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Abstract: The second-largest wildfire in the history of South Korea occurred in 2022 due to strong
winds and dry climates. Quantitative evaluation of soil erosion is necessary to prevent subsequent
sediment disasters in the wildfire areas. The erosion rates in two watersheds affected by the wildfires
were assessed using the revised universal soil loss equation (RUSLE), a globally popular model,
and the soil erosion model for mountain areas (SEMMA) developed in South Korea. The GIS-based
models required the integration of maps of the erosivity factor, erodibility factor, length and slope
factors, and cover and practice factors. The rainfall erosivity factor considering the 50-year and
80-year probability of rainfall increased from coastal to mountainous areas. For the LS factors, the
traditional version (TV) was initially used, and the flow accumulation version (FAV) was additionally
considered. The cover factor of the RUSLE and the vegetation index of the SEMMA were calculated
using the normalized difference vegetation index (NDVI) extracted from Sentinel-2 images acquired
before and after the wildfire. After one year following the wildfire, the NDVI increased compared to
during the year of the wildfire. Although the RUSLE considered a low value of the P factor (0.28) for
post-fire watersheds, it overestimated the erosion rate by from 3 to 15 times compared to the SEMMA.
The erosion risk with the SEMMA simulation decreased with the elapsed time via the vegetation
recovery and stabilization of topsoil. While the FAV of RUSLE oversimulated by 1.65~2.31 times
compared to the TV, the FAV of SEMMA only increased by 1.03~1.19 times compared to the TV. The
heavy rainfall of the 50-year probability due to Typhoon Khanun in 2023 generated rill and gully
erosions, landslides, and sediment damage in the post-fire watershed on forest roads for transmission
tower construction or logging. Both the RUSLE and SEMMA for the TV and FAV predicted high
erosion risks for disturbed hillslopes; however, their accuracy varied in terms of the intensity and
extent. According to a comparative analysis of the simulation results of the two models and the
actual erosion situations caused by heavy rain, the FAV of SEMMA was found to simulate spatial
heterogeneity and a reasonable erosion rate.

Keywords: erosion risk; RUSLE; SEMMA; NDVI; wildfire

1. Introduction

Recently, the history of large-scale wildfires around the world is being rewritten. The
2020 Australian wildfire was recorded as one of the largest wildfires in the world, with a
damaged area of 18.6 million hectares [1,2]. Another the mega wildfire occurred in Canada
in 2023, damaging a total of 18.5 million hectares [3]. The main natural causes of these
expanded wildfires were extreme weather events such as lightning strikes, prolonged
drought, high temperatures, heat waves, and strong winds [4–6]. The severity of inter-
national large-scale wildfires due to climate change has increased extraordinarily since
entering the 21st century [7–10], and it is predicted that it will become more serious in
the future [11]. Although it was relatively small compared to the scale of global wildfires,
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the second-largest wildfire in Korean history occurred in Uljin in 2022 [12]. Large-scale
wildfires increase toxicity and carbon dioxide emissions and deteriorate soil, water, and air
quality in remote areas [2]. Furthermore, if heavy rain occurs in wildfire areas, the risk of
flooding increases, and it is difficult to avoid subsequent sediment disasters as a result of
excessive erosion and landslides [13,14]. However, the intensity and frequency of extreme
rainfalls are expected to increase further as large-scale wildfires gradually increase due to
climate change [15–17].

The most frequently used model for assessing soil erosion risk in large-scale wildfire areas
is the GIS-based RUSLE, which has been developed in conjunction with remote sensing tech-
nologies [18–20]. Among the vegetation indices extracted from satellite images, the normalized
difference vegetation index (NDVI), computed from the red and near-infrared bands, is a highly
utilized indicator and can reflect the recovery of post-fire vegetation. [21–25]. Although the
revised universal soil loss equation (RUSLE) is an old empirical model developed based on
agricultural lands [26], it has been continuously used to estimate soil erosion in large-scale
forest areas by using the NDVI extracted from satellite images to calculate the cover factor with
technologies of geospatial information [27–34]. To overcome local heterogeneity in parameters
such as rainfall, soil, and vegetation, the soil erosion model for mountain areas (SEMMA) was
developed using mountainous data measured in South Korea [35], and it showed a higher
determination coefficient and Nash–Sutcliffe simulation efficiency compared to the RUSLE at
the plot scale [36]. The SEMMA-Ic for large-scale application utilizes the digital elevation model
(DEM), and the vegetation index of the NDVI was verified for applicability through comparison
with monitoring data from a small watershed [37]. A simulation using the SEMMA-Ic pre-
dicted reasonable erosion rates and presented that soil erosion was predominantly increased in
upper mountainous areas with steep slopes and silt loam with a shallow soil depth among fire-
damaged areas [38]. However, there have been no comparative studies in which the SEMMA
has been simultaneously applied to large-scale wildfire areas with the GIS-based RUSLE, which
is highly utilized worldwide.

