net makes 5.2%, 3.1%, and 2.2% improvement on PSNR metric on three public datasets, respec-
tively. Comprehensive experiments quantitatively and qualitatively demonstrate the effectiveness
and superiority of our AIDB-Net.

Keywords: hyperspectral pansharpening; image super-resolution; deep learning; convolutional
neural network; transformer; self-attention mechanism

1. Introduction

With the rapid development of remote sensing technologies, remote sensing images are
gradually becoming versatile and have been widely applied in many domains: including
scene classification [1], target detection [2], denoising [3], and spectral unmixing [4]. There
are two commonly prevalent categories remote sensing images: hyperspectral image (HSI)
and panchromatic image (PAN). The HSI records abundant spectral information by densely
sampling dozens or even hundreds of continuous spectral bands from visible to infrared
wavelengths. The extensive spectral coverage empowers the identification of various
materials on Earth through spectral signatures [5]. However, the spatial resolution of
HSI is low. In contrast to HSI, PAN excel in recording the elaborate textural details of
ground objects within a single spectral band. Restricted by the hardware limitations, the
hyperspectral imaging system cannot captures a remote sensing images with both high
spectral and spatial quality. The cost of high spectral resolution for HSI is blurry textural
details. The absence of spatial information in HSI significantly hinders its application
potential. Therefore, it becomes imperative to leverage super-resolution techniques to
enhance the spatial resolution of HSI. These methods can be broadly categorized into two
types: single-image super-resolution (SISR) and multi-image super-resolution (MISR) [6].
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While SISR applies the super-resolution algorithm solely to a single HSI without auxiliary
PAN, MISR boosts the spatial resolution of HSI by incorporating the refined textural details
from PAN. This integration often yields superior super-resolution performance in terms of
both spectral and spatial fidelity. In general, MISR is commonly referred as hyperspectral
(HS) pansharpening by the official.

To obtain high spatial resolution HSI, numerous pansharpening approaches have been
proposed over the past few decades, which can be divided into traditional and emerging
methods. Among traditional methods, component substitution (CS)-based methods depend
on replacement of the spatial component of the source HSI with the corresponding PAN,
which includes Intensity-Hue-Saturation (IHS) [7], Brovey [8], Principal Component Anal-
ysis (PCA) [9], Gram-Schmidt (GS) [10], and Gram-Schmidt Adaptive (GSA) [11]. While
CS-based methods effectively achieve the transmission of the spatial information from PAN
to HSI, they often introduce spectral distortions in the pansharpened image. In contrast,
multi resolution analysis (MRA)-based methods begin by decomposing the source HSI
and PAN into different scales using a multi-scale decomposition algorithm. Subsequently,
the spectral and spatial features are fused within each scale. The family of MRA-based
methods mainly involve Smoothing Filter-based Intensity Modulation (SFIM) [12], Gener-
alized Laplacian Pyramid (GLP) with Modulation Transfer Function (MTF) matched filter
(MTF-GLP) [13], MTF-GLP with High-Pass Modulation (MTF-GLP-HPM) [14]. Unlike
CS-based methods, MRA-based methods demonstrate superior performance in spectral
preservation, albeit at the expense of introducing spatial distortions in the pansharpened
image. In addition to these purely CS- or MRA-based methods, hybrid approaches for HS
pansharpening have also been studied. Examples include guided filter PCA (GFPCA) [15],
which simultaneously inherit the advantages of both CS- and MRA-based methods. In
addition to above approaches, variational optimization (VO)-based methods approach HS
pansharpening as an optimization problem, formulating a constrained objective function
with prior knowledge derived from the source HSI, PAN, and the ideal HSI. Interactive
optimization algorithms are typically employed to find suitable solutions. Representative
examples include Coupled Non-negative Matrix Factorization (CNMF) [16], Convex Regular-
ization under a Bayesian Gaussian prior (HySure) [17], and naive Bayesian Gaussian prior
(BF) [18]. While VO-based methods yield relatively high pansharpening quality, they are often
characterized by slow processing speeds and challenging fine-tuning requirements.

The advantages and shortcomings of different categories HS pansharpening methods
have been represented in Table 1. In a word, traditional methods often suffer from inade-
quate representation ability or inappropriate assumptions, resulting in notable spectral and
spatial distortions in the pansharpened image.

Table 1. Advantages and shortcomings of different kinds of HS pansharpening methods.

Category Advantage Shortcoming

CS Better spatial reconstruction
Easy to use

Distort the spectral features
Sensitive to the scale ratio and sensor type

MRA Better spectral preservation
Easy to use

Distort the spatial features
Sensitive to the scale ratio and misregistration

HYBRID Insensitive to the scale ratio and misregistration Distort the spectral and spatial features

VO Better spectral preservation and spatial reconstruction Relatively slow
Hard to fine tune

DL Fast (pre-trained model)
Better spectral preservation and spatial reconstruction

Hardware demanding
Hard to pre-train and fine tune
Depend on large scale dataset

In recent years, deep learning (DL)-based methods, especially convolutional neural
network (CNN), gradually emerge as a transformative solution for HS pansharpening.
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Leveraging their powerful capabilities of feature extraction and nonlinear optimization,
CNN-based methods have already achieved state-of-the-art (SOTA) performance. Follow-
ing the design philosophy of natural image super-resolution, Masi et al. [19] introduced a
pansharpening neural network (PNN) comprising three convolutional layers as an initial
attempt. However, the performance of PNN is constrained due to its simple architecture
and less parameters. Yang et al. [20] developed PanNet, a pansharpening neural network
that incorporates domain-specific knowledge, emphasizing both spectral preservation and
spatial enhancement. To achieve spectral preservation, PanNet employs a direct propa-
gation of spectral information through a summation operation between the up-sampled
multispectral and reconstructed image. For spatial enhancement, PanNet is trained in the
high-pass filtering domain rather than image domain. A lot of CNN-based methods [21–24]
have been proposed to address HS pansharpening problem, achieving impressive perfor-
mance. With the growing recognition of both convolution and HS pansharpening, the
dual-branch design paradigm has emerged as a common approach. This paradigm involves
the parallel processing of spectral and spatial information on two branches, followed by
the integration of advanced spatial information into the spectral features through specially
designed aggregation component. He et al. [25] introduced HyperPNN, a spectrally predic-
tive convolutional neural network designed for HS pansharpening. HyperPNN comprises
two sub-networks: a spectral prediction sub-network dedicated to spectral prediction and
a spatial-spectral inference sub-network aimed at leveraging both spectral and spatial con-
textual information. Wang et al. [5] proposed a dual-path fusion network (DPFN) designed
to capture both global spectral-spatial and local high-pass spatial information through
two distinct learning paths. The model is trained using a combinatorial loss function,
which includes pixel-wise mean square error (MSE) and feature-wise near-infrared-VGG
loss, aiming to enhance performance. Qu [26] proposed a dual-branch detail extraction
pansharpening network (DBDENet) that can solve the pansharpening problem with any
number of spectral bands. However, 2D CNNs are primarily adept at capturing spatial
information along the width and height dimensions, making it challenging to preserve the
spectral features of HSI data cubes. To address this limitation, Zheng et al. [27] introduced
an edge-conditioned feature transform network (EC-FTN) that utilizes 3D convolutional
layers. This design enables the joint extraction of spectral and spatial features from HSI,
resulting in the preservation of fine details and high spectral fidelity.

