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Abstract: Existing research indicates that detecting near-surface methane point sources using Sentinel-
2 satellite imagery can offer crucial data support for mitigating climate change. However, current
retrieval methods necessitate the identification of reference images unaffected by methane, which
presents certain limitations. This study introduces the use of a matched filter, developing a novel
methane detection algorithm for Sentinel-2 imagery. Compared to existing algorithms, this algorithm
does not require selecting methane-free images from historical imagery in methane-sensitive bands,
but estimates the background spectral information across the entire scene to extract methane gas
signals. We tested the algorithm using simulated Sentinel-2 datasets. The results indicated that
the newly proposed algorithm effectively reduced artifacts and noise. It was then validated in a
known methane emission point source event and a controlled release experiment for its ability to
quantify point source emission rates. The average estimated difference between the new algorithm
and other algorithms was about 34%. Compared to the actual measured values in the controlled
release experiment, the average estimated values ranged from −48% to 42% of the measurements.
These estimates had a detection limit ranging from approximately 1.4 to 1.7 t/h and an average error
percentage of 19%, with no instances of false positives reported. Finally, in a real case scenario, we
demonstrated the algorithm’s ability to precisely locate the source position and identify, as well as
quantify, methane point source emissions.

Keywords: Sentinel-2; methane; matched filter; gas plumes

1. Introduction

Methane is the second-largest greenhouse gas emitted by human activities, following
carbon dioxide [1]. Since the Industrial Revolution, anthropogenic emissions have rapidly
increased, contributing to about 20% of global warming [2]. Methane’s atmospheric lifetime
is about one-tenth that of carbon dioxide. Still, its 20-year global warming potential is
86 times greater [3], making monitoring and limiting human methane emissions highly
beneficial for addressing the climate crisis (marginal utility/revenue). Human emissions
are diverse and primarily linked to livestock, agriculture, landfills, and the fossil fuel
industry [3,4]. Measurement surveys of methane emission facilities have shown that a few
powerful point sources account for a large portion of the total emissions [5–7]. A study also
found that, due to a lack of monitoring mechanisms, source-based inventories (bottom–up
approaches) have consistently underestimated the emissions from these methane super-
emitters [8].

Hence, there is significant interest in monitoring these point sources from the top
down using aerial and satellite remote sensing imagery. The Jet Propulsion Laboratory
(JPL), NASA, has conducted thousands of aerial survey missions over the past decade,
collecting data using the Airborne Visible InfraRed Imaging Spectrometer-Next Generation
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(AVIRIS-NG) airborne sensor [9–12]. However, due to flight plan limitations, this mon-
itoring is mainly concentrated in southern California, making it impossible to conduct
the high-frequency detection of point sources on a global scale. In recent years, satellite-
based methane monitoring technologies have shown potential for rapidly identifying large
methane emissions globally, with numerous remote sensing instruments widely used for
monitoring methane emissions [13–19].

However, to monitor these point source emissions, it is necessary to use sensors with
a spatial resolution of less than 100 m [20]. Furthermore, satellites should have short revisit
cycles, good global coverage, and spectral bands covering the shortwave infrared windows
of 1600 and 2300 nm (strong methane absorption). Some studies have suggested that the
current high-spectral sensors in orbit, like PRISMA, GHGSat-D, and EnMAP [21–23], can
provide accurate concentration retrieval. However, limitations due to orbital height and
the number of satellites limit data availability, impeding effective global monitoring.

Another method involves using multispectral instruments with shortwave infrared
(SWIR) bands, such as Sentinel-2 [24] and Landsat-8/9 [25], which have relatively quick
revisit times (about 5 days for Sentinel-2 and 16 days for Landsat) and a higher spatial
resolution (20–30 m). However, these sensors were not designed to detect methane, so
their spectral resolution in the SWIR bands is low, limiting their sensitivity to methane
absorption and making methane emission monitoring challenging.

Varon et al. [26] first demonstrated the effectiveness of the Sentinel-2 mission in
monitoring point source emissions at the Hassi Messaoud oil field in Algeria and the
Korpezhe oil and gas field in Turkmenistan. They developed three methods based on
the deviation in Sentinel-2 bands 11 and 12 during times of high and low atmospheric
methane concentrations, creating a ratio model to mine methane absorption signals and
constructing a fractional absorption model for enhanced methane column concentration
(XCH4) retrieval. Most methane plume detections and quantifications from Sentinel-2
images also use a multiband-multipass (MBMP) method similar to Varon et al. Zhang
et al. used data from controlled release tests to calibrate and improve the algorithm,
enhancing its quantification accuracy [16]. Ehret et al. used images from the six months
before the detection date as a time series for background estimation, using a two-stage
linear regression and manual verification steps to reduce errors [15]. The core of these
methods requires obtaining a reference unaffected by methane; however, this requirement
is challenged by two primary issues:

(1) The variability and duration of methane emissions complicate the process of identify-
ing a completely unaffected reference, particularly for sites characterized by long-term
emissions.

(2) The albedo of an image can be significantly influenced by various factors, including
surface changes, seasonal variations, lighting conditions, clouds, and aerosols. In
addition, some artificial objects display spectral features similar to methane in the
Sentinel-2 bands 11/12, making it challenging to identify methane plumes using
simple band ratio models.

In this study, we focus on retrieving methane enhancements (plumes generated by
point source emissions) that are above the background concentrations, rather than retrieving
the concentrations of the scene. We introduce the Matched Filter [11], which is extensively
utilized in the retrieval of methane using airborne and satellite-borne hyperspectral data.
To refine the background estimation process, we incorporate additional processing steps, in
which an Adaptive Clustering Algorithm [27] is applied to categorize a two-month time
series of cloud-free Sentinel-2 imagery over the computational area.

The paper is organized as follows: Section 2 offers a comprehensive description of the
algorithm’s theoretical foundation and procedures. Section 3 showcases the algorithm’s per-
formance via simulation results and validates its capability to quantify the emission rates in
both a known emission event and a single-blind controlled release experiment. This section
also includes an example of methane plume retrieval in a real scenario using Sentinel-2
data. Section 4 summarizes the study’s primary findings and discusses key issues.
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2. Methods

Sentinel-2 is a mission for wide-swath, high-resolution, multispectral imaging. It
provides 13 spectral bands at resolutions of 10 m, 20 m, and 60 m, with a revisit frequency
of 2–3 days in mid-latitude regions [24]. The primary objective of the task was to monitor
alterations in surface conditions. Nevertheless, it has emerged that certain spectral bands
are especially sensitive to methane, enabling the detection and quantification of significant
methane emissions. The fundamental principle of using Sentinel-2 for XCH4 retrieval
lies in the fact that methane in the atmosphere absorbs solar radiation, with significant
absorption spectra concentrated around the wavelengths of 1600 and 2300 nm, aligning
with Sentinel-2 bands 11/12. Figure 1 illustrates methane spectral transmittance based
on the high-resolution transmission molecular absorption HITRAN2020 database [28],
along with the spectral response functions of Sentinel-2A/B. The MultiSpectral Instruments
(MSI) aboard Sentinel-2A and Sentinel-2B have slightly different spectral transmission
window positions and widths. Band 11 includes a set of weak methane absorption lines
near 1650 nm. Band 12 encompasses stronger absorption lines within the 2200–2300 nm
range. The average methane transmittance in band 12 is 2–3 times lower than that in
band 11.
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Figure 1. Methane transmittance spectrum based on the HITRAN2020 and the spectral response
functions of Sentinel-2A/B.

For anthropogenic methane point source emissions, the resulting plumes only affect
the near-surface atmosphere in the local area surrounding the source. Therefore, the MBMP
utilizes the optical attenuation properties of methane in Sentinel-2 bands 11/12, combined
with past non-plume reference observations of the same scene, to detect and derive the
column concentration of the methane plumes. However, in reality, these point sources
of methane emissions are often the result of accidental events, such as leaks, equipment
failures, or other abnormal operational processes. Their number, occurrence duration, and
location are uncertain, making it extremely difficult to determine a non-plume reference
observation. Moreover, changes in surface conditions, lighting, clouds, and aerosols
over time may exhibit spectral characteristics similar to methane, resulting in a mass of
artifacts and noise in the results. Therefore, in this work, we introduce a matched filter
algorithm to avoid the selection of non-plume references. This algorithm has been applied
to instruments such as PRISMA, EMIT, GF-5, and AVIRIS-NG [13,29–32]. The principle
is based on the ‘Sparsity’ of these emissions in space and time, meaning that the pixels
exceeding the background methane concentration make up only a limited part. Using this
characteristic, we estimate the mean and covariance of the background radiation intensities