Despite the numerous CNN-based methods proposed for HS pansharpening, two
critical issues persist:

1. Cross-Modality Dependency Modeling: In order to fuse the diverse modality infor-
mation, most CNN-based methods often concatenate HSI with PAN in either the
image domain or feature domain. However, concatenating a single spectral band
PAN with dozens or even hundreds of spectral bands HSI fails to properly model the
cross-modality dependencies between them.

2. Limited Exploitation of Global Information: CNN-based methods, constrained by
their receptive field, typically focus on extracting local information from the input
image. Unfortunately, this approach neglects the importance of global information.
However, both local and global information are crucial for accurate pansharpening.

In addition to convolution, another emerging DL model, the transformer architecture,
has shown promising prospect in computer vision community. Transformer exclusively
relies on the self-attention mechanism, which enables the adjustment of each pixel based
on the long-range dependencies of input features. Researchers have begun exploring
transformer-based pansharpening model and there already exists some relevant works in
the community. Meng et al. [28] introduced a modified Vision Transformer (ViT) [29] style
model for HS pansharpening. Chaminda Bandara et al. [30] proposed HyperTransformer,
a textural-spectral feature fusion transformer. In HyperTransformer, an improved self-
attention mechanism is designed to identify spectrally similar and texturally superior
features for source HSI. Notably, the features of low spatial resolution HSI, down-sampled
PAN, and PAN are formulated as Query, Key, and Value, respectively. HyperTransformer
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can extract cross-modality dependencies in a global manner, which is completely different
to convolution. Moreover, Fusformer [31] and Panformer [32] have further verified the
performance of transformer architecture for pansharpening. While several Transformer-
based HS pansharpening methods have been explored, challenges persist (Table 2):

1. Modification of Self-Attention Mechanism: In general, the self-attention mechanism
depends on a large-scale learning sample images and consumes a higher compu-
tational and time cost. How to properly modify the self-attention mechanism to
effectively and efficiently process the high spectral and spatial resolution remote
sensing images remains a challenge.

2. Balancing Local and Global Information: In contrast to convolution, the self-attention
mechanism intends to adjust each pixel value based on the long-range dependencies,
potentially neglecting the local information.

Table 2. Advantages and shortcomings of state-of-the-art deep learning based HS pansharpening methods.

Method Advantage Shortcoming

DARN [24]
Insensitive to the scale ratio
Trainable on less labeled images
Acceptable spectral and spatial quality

Sensitive to the spectral bands

HyperKite [23]
Insensitive to the scale ratio
Trainable on less labeled images
Acceptable spectral and spatial quality

Sensitive to the spectral bands
Large computational budget and memory

DBDENet [26] Insensitive to the spectral bands
Acceptable spectral and spatial quality Sensitive to the scale ratio

Vision Transformer [28] Extraction of global features
Acceptable spectral and spatial quality

Sensitive to the image resolution
Large computational budget and memory
Depend on large scale dataset

HyperTransformer [30] Extraction of both local and global features
Impressive spectral and spatial quality

Hard to pre-train and fine tune
Large computational budget and memory
Depend on large scale dataset

Recent research indicates that the properties of convolution and self-attention are
complementary [33], the authors designed a Convolutional Vision Transformer (CvT),
which introduces convolutional token embedding and convolutional projection into the
vision transformer to merge the advantages of self-attention and convolution. Liu et al.
proposed the InteractFormer [6], suitable for hyperspectral image super-resolution, capable
of extracting and interacting both local and global features. However, they only stack them
sequentially rather than designing a more integrated hybrid model. Pan et al. [34] proposed
that self-attention and convolution are essentially performed by the same operations. They
designed a hybrid operator to combine them and applied it to image recognition tasks.

Motivated by aforementioned studies, we are encouraged to design a HS pansharpen-
ing model which can leverage the strengths of both paradigms and overcome their intrinsic
drawbacks. Drawing inspiration from [35], we introduce an Attention-Interactive Dual-
Branch Convolutional Neural Network (AIDB-Net) in this paper. AIDB-Net exclusively
comprises convolutional layers, strategically inheriting the merits of both convolution and
self-attention. Specifically, our model adopts a dual-branch learning strategy to indepen-
dently process HSI and PAN. We incorporate a dedicated Overlapping Patch Embedding
block into two branches to generate attention tokens. In the primary branch, we introduce
the Residual Attention-Interactive (Res-AI) module, facilitating hierarchical interaction
between advanced spatial information and spectral features. To dynamically model long-
range and cross-modality dependencies between HSI and PAN features, we propose a spe-
cialized Spectral-Spatial Interactive Attention (SSIA). We consider our AIDB-Net achieves
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deep combination of convolution and self-attention by the following approaches. First, we
design a convolutional tokenization component in order to introduce the convolutional
inductive bias into attention mechanism. Second, our interactive attention dynamically
calculates the token-globality similarity scores based on the convolutional features. Third,
the global context abstracted by attention is further propagated into the local convolutional
features, thereby coupling the local and global information.

In summary, we highlight the main contributions of this paper as follows:

1. We propose AIDB-Net, a novel HS pansharpening model exclusively consists of
convolutional layers, effectively inheriting the merits of both convolution and self-
attention. To the best of our knowledge, this study is the first attempt to deeply
combined them for HS pansharpening, instead of sequentially or parallelly stacking.

2. We design the residual attention-interactive module to simultaneously capture the
short- and long-range dependencies of HSI and PAN, in which an specialized spectral-
spatial interactive attention is proposed to globally interact and fuse the spectral and
spatial features.

3. Comprehensive experiments on three public datasets quantitatively and qualitatively
demonstrate the effectiveness and superiority of the proposed method. We clearly
exhibit the global attention behaviors of our interactive attention through visualization
of the heat maps.

2. Related Work

As a pivotal component within Transformer, the self-attention mechanism effectively
captures the long-range dependencies of given input features X ∈ Rn×d. n and d represent
the patch number and hidden dimension, respectively.

yi =
n

∑
j=1

w
(
qj, k j

)
vj (1)

s.t., w
(
qj, k j

)
= so f tmax(qT

i k j) =
exp(qT

i k j)

∑n
l=1 exp(qT

i kl)
(2)

where, qi = Wqxi, ki = Wkxi, and vi = Wvxi are patch embeddings derived from X. i,
j, and l index a image patch. For simplicity, we ignore the positional embeddings and
dimensional scalar. Equation (2) dynamically aggregates global information of input image
according to each query patch.

Contrary to wide belief that Query, Key, and Value are all necessary, experiments
in [35] reveal a Query-irrelevant behavior of self-attention mechanism. Building upon this
observation, a variant attention without Query is formulated as follows:

y =
n

∑
j=1

w(k j)vj =
n

∑
j=1

exp(k j)

∑n
l=1 exp(k j)

= Norm(K)V = gc (3)

where, Norm(·) and gc ∈ Rd denote normalization operation and global context, respec-
tively. According to the redefinition in Equation (3), the cost of self-attention mechanism is
significantly reduced. Furthermore, a simple implementation that directly introduces the
global context into local patch can be defined as follows:

yi = ∑
j∈ω

wj(xj + gc) (4)

where, ω indicates convolutional kernel. Inspired by aforementioned observations, we are
encouraged to design a specialized self-attention mechanism for HS pansharpening.
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3. Methodology

In this section, we will detailed describe our AIDB-Net as shown in Figure 1, including
the Overlapping Patch Embedding Block, Residual Attention-Interactive (Res-AI) Module,
and Residual Reconstruction Layer.

Figure 1. The overall architecture of our AIDB-Net adopts a dual-branch learning strategy. Specially,
the HSI and PANs are first tokenized by the Overlapping Patch Embedding Blocks within the primary
and subsidiary branches, respectively. Then, HSI and PAN features (tokens) are fused through the
Spectral-Spatial Interactive Attention within the Residual Attention-Interactive Module, executed
step by step. Finally, a convolutional layer, namely Residual Reconstruction Layer, is applied to
recover and reconstruct the residual HSI. It’s note that the deep hyperspectral prior is utilized to
provide suitable size HSI as input.

3.1. Overlapping Patch Embedding Block

We first introduce the Overlapping Patch Embedding (OEn) block, which is imple-
mented using a convolutional layer followed by batch normalization. In contrast to previous
pansharpening models, we design OEn for the purpose of transforming the input HSI
and PAN into a sequence of image patch embeddings (tokens) for subsequent attention
operation, instead of feature extraction only. Specifically, we employ a HSI Overlapping
Patch Embedding (HSI-OEn) block for HSI and a PAN Overlapping Patch Embedding
(PAN-OEn) block for PAN, respectively. As shown in Figure 1, PAN-OEn and HSI-OEn
are explicitly independent as there are not connections between them. However, they
are implicitly related due to the complementary semantics within the PAN and HSI. To
broadly spread the information during the tokenization procedure, we intentionally apply
an overlapping patch embedding strategy. This approach can facilitate the transmission of
the spatial information among adjacent image patches and maintain content consistency
between the corresponding tokens from diverse modalities. Moreover, OEn blocks are able
to project the HSI and PAN into a cross-modality feature space, achieving alignment of the
diverse modality features. Despite its simple structure, OEn is significant for AIDB-Net,
connecting both the primary and subsidiary branches.

In details, PAN-OEn is derived from PAN P, as shown in Figure 1. We first partition
the PAN P into a sequence of spatially overlapping image patches, each of which is then
transformed into a token, encapsulating the original patch information. This transformation
is achieved through a stride convolution:

PEB = { f (pi)|i = 1, . . . , n}, s.t., n =
1
4
(2W − k + 1)2 (5)

where, i indexes each PAN image patch pi ∈ Rk×k×1 in P ∈ RW×H×1, PEB ∈ RW×H×d

denotes the feature map of PAN tokens, n is the number of image patches related to the
patch size k and the image width W, f (pi) represents the transformation function applied
to pi.

Similarly, HSI-OEn is applied to HSI as follows:
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HEB = { f (hi)|i = 1, . . . , n} (6)

where, i indexes each HSI image patch hi ∈ Rk×k×B in HDHP ∈ RW×H×B, HEB ∈ RW×H×d

denotes the feature map of HSI tokens, f (hi) represents the transformation function applied
to hi. As shown in Figure 1, we employ DHP [36] algorithm for the purpose of up-sampling
the low spatial resolution HSI HLR ∈ Rw×h×B into PAN scale, resulting in up-sampled
HSI HDHP.

3.2. Residual Attention-Interactive Module

As the foundational module of our AIDB-Net, the Residual Attention-Interactive
(Res-AI) Module is designed to simultaneously capture the short- and long-range depen-
dencies and effectively fuse the cross-modality features. AS illustrated in Figure 1, the
Res-AI module consists of residual learning part for local feature extraction and Spectral-
Spatial Interactive Attention (SSIA) part for globally fusing the spectral and spatial features.
The capacity of our AIDB-Net is mainly controlled by the number N of sequentially stacked
Res-AI modules. Specially, given the number N of Res-AI modules, HSI tokens HEB and
PAN tokens PEB, we define the primary branch as follows:

FN = fN( fN−1(. . . f1(HEB, PEB) . . . ), PEB) (7)

where, fN represents the function of the primary branch. As illustrated in Figure 1, after
passing through all Res-AI modules, the spectral features from the primary have been
iteratively interacted with the advanced spatial prior from the subsidiary branch for N
times. Consequently, we obtain a highly informative feature representation FN with both high
fidelity spectral and spatial features, which can be utilized to reconstruct the ideal HSI.