Remote Sens. 2024, 16, 1023 4 of 15

observed for the twelve bands of the satellite, across the entire scene, using the matched
filter function to whiten the observed radiation, thereby quantifying methane enhancement
signals outside the background as concentrations. Additionally, the algorithm operates
under the assumption that the background radiation conforms to a Gaussian distribution,
a condition met, to some extent, by some hyperspectral sensors [21,29,33]. However, for
the Sentinel-2 sensor, which has fewer and broader bands, the estimated background
radiation exhibits larger covariance, risking the submergence of the methane signals in
noise. To address this, we segment the image by columns (for some pushbroom sensors) or
clusters [11,12], ensuring that each class has a uniform distribution and smaller covariance.
We also incorporate time series, land cover, and spatial information into the background
estimation process to mitigate noise due to the fewer bands and lower spectral resolution.
This process is detailed in Figure 2.
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which is used to quantify emission rates.

Furthermore, water vapor and carbon dioxide also absorb in these bands, potentially
causing interference. However, in the case of point source emissions, water vapor and
carbon dioxide are typically not co-emitted with methane, allowing for the assumption
that their concentrations remain uniform across the scene. This was validated by the study
conducted by Varon et al. [26].

2.1. Matched Filter

Assuming that the radiation received by the sensor in the scene follows a normal
distribution on a uniform surface, when there are no methane concentrations higher than the
background in the scene, we can model the n-dimensional radiance

→
xb ∈ Rn (n represents

the number of sensor bands) received by the sensor as a multivariate Gaussian distribution
N with a mean of x and a covariance matrix Σ:

xb ∼ N(x, Σ) (1)

When methane concentrations higher than the background are present in the scene,
the irradiance measured by the sensor can be modeled as a function of the methane
concentration ∆c and the target spectrum tK, based on the methane absorption spectral
characteristics KCH4(λ). According to the Beer–Lambert Law, the radiance xm affected by
the enhanced methane concentration can be expressed as:

xm = xbe−KCH4(λ)∆c (2)
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By employing a first-order Taylor series expansion for linearization, we obtain:

xm ≈ xb − tK∆c (3)

The target spectrum tK related to the concentration can be created through the
methane’s absorption spectrum KCH4(λ) and radiative transfer simulations of radiance
changes with methane concentration. We use the average radiance x of the radiation sensor
to approximate xb, which is the sensor brightness for non-enhanced background radia-
tion. To minimize the residual between the observed spectrum xo and the modeled target
spectrum xm, we impose the condition of:∣∣∣∣∣∣xo − (x − tK∆c)

∣∣∣∣∣∣2 ≡
∣∣∣∣∣∣RES

∣∣∣∣∣∣2 → min (4)

Given x and Σ, the least squares solution can be represented by the following likelihood
ratio function:

∆c =
(x o − x)TΣ−1tK

tT
KΣ−1tK

(5)

This forms the basic framework for the retrieval of methane using a matched filter.
Furthermore, to avoid underestimation and negative values, we adopt the improved form
suggested by Pei et al. [34] (Equation (6)), which replaces the spectral background model
with a log-normal distribution. This can reduce the underestimation caused by nonlinear
absorption when the gas concentration increases significantly, as well as avoid negative
values in the results.

∆c =
(ln(x o)− ln(x))TΣ−1tK

tT
KΣ−1tK

(6)

The strategy for estimating x, Σ is discussed in Section 2.2. The process of creating the
target spectrum t is outlined in Section 2.3.

2.2. Background Estimation

The model’s parameters (x, Σ), essential for constructing a background that is un-
affected by methane emissions, play a pivotal role in the accuracy of the matched filter
algorithm, particularly for multispectral sensors with a limited spectral resolution. To
mitigate methane’s impact, adopting suitable methods for estimating the background is
imperative. The typical approach involves utilizing the similarity in spectral characteristics
among pixels of the same land cover type and calculating the mean and covariance sep-
arately for each category using data-driven clustering algorithms [11]. These algorithms
compute the mean and covariance for each category independently, but necessitate initially
selecting an appropriate spatial range. This selection ensures that, within each category,
pixels with methane concentrations exceeding the background constitute only a minor
fraction. Additionally, clustering algorithms typically require predefined category numbers.
However, identifying the exact number of land cover types within an image is challenging.
Setting a high number of categories might isolate pixels with elevated methane levels into
separate categories, while a low number could increase inter-category variance, amplify
noise, and decrease precision.