3.2.1. Token-Mixer and Spectral-Mixer

As shown in Figure 2a, we construct a transformer-encoder style block in Res-AI
module, which consists of Token-Mixer Figure 2b and Spectral-Mixer Figure 2c, along with
the residual learning and batch normalization.

Figure 2. The detailed structure of the Token-Mixer (b) and Spectral-Mixer (c). We repeat the
operations in Token-Mixer in twice for better generation. Additionally, the Spectral Information
Bottleneck (d) is introduced to extract the significant spectral characteristics.
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In Token-Mixer, we design a interactive attention to abstract the global context by
token-global similarity based on the HSI and PAN tokens. Subsequently, the global context
will be propagated into each local HSI token in order to combine the global and local
information. To fully preserve the spectral features, we introduce the spectral information
bottleneck into Token-Mixer, as shown in Figure 2d. Moreover, a series of convolutional
layers are employed to further aggregate features at the latter part of the Token-Mixer. In
conclusion, we construct a Token-Mixer which is able to globally fuse the cross-modality
features and simultaneously model the short- and long-range dependencies.

FToken = f 1×1
conv

(
GeLU

(
f 1×1
conv

(
f 3×3
conv(HEB + gc)

)))
(8)

where, FToken is a tentatively fused feature, f 1×1
conv and f 3×3

conv represent a point-wise and 3 × 3
convolution, respectively. GeLU denotes the Gaussian Error Linear Unit [37].

As shown in Figure 2c, the Spectral-Mixer is design to further fuse the polymeric
features generated by Token-Mixer.

FN = f 1×1
conv

(
GeLU

(
f 3×3
DWconv

(
f 1×1
conv(FToken)

)))
(9)

where, f 3×3
DWconv denotes a 3 × 3 depth-size convolution. Note that we set a growth ratio in

channel dimension between two contiguous f 1×1
conv layers to fully exploit the relationships

among adjacent spectral bands.

3.2.2. Spectral-Spatial Interactive Attention

In this section, we will describe our Spectral-Spatial Interactive Attention (SSIA). The
Figure 2b–d demonstrate the detailed structures of the various parts in SSIA. Given the
Equation (3), our SSIA is formulated as follows:

gc = Norm(K)V =
1

WH

n

∑
i=1

h′i (10)

where, h′i ∈ Rk×k×d denotes a token in HEB. Since Equation (10) solely relies on HSI
tokens to construct the global context, we denote it as the spectral global context gc ∈ Rd.
Specifically, gc is normalized by average-pooling operation, which is not only for the
simplicity but also to ensure each token uniformly aggregates information from its nearby
tokens [38].

However, directly integrating the spectral global context defined in Equation (10) with
each token in HEB may lead to limited improvement, since that gc will be broadcasted
equally for each of them. More importantly, gc lacks the advanced spatial prior from the
PAN. To circumvent above problems, we update the spectral global context gc by the token-
global similarity calculated from HEB and PEB. Specially, given the HSI tokens HEB and
PAN tokens PEB, we first reshape them into H′

EB ∈ RWH×d and P′
EB ∈ RWH×d, respectively.

Then the cross-modality token-global similarity S ∈ RWH is defined as:

S = (
1

WH
H′

EB)
T P′

EB (11)

The token-global similarity dynamically calculate the similarity scores of each pixel
according to their global cross-modality dependencies, which can be used as guideline to
update the spectral characteristics and refine the textural details.

gc′ = S′gc = (α
S − µs

σs + ϵ
+ β)gc (12)

where, S′ ∈ RWH denotes the normalized S, µs and σs are mean and standard deviation, α
and β are learnable scalars, and ϵ = 10−5 maintains numerical stability. By doing so, the
updated gc′ ∈ RWH×d dynamically aggregates the spatial prior knowledge from the PAN.
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Then the enhanced global context will be further introduced into the local HSI tokens HEB
by Equation (8).

Following the generalization insight of the multi-head self-attention [29], we further
extend our interactive attention into multi-group similarity to emphasize more diverse
patterns and representation. Specifically, we first divide the spectral global context gc,

1
WH H′

EB, and P′
EB into G groups along channel dimension. Then, we perform the operation

in Equation (12) for each group.

gc′ = Concat(S′
1gc1, S′

2gc2, . . . , S′
GgcG) (13)

The multi-group similarity interactive attention adaptively focuses on pixels of the
ground objects according to the similar cross-modality features. The behaviors within each
group are complementary. In ablation section, we will verify the globality and diversity
of our multi-group similarity interactive attention though quantitative evaluation and
visualization.

To further improve the spectral preservation, we apply a spectral information bottle-
neck to extract the significant spectral characteristics.

gc = Wrmax(W1gc, W2gc) (14)

where, W1 ∈ R d
r ×d, W2 ∈ R d

r ×d, and Wr ∈ Rd× d
r represent fully connected layer, r is a

reduction ratio.

3.3. Residual Reconstruction Layer

After obtained FN , we apply a single convolution as residual reconstruction layer to
recover the dimension and reconstruct the residual HSI.

HRes = f 3×3
conv(FN) = fAIDB−Net(HDHP, P) (15)

where, HRes is the residual HSI and fAIDB−Net denotes the function of our AIDB-Net.
Finally, the fused HSI HFus can be obtained by summation between HDHP and HRes.

HHR = HDHP + HRes (16)

3.4. Loss Function

In this paper, we adopt a weighted combinatorial loss function to optimize the pro-
posed method in terms of pixel- and feature-wise. L1 is a pixel-wise loss function which
has demonstrated its effectiveness for HS pansharpening in many works.

L1 =
1

CWH
∥HRe f − HFus∥1 (17)

where, C, W, H the shape of the reference HSI HRe f . In addition to L1 loss, we also introduce
a feature-wise VGG perceptual loss.

Lvgg =
1

CiWi Hi
∥ f vgg

i (HRGB
Re f )− f vgg

i (HRGB
Fus )∥2 (18)

where, ∥·∥2 denote L2 norm, Ci, Wi, Hi represent the shape of feature map f vgg
i (·) at

ith layer in VGG19 [39], HRGB
Re f and HRGB

Fus are synthesized RGB version of HRe f and
HHR, respectively.

In summary, a weighted combinatorial loss function is defined as follows:

L = λ1L1 + λ2Lvgg (19)

where, λ1 and λ2 are regularization constants. In this paper, they are set as 1 and 0.1, respectively.
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4. Experimental Results
4.1. Experimental Datasets

Three publicly and widely common remote sensing datasets, including Pavia Cen-
tre [40], Botswana [41], and Chikusei [42], are selected as experimental datasets to evaluate
the performance of our AIDB-Net. We follow the Wald’s protocol [43] to generate PAN, low
resolution HSI, and reference HSI for training. The scaling factor is set as 4 for all datasets.

4.1.1. Pavia Centre

The image of Pavia Centre, originally containing 1096 × 1096 pixels and consisting
of 115 spectral bands spanning from 430 to 860 nm, was captured by the airborne reflec-
tive optics system imaging spectrometer (ROSIS) sensor at a 1.3-m geometric resolution
over the City of Pavia, Italy. However, 13 noisy spectral bands and a 381-pixel-wide
area with no information were discarded and we intercepted a two-part image with
1096 × 715 × 102 for experimentation. In our experimental design, we used the up-left
corner of size 960 × 640 × 102 of the image and partition it into 24 image patches of size
160 × 160 × 102 with no spatially overlap as the reference HSIs. Following the Wald’s pro-
tocol [43], we average first 61 spectral bands of the reference HSIs to generate PAN images
of size 160 × 160 × 1. In order to generate the low resolution HSIs of size 40 × 40 × 102, we
spatially blurred the reference HSIs with Gaussian filter and then down-sampled the results
with the scaling factor 4. We randomly select 17 cubic patches (about 70%) for training and
the rest 7 cubic patches for testing.

4.1.2. Botswana

The image of Botswana, originally containing 1496 × 256 pixels and consisting of
242 spectral bands spanning from 400 to 2500 nm in 10-nm windows, was captured by
the NASA’s Earth Observing 1 (EO-1) satellite at a 30-m geometric resolution over the
Okavango Delta, Botswana. However, 97 uncalibrated and noisy spectral bands were
removed and we intercepted a image with 1496 × 256 × 145 for experimentation. In our
experimental design, we used the up-left corner of size 1200 × 240 × 145 of the image and
partition it into 24 image patches of size 120 × 120 × 145 with no spatially overlap as the
reference HSIs. Following the Wald’s protocol [43], we average first 31 spectral bands of the
reference HSIs to generate PAN images of size 120 × 120 × 1. In order to generate the low
resolution HSIs of size 30 × 30 × 145, we spatially blurred the reference HSIs with Gaussian
filter and then down-sampled the results with the scaling factor 4. We randomly select
17 cubic patches (about 70%) for training and the rest 7 cubic patches for testing.

4.1.3. Chikusei

The image of Chikusei, originally containing 2517 × 2335 pixels and consisting
of 128 spectral bands spanning from 363 to 1018 nm, was captured by the Headwall
Hyperspec-VNIR-C imaging sensor at a 2.5-m geometric resolution over the agricul-
tural and urban areas in Chikusei, Japan. There are no noisy spectral bands and blank
area need to be discarded. In our experimental design, we used the up-left corner
of size 2304 × 2304 × 128 for experiment and partition it into 81 image patches of size
256 × 256 × 128 with no spatially overlap as the reference HSIs. Following the Wald’s proto-
col [43], we average first 65 spectral bands of the reference HSIs to generate PAN images of
size 256 × 256 × 128. In order to generate the low resolution HSIs of size 64 × 64 × 128, we
spatially blurred the reference HSIs with Gaussian filter and then down-sampled the results
with the scaling factor 4. We randomly select 61 cubic patches (about 75%) for training and
the rest 20 cubic patches for testing.

4.2. Quantitative Metrics

In order to quantitatively evaluate the performance of the proposed and competing
methods, we select a total of six commonly used pansharpening and super-resolution
metrics. Let x f us and xre f denote the fused and reference HSI, respectively.
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4.2.1. Cross-Correlation (CC)

CC [44] indicates the spatial correlation between x f us and xre f .

CC(x f us, xre f ) =
1
l

l

∑
i=1

CCS(x f us, xre f ) (20)

CCS(A, B) =
∑n

j=1(Aj − µA)(Bj − µB)√
∑n

j=1(Aj − µA)2(Bj − µB)2
(21)

where, l is the number of spectral bands, µ and n denote the sample mean and the number
of pixels, respectively. The optimal CC is 1.0.

4.2.2. Spectral Angle Mapping (SAM)

SAM [44] measures the spectral angle of each pixel between x f us and xre f .

SAM(x f us, xre f ) = arccos

(
⟨x f us, xre f ⟩

∥x f us∥2∥xre f ∥2

)
(22)

where, ⟨·, ·⟩ denote the inner product. The optimal SAM is 0.0, and a smaller value indicates
less spectral distortions.

4.2.3. Root-Mean-Squared Error (RMSE)

RMSE [44] represents the difference between x f us and xre f .

RMSE(x f us, xre f ) =
∥x f us − xre f ∥F√

n × l
(23)

where, ∥·∥F denotes the Frobenius norm. The optimal RMSE is 0.0.

4.2.4. Errur Relative Globale Adimensionnelle Desynthese (ERGAS)

The ERGAS [44] offers a global spectral quality evaluation of x f us.

ERGAS(x f us, xre f ) = 100
1

γ2

√√√√1
l

l

∑
i=1

(
RMSE(xi

f us, xi
re f )

µi

)
(24)

where, RMSEi represents the RMSE between x f us and xre f in i spectral band, and γ is the
scaling factor. The optimal ERGAS is 0.0.

4.2.5. Peak Signal to Noise Ratio (PSNR)

PSNR [44] evaluates the spatial quality of each band between x f us and xre f .

PSNR(x f us, xre f ) =
1
l

l

∑
i=1

[
10log10

(
max(xi

re f )

RMSE(xi
f us, xi

re f )

)]
(25)

where, max(xi
re f ) denotes the maximum pixel value in the ith band. The higher the value

of PSNR, the better the quality is.

4.2.6. Structural Similarity (SSIM)

SSIM [45] measures the structural similarity index between x f us and xre f .

SSIM
(

x f us, xre f

)
=

(
2µx f us µxre f + C1

)(
2σx f usxre f + C2

)
(

µ2
x f us

+ µ2
xre f

+ C1

)(
σ2

x f us
+ σ2

xre f
+ C2

) (26)

where, σx f usxre f denotes the covariance between x f us and xre f . The optimal value of SSIM is 1.