For Sentinel-2 imagery, our initial step is to ensure that the influence of methane
plumes on the background mean–covariance matrix is negligible. The computational area
considered is approximately 10 km × 10 km. We collected a two-month time series of
Sentinel-2 L1C imagery corresponding to the computational area. All images were aligned
at the pixel level and resampled to a resolution of 20 m. The algorithm of the matched
filter is applied to each of the categories based on these pixels with a 20 m resolution.
Additionally, we utilize cloud masks from the L1C product to refine the image collection,
eliminating pixels obscured by clouds. Subsequently, land cover and locational information
are added for each temporal phase, creating a background database. Subsequently, the
database is input into an adaptive clustering algorithm [27]. This algorithm searches



Remote Sens. 2024, 16, 1023 6 of 15

for all clusters that conform to a normal distribution in order to meet the background
assumption and adaptively determines the number of clusters and the clustering results.
Finally, the mean and covariance are calculated separately for each category using the
derived classification information. This approach ensures that each category has a sufficient
number of pixels without expanding the scope of the scene, thereby minimizing the impacts
of methane and surface changes on the background estimation in the images. This process
is illustrated in Figure 3.
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Figure 3. Background estimation process. Sentinel-2 time series will undergo registration and cloud
screen, and location (latitude and longitude) and surface coverage will be added for each pixel before
being input into an adaptive classifier for clustering. Finally, the mean and covariance matrix for
each category will be calculated based on the results. The variables x and y represent the latitude and
longitude of the resampled pixel, respectively.

2.3. Calculation Procedure of Methane Target Spectrum

The target spectrum t is analogous to the spectrum representing the unit change
of the methane absorption coefficient, determined by the widths of the satellite bands,
path length, and methane absorption cross-section. It represents the increment in optical
thickness caused by a methane plume in a specific environmental setting.
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Initially, we employed the Line-By-Line Radiative Transfer Model (LBLRTM) [35]
to compute the high-resolution radiances for various methane concentrations. The solar
inputs for LBLRTM were provided by a solar-source function on the AER RT website [36].
The absorption line strengths of methane came from HITRAN2020. The atmospheric model
employed was the 1976 U.S. Standard Atmosphere [37], where water vapor and aerosols
were supplied by the corresponding Sentinel-2 L2A product metadata. We obtained the
solar zenith angle (SZA) and viewing zenith angle (VZA) for each scene from the metadata.
The surface elevation was acquired from © Google Earth elevation data. The air column
was divided into 100 layers, with two-way transmittance assumed for all layers. These
radiances were then conformed to a given satellite using the spectral response functions of
Sentinel-2A/B. Subsequently, we calculated the transmittance at different concentrations
based on these radiances, followed by the computation of the incremental optical thickness.
The final step involved correlating the increments in methane concentration with the
corresponding increments in optical thickness. The slope derived from this correlation is
defined as the target spectrum t.

2.4. Methods for Quantifying Point Source Emission Rate

After separating the plume from the background using a masking technique, we
further employed the Integrated Mass Enhancement (IME) method [38,39], identical to that
used by Varon et al. [26], to calculate the emission rate Q as:

Q =
Ue f f

L
IME (7)

In this equation, IME represents the integrated mass enhancement (kg). The effective
wind speed Ue f f is the function of the local 10 m wind speed U10 derived by Varon et al. [26].
The U10 data we use are from the ECMWF-ERA5 datasets [40]. L is the size of the plume
(m).

3. Results

Methane point source monitoring necessitates the precise validation of retrieval algo-
rithms under various conditions. However, due to the impracticality of accurately mapping
methane concentrations close to the surface, these validations are typically based on con-
trolled emission experiments or simulation analyses. The former method offers the most
accurate benchmarks and real-world conditions, but is limited to a small number of data
points due to its high costs and negative atmospheric impacts [41], and it only provides
source rates. Although the latter method presents challenges in replicating real scenario
conditions, it provides an accurate distribution of concentrations.