Remote Sens. 2024, 16, 1044 12 of 22

4.3. Experimental Setup

In this section, we introduce the experimental configurations of the proposed method.
We utilize the DHP [23,24,36] algorithm to up-sample the low resolution HSI. All DL-based
methods are built upon the Pytorch DL framework. The hyper parameters of our AIDB-Net
are presented in Table 3. There are four hyperparameters directly related to our model, which
are the kernel size, hidden dimension, reduction ratio of the spectral information bottleneck,
attention groups and numbers of the Res-Al modules. We observed that the attention groups
have a considerable impact on the model, and we recommend setting it to 8.

Table 3. The Implementation Details of the Proposed Method.

Hyperparameter Value

N of Res-AI Modules 3
G of attention groups 8

r of information bottleneck 16
hidden dimension d 64

kernel size 3
batch size 8
optimizer Adam

epoch 1500
learning rate 10−3

learning scheduler 1000
weight decay 10−4

momentum 0.99

4.4. Comparisons

In this section, we compare our AIDB-Net with several classical and advanced HS
pansharpening methods, including Principal Component Analysis (PCA) [9], Smoothing
Filter-based Intensity Modulation (SFIM) [12], Gram-Schmidt (GS) [10], Gram-Schmidt
Adaptive (GSA) [11], Coupled Non-negative Matrix Factorization (CNMF) [16], Modulation
Transfer Function with Generalized Laplacian Pyramid (MTF-GLP) [13], PanNet [20], Dual-
Branch Detail Extraction Network (DBDENet) [26], Dual Attention Residual Network (DARN),
and HyperKite [23]. The experimental results are reported in table and visualization.

4.4.1. Experimental Results on the Pavia Centre Dataset

The average quantitative results of the proposed and competing methods on the Pavia
Centre dataset are presented in Table 4. As shown in the table, our AIDB-Net achieves the
highest values of CC, PSNR, and SSIM, and the lowest values of SAM, RMSE, and ERGAS,
which demonstrates better spectral preservation and spatial enhancement by our model.

Moreover, we represent the visual results corresponding error images in Figure 3 and
Figure 4, respectively, in order to shown the qualitative performance. Compare with the
competing pansharpening methods, our AIDB-Net produces more visual pleasant images
and induces minimum errors. The quantitative and qualitative results exhibited above
firmly verify the effectiveness and superiority of the proposed method.

In order to evaluate the spectral preservation capability of the proposed and competing
HS pansharpening methods, Figure 5 represents the spectral reflectance difference value
comparison of four randomly selected locations with coordinate (10,23), (29,137), (123,65),
and (136,113) on the Pavia Centre dataset 21th image. As shown in Figure 5, the proposed
method produces minimum difference value which means our AIDB-Net achieves the best
spectral fidelity preservation.
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Table 4. Average Quantitative Results of the Proposed and Competing HS pansharpening Methods
on the Pavia Centre Dataset. The best results are highlighted in bold.

Method CC SAM RMSE ×10−2 ERGAS PSNR SSIM

PCA 0.901 9.38 3.70 6.85 28.51 0.829
SFIM 0.935 7.59 3.25 6.11 29.15 0.866

GS 0.963 7.57 2.81 5.29 30.46 0.880
GSA 0.948 7.79 2.88 5.37 30.37 0.880

CNMF 0.840 7.72 4.88 8.95 25.55 0.666
MTF-GLP 0.942 8.06 3.01 5.64 29.88 0.881

PanNet 0.966 6.58 1.95 4.02 32.07 0.916
DBDENet 0.970 6.90 1.81 4.04 32.42 0.918

DARN 0.973 6.40 1.60 3.80 34.19 0.927
HyperKite 0.975 6.36 1.59 3.77 34.28 0.930

Ours 0.982 5.13 1.35 2.50 36.09 0.944

Optimal 1 0 0 0 +∞ 1

Figure 3. Visual results on the Pavia Centre dataset. (a) Reference. (b) PCA. (c) SFIM. (d) GS. (e) GSA.
(f) CNMF. (g) MTF-GLP. (h) PanNet. (i) DBDENet. (j) DARN. (k) HyperKite. (l) AIDB-Net (Ours).

Figure 4. The corresponding mean absolute error images on the Pavia Centre dataset. (a) Reference.
(b) PCA. (c) SFIM. (d) GS. (e) GSA. (f) CNMF. (g) MTF-GLP. (h) PanNet. (i) DBDENet. (j) DARN.
(k) HyperKite. (l) AIDB-Net (Ours).
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Figure 5. Comparison of spectral reflectance difference values of four randomly selected locations in
Figure 3. (a) Pixel (10,23). (b) Pixel (29,137). (c) Pixel(123,65). (d) Pixel (136,113).

4.4.2. Experimental Results on the Botswana Dataset

On the Botswana dataset, we report the average quantitative results in Table 5. Our
AIDB-Net outperforms the other pansharpening methods across all six metrics once again,
improving CC by 1.36%, PSNR by 3.11%, and SSIM by 0.82%, reducing SAM 10.3%, RMSE
by 12.6%, and ERGAS by 22.8%.

The visualization results and corresponding error images are represented in Figure 6
and Figure 7, respectively. As shown in Figure 6, there are noticeable obscurity and chroma-
tism caused by PCA, GS, and CNMF. Different with the results on Pavia, some traditional
pansharpening methods including SFIM, GSA, and MTF-GLP achieve competitive quanti-
tative performance on Botswana. However, their corresponding error images appear much
lighter, indicating their poor visual performance.

On the other hand, PanNet, DBDENet, DARN, and HyperKite exhibit slight spectral
distortions in certain image parts. Back to our AIDB-net, we can obviously observed that
the pansharpened image generated by AIDB-Net is the closest to the ground truth in terms
of both color and texture.

Table 5. Average Quantitative Results of the Proposed and Competing HS pansharpening Methods
on the Botswana Dataset. The best results are highlighted in bold.

Method CC SAM RMSE ×10−2 ERGAS PSNR SSIM

PCA 0.931 2.58 2.12 2.39 27.85 0.952
SFIM 0.931 2.33 1.89 2.22 28.76 0.953

GS 0.937 2.46 2.01 2.27 28.25 0.955
GSA 0.944 2.22 2.68 1.99 29.91 0.960

CNMF 0.829 2.58 2.84 3.21 24.94 0.863
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Table 5. Cont.

Method CC SAM RMSE ×10−2 ERGAS PSNR SSIM

MTF-GLP 0.936 2.24 1.79 2.13 29.08 0.958
PanNet 0.930 2.06 1.50 2.78 29.41 0.945

DBDENet 0.945 2.14 1.52 2.02 29.94 0.961
DARN 0.954 1.83 1.25 1.93 30.69 0.970

HyperKite 0.955 1.86 1.19 1.97 30.77 0.971
Ours 0.968 1.64 1.04 1.52 31.73 0.979

Optimal 1 0 0 0 +∞ 1

Figure 6. Visual results on the Botswana dataset. (a) Reference. (b) PCA. (c) SFIM. (d) GS. (e) GSA.
(f) CNMF. (g) MTF-GLP. (h) PanNet. (i) DBDENet. (j) DARN. (k) HyperKite. (l) AIDB-Net (Ours).

Figure 7. The corresponding mean absolute error images on the Botswana dataset. (a) Reference.
(b) PCA. (c) SFIM. (d) GS. (e) GSA. (f) CNMF. (g) MTF-GLP. (h) PanNet. (i) DBDENet. (j) DARN.
(k) HyperKite. (l) AIDB-Net (Ours).

Moreover, as shown in Figure 8b, our AIDB-net has achieved the best PSNR scores
in most spectral bands. In a summary, our AIDB-Net obtain the best pansharpening
performance on the Botswana dataset.
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Figure 8. PSNR as a function of spectral band. (a) Pavia Centre dataset. (b) Botswana dataset.
(c) Chikusei dataset.

4.4.3. Experimental Results on the Chikusei Dataset

The quantitative and qualitative results on the Chikusei dataset are represented in
Table 6 and Figure 9 and Figure 10, respectively. As shown in Table 6, almost all competing
methods, except PCA, yield satisfied performance aspects of quantitative assessments,
particularly our AIDB-Net achieves the best.

Figure 9. Visual results on the Chikusei dataset. (a) Reference. (b) PCA. (c) SFIM. (d) GS. (e) GSA.
(f) CNMF. (g) MTF-GLP. (h) PanNet. (i) DBDENet. (j) DARN. (k) HyperKite. (l) AIDB-Net (Ours).

Figure 10. The corresponding mean absolute error images on the Chikusei dataset. (a) Reference.
(b) PCA. (c) SFIM. (d) GS. (e) GSA. (f) CNMF. (g) MTF-GLP. (h) PanNet. (i) DBDENet. (j) DARN.
(k) HyperKite. (l) AIDB-Net (Ours).
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Table 6. Average Quantitative Results of the Proposed and Competing HS pansharpening Methods
on the Chikusei Dataset. The best results are highlighted in bold.

Method CC SAM RMSE ×10−2 ERGAS PSNR SSIM

PCA 0.778 6.38 3.54 10.61 25.66 0.828
SFIM 0.926 4.05 2.02 7.18 29.58 0.904

GS 0.946 4.01 1.82 6.38 30.53 0.912
GSA 0.937 4.27 1.75 6.88 30.74 0.918

CNMF 0.935 3.99 3.42 8.78 26.12 0.813
MTF-GLP 0.932 4.17 1.93 6.90 29.95 0.914

PanNet 0.946 3.28 1.92 5.55 31.74 0.926
DBDENet 0.957 3.64 1.48 5.22 33.27 0.939

DARN 0.955 3.65 1.44 5.07 33.49 0.935
HyperKite 0.957 3.70 1.41 5.11 33.81 0.941

Ours 0.971 3.05 1.14 4.75 34.57 0.956

Optimal 1 0 0 0 +∞ 1

We visualize the error images in Figure 10. It’s obviously see that the proposed
method presents less error. To further shown the perceptual quality, Figure 9 exhibits the
reconstructed images. As shown in Figure 9, almost all traditional methods suffer from
blurry effects. While for PanNet, DBDENet, DARN, and HyperKite show relatively better
quality, but not enough. Our AIDB-Net generates pansharpened images with both high
spectral and spatial quality.

4.5. The Impact of Dual-Branch Learning Strategy

The dual-branch learning strategy is crucial for our AIDB-Net, as it not only provides
aligned HSI and PAN tokens but also relates to our interactive attention. To choose the
most suitable learning strategy, we have totally tested three different implementations,
which are described as follows:

• HSI-PAN: As illustrated in Figure 11a, the HSI and PAN are initially tokenized using
HSI-OEn and PAN-OEn, respectively. Subsequently, our SSIA receives HSI tokens
(spectral information) as primary feature and PAN tokens (spatial information) as
auxiliary feature to calculate the token similarity scores.

• PAN-HSI: Contrary to HSI-PAN in Figure 11a, we select the PAN and HSI tokens as
primary and auxiliary features, respectively, as shown in Figure 11b. Consequently,
the fused feature is derived from the PAN tokens instead of HSI tokens.

• HSI+PAN: Following the previous DL-based methods, we have also explored the feasi-
bility of concatenation as a learning strategy for our model. As depicted in Figure 11c,
we first concatenate the HSI and PAN along channel dimension. Then, we utilize a single
embedding block to generate hybrid tokens for latter attention operation.

Figure 11. Three different learning strategies. (a) HSI-PAN. (b) PAN-HSI. (c) HSI+PAN.
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For simplicity, we denote these three different learning strategies as HSI-PAN, PAN-
HSI, and HSI+PAN, respectively. It’s important to note that their parameters and computa-
tional complexity are totally identical, thus the quantitative results are objective. As shown
in Table 7, both PAN-HSI and HSI+PAN exhibit a relatively low pansharpening perfor-
mance across six metrics, suggesting that they are improper for our AIDB-Net. The learning
strategy of HSI-PAN achieves the best performance over all evaluation measurements
which firmly verify its effectiveness. Meanwhile, our ablation study also demonstrates that
the concatenation of a single spectral band PAN with hundreds of spectral bands HSI is
inferior in fusing the spectral and spatial information.

Table 7. Average Quantitative Results of Different Learning Strategies on the Pavia Centre Dataset.
The best results are highlighted in bold.