In Section 3.1, we use simulated data to validate the algorithm’s performance in
retrieving concentrations. In Section 3.2, we conduct comparisons with existing methods
in real emission scenarios. In Section 3.3, we utilize controlled release experiments to
evaluate the source quantification capabilities of the algorithm. In Section 3.4, we illustrate
an application of the algorithm developed in this study to the retrieval of methane plumes.

3.1. Result from Simulation

We used a simulated Sentinel-2 dataset generated by Gorroño et al. [42], which over-
lays concentration maps produced by Weather Research and Forecasting—Large Eddy
Simulation (WRF-LES) simulations onto original Sentinel-2 TOA radiance images. This
dataset includes five types of methane point source plumes, with emission rates ranging
from 0 to 50,000 kg/h. The dataset was created for scenes in three oil and gas basins (Hassi
Messaoud, Algeria; Korpeje, Turkmenistan; and Permian Basin, USA). This simulation
dataset provides images of 75 × 75 pixels with a pixel size of 20 m.

We first evaluated the performance of the Matched Filter algorithm in identifying
whether pixels contained methane plumes and compared it with the MBMP algorithm.
The MBMP method derives methane column enhancements by obtaining the fractional
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change in TOA radiance for bands 12 and 11 relative to a reference image. We used the
original image from the simulation dataset without added methane plumes as the reference
to ensure that the MBMP method operated under ideal conditions and adopted the same
fractional absorption model as Varon et al. [26]. Subsequently, to ensure the consistency
of the results and avoid human bias, both the Matched Filter and MBMP employed the
same unsupervised masking strategy. This method involved selecting methane columns in
the scene that were above the 95% threshold and smoothing them using a 3 × 3 median
filter and a 3 × 3 Gaussian filter. This unsupervised masking strategy aided in reducing
the significant noise levels present in Sentinel-2 methane detection, effectively extracting
plume shapes. Moreover, median and Gaussian filtering (or other high-frequency filtering
processes) were expected to have minimal impact on the plume signal, as the plume signal
was distributed in the atmosphere as a low-frequency signal.

We employed three evaluation metrics to assess the algorithm’s performance, focusing
on distinct aspects. The metrics used were Accuracy, Recall, and Precision (Equations (8)–(10)).

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

In the formula, TP, TN, FP, and FN represent True Positive, True Negative, False
Positive, and False Negative, respectively. Furthermore, we also calculated the F1 score
based on Precision and Recall. The F1 score can be considered as a harmonic mean of
Precision and Recall, with a maximum value of 1 and a minimum value of 0.

F1 =
Precision × Recall
Precision + Recall

× 2 (11)

As listed in Table 1, the performance outcomes from the simulation experiments
across the entire dataset reveal that, in comparison to the MBMP model, the Matched
Filter approach exhibited a superior performance on various indices. This advantage was
particularly evident in the Permian Basin area, where the F1 score improved from 0.3905 to
0.7118, demonstrating a significant improvement in the performance of the matching filter
method in this region.

Table 1. Scene-level metrics in simulated experiments.

Matched
Filter MBMP

Korpeje Hassi
Messaoud

Permian
Basin Korpeje Hassi

Messaoud
Permian

Basin

Accuracy 0.8208 0.7594 0.7945 0.8292 0.7932 0.6071
Precision 0.7201 0.7112 0.7233 0.6907 0.6485 0.4156

Recall 0.82 0.7830 0.7006 0.6452 0.5948 0.3682
F1 score 0.7668 0.7454 0.7118 0.6672 0.6205 0.3905