Learning
Strategy CC SAM RMSE ×10−2 ERGAS PSNR SSIM

(a) HSI-PAN 0.982 5.13 1.35 2.50 36.09 0.944
(b) PAN-HSI 0.932 6.45 2.89 4.21 30.61 0.883
(c) HSI+PAN 0.929 6.49 2.99 4.37 30.23 0.875

Optimal 1 0 0 0 +∞ 1

4.6. The Impact of Number N

The size of our AIDB-Net is mainly controlled by the number N of Res-AI modules. To
identify the optimal N, we test the affect of number N ranging from 1 to 6. The quantitative
results in Table 8 show that the pansharpening performance firstly increases until N = 3
and then begins to decrease. Consequently, we set 3 as the optimal choice.

Table 8. Average Quantitative Results of Different Number N on the Pavia Centre dataset. The best
results are highlighted in bold.

N CC SAM RMSE ×10−2 ERGAS PSNR SSIM

1 0.974 6.02 1.71 2.89 34.93 0.934
2 0.976 5.58 1.49 2.68 35.70 0.937
3 0.982 5.13 1.35 2.50 36.09 0.944
4 0.976 5.65 1.47 2.55 35.79 0.941
5 0.977 5.74 1.55 2.63 35.85 0.939
6 0.976 5.72 1.56 2.66 35.78 0.939

Optimal 1 0 0 0 +∞ 1

4.7. The Impact of Number G

As previously stated, we have intentionally designed a multi-group similarity inter-
active attention for the proposed methods. Each group of our interactive attention are
complementary and can adaptively emphasize the pixels according to the diverse cross-
modality features. In this section, we design a series of ablation experiments in order to
demonstrate the effectiveness, adaptability, and diversity of our multi-group similarity
interactive attention and reveal its attention behaviors. As shown in Table 9, we first
investigate the quantitative performance impact of the group number G from 1 to 16. The
value of G should be a factor of the model’s hidden dimension. We can obviously see that
increasing the group number G leads to a remarkable improvement on the spectral and
spatial quantitative metrics, which firmly demonstrate the effectiveness of our interactive
attention. Following the table, We set G = 8 as the optimal choice.
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Table 9. Average Quantitative Results of Different Number G on the Pavia Centre dataset. The best
results are highlighted in bold.

G CC SAM RMSE ×10−2 ERGAS PSNR SSIM

1 0.975 5.98 1.63 3.51 35.46 0.931
2 0.977 5.67 1.51 3.13 35.73 0.935
4 0.978 5.51 1.40 2.79 35.85 0.937
8 0.982 5.13 1.35 2.50 36.09 0.944

16 0.976 5.72 1.56 2.66 35.99 0.935

Optimal 1 0 0 0 +∞ 1

As shown in Figure 12, we visualize the heat maps within the first Token-Mixer to
visually exhibit the attention behaviors.

Figure 12. Visualization of the multi-group similarity interactive attention, when G = 8.

It is important to note that different colors in the heat map represent different attention
degrees, with yellow indicating high attention and blue indicating low. Pixels with similar
colors are considered related in the cross-modality feature space by the interactive attention,
while pixels with opposite colors are deemed irrelevant. As depicted in Figure 12, each
group of the multi-group similarity adaptively emphasize ground objects based on the
similarity scores of the global cross-modality features. The attention behaviors of each
group is different, which straightforward demonstrate the adaptability and diversity of the
multi-group similarity. Although the heat maps of the 1st, 3rd–5th, and 7th groups appear
somewhat similar overall, they differ in details. This observation illustrates that each
group in the multi-group similarity is complementary and cooperative to others, ultimately
resulting in the restoration of textural details and preservation of spectral characteristics.

4.8. Parameters

To evaluate the computational complexity and time cost of our AIDB-Net, Table 10
provide the parameters, FLOPs, convergence speed (epoch), and inference time. All tesinng
experiments are conducted on Intel Core i7-11800H CPU and NVDIA RTX 3060 Laptop GPU
(6 GB). As shown in the table, on the one hand, our AIDB-Net has comparable parameters
and FLOPs compared to PanNet and DARN, far less than DBDENet and HyperKite. On
the other hand, the convergence speed (epochs) and inference time of our AIDB-net is
slightly longer than PanNet and DARN, faster than DBDENet and HyperKite. Considering
the pansharpening performance improved by our AIDB-Net, the memory and time cost
are acceptable.
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Table 10. Comparisons of the Parameters, FLOPs, Epochs, and Inference Time on the Pavia Centre
Dataset.

Model Parameters FLOPs Epoch Inference Time

PanNet 0.675 M 15.45G 1000 0.138 s
DBDENet 5.667 M 48.53G 1500 0.422 s

DARN 0.416 M 10.58G 1000 0.131 s
HyperKite 0.524 M 341.58G 2000 2.720 s

Ours 0.563 M 14.31G 1500 0.184 s

5. Limitation and Discussion
Omission of Small-Scale Ground Objects

In the fused HSI generated by our AIDB-Net, we have observed problems of the
reduction or omission of small-scale ground objects. Furthermore, we find the same
issues in other HS pansharpening models as well. That is caused by the inadequate
feature representation capability of small-scale ground objects of the model. Within the
remote sensing semantic segmentation community, we notice that some researchers pay
attention to the extraction of small-scale features to alleviate the above problems. In
paper [46], the authors design feature compression module to broadly aggregate features
and structural information of small-scale objects by expanding the receptive field of the
convolution, thereby improving the classification accuracy of the model. Considering that
there are maybe a large number of small-scale objects within the source HSI and PAN, these
detailed information should not be reduced or lost within the fused HSI. Therefore, we are
encouraged to design a specialized small-scale component for our AIDB-Net to reduce the
loss of detailed information and condense small-scale features.

6. Conclusions

In this paper, we are committed to capturing the global cross-modality dependencies
between the hyperspectral and panchromatic images to improve the pansharpening perfor-
mance. We propose an Attention-Interactive Dual-Branch Convolutional Neural Network
(AIDB-Net), which purely consists of convolutional layers and firmly inherits the merits of
both convolution and self-attention, such as modeling of short- and long-range dependen-
cies. Specially, we first apply a simple and efficient component as tokens generator, features
extractor and aligner to process the diverse modality images. Then, a novel spectral-spatial
interactive attention is proposed to globally and directly interact and fuse the spectral and
spatial features. Consequently, benefit from integration of local and global information, our
AIDB-Net achieves the best pansharpening performance. However, the proposed method
has shortcomings in feature extraction of small-scale ground objects, which may results
reduced textural details and desaturated color over small-scale targets. We will further
extend and deepening our study to overcome this limitation.
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