Figure 4 presents several examples, including the Korpeje and Permian Basin locations,
with an emission flux rate Q = 20,000 kg/h. We compared the retrieval results of the
Matched Filter and MBMP algorithms under five different methane plume images. From
the figure, it is observable that, at the Korpeje site, methane plumes retrieved by both
Matched Filter and MBMP are visible, yet the MBMP results exhibit more background
interference, with the primary visible structures being dunes stretching from northwest
to southeast. Similarly, at the Permian Basin location, the enhancement map produced
by the Matched Filter shows a more distinct methane plume, while the MBMP results
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are cluttered with numerous anomalies, almost obscuring the plume’s shape. We used
the standard deviation (σ values) of XCH4 derived from the no-methane-plume areas as
the XCH4 enhancement retrieval 1-σ (random) error to evaluate the noise levels of the
two algorithms. At Korpeje, Hassi Messaoud, and the Permian Basin, the random errors
for the matched filter algorithm were 0.397, 0.113, and 0.871 ppm, respectively, while for
the MBMP algorithm, the errors were 0.626, 0.244, and 1.587 ppm, respectively. Overall,
Matched Filter effectively reduced anomalies, accurately reflecting the morphology of
plumes, even in locations with high surface heterogeneity. In contrast, the MBMP algorithm
produced more anomalies in the Permian Basin area, demonstrating increased background
noise and less plume coherence.
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In addition to assessing scene-level detection capabilities, this study also examines
the precision of individual pixel concentration estimations. Figure 5 illustrates scatter
plots that juxtapose the actual concentration enhancements against those retrieved for a
randomly chosen set of 2000 enhanced pixels. Both linear regression and reference lines are
depicted in conjunction with the scatter points. While the scatter plots for both method-
ologies demonstrate a commendable alignment with the reference enhancement values,
the Matched Filter method is noted to have a lower R2 and a higher RMSE. The reason for
this discrepancy is that the simulation dataset was created using a fractional absorption
model similar to the MBMP method. This involved creating methane transmittance maps
for each band based on simulated methane concentration maps, which were then directly
multiplied by the original Sentinel-2 TOA radiance maps to obtain the Sentinel-2 TOA radi-
ance maps under that concentration distribution. Additionally, the original Sentinel-2 TOA
radiance maps were used as the reference for scenarios without methane plumes. These
factors ensured that the MBMP method operated in an ideal environment for retrieving
methane enhancements, resulting in scatter plots with a more concentrated distribution
and a smaller RMSE.
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3.2. Result from Real Data

We first applied the method described in Section 2 to a known methane point source
emission event located at the Permian Basin (latitude and longitude of the source: 31.7335,
−102.0421). According to the study by Ehret et al. [15], emissions from this source began
to increase significantly from 9 July 2020 and ceased after 29 September 2020, lasting for
approximately two months. Within the entire detection range, we identified nine recogniz-
able methane plumes and determined plume masks, as shown in Figure 6. Subsequently,
we employed the method outlined in Section 2.4, using corresponding wind data from the
ECMWF-ERA5 reanalysis product from the Copernicus Climate Change Service [43] to
quantify the methane point source emission flux rates. Figure 7 displays the emission rates
of the nine detected methane plumes. Compared to the method used by Ehret et al., the
average estimated difference in emission rates was about 34%.

3.3. Controlled Release Experiment

The enhanced images and emission rates presented in Section 3.2 indicate that the
algorithm can detect methane and provide quantitative estimates within the expected
range. However, due to the unavailability of actual point source emission flux rates, this
evaluation of the algorithm’s performance can be considered only qualitative. Therefore,
in this section, we compare data from a large-scale controlled release test conducted in
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Ehrenberg, Arizona, during the fall of 2021, to understand the level of flux rate errors
and validate the algorithm’s improvements. During the controlled release experiment,
Sentinel-2 passed over the site eight times, but two transits were cloud-covered. Table 2
shows the controlled release experiment scenarios. In six observations, we successfully
detected plumes four times and failed to detect them twice, where no methane was released
on 10/17 and 11/3 was a missed detection. The detection limit of the algorithm was
approximately 1.4–1.7 t/h, with average estimated values ranging from −48% to 42% of
the measured values, and an average error percentage of 19%.
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Figure 7. The observed emission rate of nine methane plumes is compared with that of Ehret et al. [15].
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Table 2. Controlled release test scenarios.

Time Whether Release
Methane Retrieval Results Wind

Speed (m/s)
Retrieval

Emission Rate (t/h)
Real Emission

Rate (t/h)

17 October 2021 N No plume 0 0
19 October 2021 Y Plume 1.8 5.06 7.2
22 October 2021 Y Plume 2.2 3.25 1.7
24 October 2021 Cloudy
27 October 2021 Y Plume 4.3 4.9 3.5
29 October 2021 Y Plume 4.8 3.71 5.0

1 November 2021 Cloudy
3 November 2021 Y No Plume 0 1.4

3.4. Application Cases

In Figure 8, we demonstrate the application of the algorithm proposed in this study
to retrieve methane plumes and locate emission sources. Figure 8b presents the methane
plume masks retrieved by Sentinel-2 on 23 August 2022, where we can clearly see the
feather-like features produced by methane emissions and identify their sources on a high-
resolution map, one of which is located at a natural gas mine in Mary, Turkmenistan
(32.2050, 61.4887). The Earth Surface Mineral Dust Source Investigation (EMIT) [33] de-
tected the emissions from this point source about an hour after the Sentinel-2 overpass,
and half an hour later, the TROPOMI sensor onboard Sentinel-5P also detected a faint
methane plume on a regional scale. The diffusion direction of the plumes observed by
the three satellites was generally consistent with the local wind direction estimated at the
time of the satellite overpass, and Sentinel-2 and EMIT showed close agreement in the
spatial distribution of the morphological features and column concentration gradients of
the methane plumes. We quantified the source emission rate of the Sentinel-2 plume as
17.31 t/h, the EMIT plume as 24.12 t/h, and the TROPOMI plume as 46.18 t/h using the
method described in Section 2.4. The higher source rate of the TROPOMI plume may have
been due to its lower spatial resolution, resulting in an overestimated plume area that
included emissions near the source and from the main leak points.
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Figure 8. Examples of the location and shape of detected plumes. Panel a shows the methane
concentration observed by Sentinel-5P TROPOMI, with black arrows representing wind vectors
(ECMWF-ERA5 10 m wind). Panel (b,d) display methane enhancements and plume masks retrieved
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by Sentinel-2, Panel (c) shows the located emission source, and Panel (e) presents the methane plume
mask retrieved by EMIT. The time of satellite overpass is shown in the Panel (a,b,e) top left corner
(UTC). Source map from © Google Earth.

4. Discussion

This study addresses the limitations of existing multispectral methane retrieval meth-
ods and proposes a Matched Filter methane retrieval algorithm based on Sentinel-2 satellite
imagery. It overcomes the need for selecting reference images inherent in existing algo-
rithms and effectively reduces artifacts and noise. We conducted tests on a simulated
dataset, four known methane emission point sources, and controlled release experiments.
The simulated scene-level experiments showed that, while the XCH4 plume images re-
trieved by the Matched Filter and MBMP were visually similar, the Matched Filter method
significantly reduced the generation of artifacts, especially in areas with high surface
heterogeneity like the Permian Basin.

The performances of the Matched Filter and MBMP were evaluated at known methane
emission point sources, with flux rate estimates differing by 34%. The results from con-
trolled release experiments indicated that the algorithm’s detection limit is approximately
1.4–1.7 t/h, with average estimated values ranging from −30% to 91% of the measured
values and an average error percentage of 19%. The absence of false positives in these
tests validates the algorithm’s reliability. We also present an example of using global moni-
toring satellites such as TROPOMI in conjunction with locating the point source facilities
responsible for abnormally large emissions.

It is noteworthy that the MBMP method used in the experiments employed an ideal
reference completely unaffected by methane, yet it still produced many false positives. In
practical applications, the use of influenced reference images would introduce additional
errors. Moreover, in post-plume mask generation, more work is required to eliminate these
false positives, such as filtering out anomalies and manually verifying true plumes with
wind speed and direction data. The Matched Filter method reduces such false reporting
and does not require the selection of reference images, enabling the use of simple automatic
methods for anomaly filtering and plume definition. However, it remains a challenge that
the accuracy of the retrieval affects the mask size, and consequently, the mask size affects
the emission rate estimation. The underestimation caused by missing plume edges and the
overestimation due to the presence of artifacts continue to be issues. In the future, we hope
to apply artificial intelligence methods based on computer vision to filter out plume masks
unlikely to be produced by gas diffusion, developing an effective method to remove false
detections.

Furthermore, our demonstration of the Sentinel-2 methane matched filter algorithm
can be easily extended to other multispectral satellite instruments with similar SWIR
spectral bands. In the future, it can complement high-precision methane-monitoring
satellites like GHGSat and be used in conjunction with global monitoring satellites like
TROPOMI to locate and quantify unusually large emissions from point source facilities.
This will enable rapid corrective action.
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