The Uljin watersheds damaged by wildfires in the dry spring urgently need their ero-
sion risk to be assessed to prepare for flooding in the rainy summer because there are cities
located in the lower reaches of the rivers. Suitable models are required to quantitatively
evaluate the erosion to establish timely and phased strategies to reduce the erosion rate
and sediment yield. The objectives of this study are as follows: (1) to estimate the erosion
rates in two watersheds with the GIS-based RUSLE and SEMMA using satellite images
sensed before and after the Uljin wildfire, (2) to identify the changes in erosion risks in
the two watersheds before and after the wildfire, and (3) to present the applicability and
improvement direction of the two models for wildfire watersheds through a comparative
analysis of the simulation results of the two models, existing data measured in the wildfire
areas, and the actual erosion situations caused by heavy rain.

2. Methodology
2.1. Study Area

The second-largest wildfire in the history of South Korea occurred in the Uljin and
Samcheok areas in March 2022. The size damaged by the wildfire was 20,923 ha. The
Uljin wildfire areas, located at 36◦58′51′′~37◦08′43′′N and 129◦12′36′′~25′53′′E, are located
in the eastern part of the Taebaek Mountain Range, South Korea (Figure 1). Before the
wildfires, the dominant vegetation species was Pinus densiflora, which is vulnerable to fire
in a monsoon climate and was distributed throughout the entire east coast region [39].
The parent rock in this area is mainly granite from the Early Late Proterozoic (Geo Big
Data open platform) [40]. The main texture of the surface soil is sandy loam, according
to the National Institute of Agricultural Sciences (NIAS). The soil order in the USDA soil
taxonomy (1975) [41] is Inceptisols, and they have changed horizons and lost iron and
aluminum, but they retain some weathering minerals [42]. The Uljin area, where the
wildfire occurred in 2022, has a long-term record (1993–2022) of an average temperature
of 12.9 ◦C and an annual precipitation rate of 1178.3 mm from the Korea Meteorological
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Administration (KMA). This area has a steep west-high and east-low topography between
the East Sea and the Taebaek Mountains and is a place where orographic precipitation
is frequently caused by the influence of the northeast air current. In spring (March to
May), west winds are dominant due to the influence of mobile high pressure, and local
winds which are hot, dry, and strong frequently blow due to the Foehn phenomenon. In
the summer season (June to September), cold and humid east winds flow in under the
influence of high pressure in the Sea of Okhotsk, and precipitations occur frequently due to
the influence of northeast air currents based on the KMA.

Figure 1. Maps of the location and wildfire damages highlighted by a red box in Uljin and Samcheok areas.

The wildfires predominantly occurred at elevations between 50 m and 300 m. The
area damaged by the wildfires in the Bugucheon watershed was 24.6 km2, accounting
for 45.1% of the total area. The Namdaecheon watershed, with a damaged area of
34.4 km2 and 27.0%, showed a smaller wildfire intensity than the Bugucheon watershed.
The rainfall measurement stations and mountainous tops are depicted in the topographic
map in Figure 2. As shown in the wildfire evidence photos ( 1⃝– 8⃝) in Figure 2, the mountain
ridges dominated by Pinus densiflora at an elevation of 100 m~300 m were damaged by
the crown fire that burned even the tops of the trees. The middle hillslopes showed a
stem fire, with charred trunks of trees. The lower slopes near the river, where many oak
trees live, had relatively less fire damage than the upper slopes, where many pine trees
live. As indicated on the map in Figure 2, there are three rainfall observation points at
distances of approximately 10 km within the study area. The two points located in Sogok
and Jukbyeon are the automatic weather system (AWS), and the one point located in Uljin
is the meteorological station (MS).

The Uljin region affected by wildfire includes the two watersheds of the Bugucheon
River and Namdaecheon River (Figure 2). The area and stream length of the Bugucheon
watershed are 54.6 km2 and 9.4 km, respectively. The area and stream length of the
Namdaecheon watershed are 127.5 km2 and 12.0 km, respectively. The watersheds have a
west-high and east-low topography. Yongbongsan Mountain (999.7 m) and Anilwangsan
Mountains (819.3 m) are to the west, so the rivers generally flow from west to east. The
slope is steep along the ridges at the top of the mountain, and the slope becomes gentler
toward the outlets of the basins, so farmlands and villages have formed around the river,
and cities are located in the estuaries. According to the slope analysis of the DEM, the mean
slopes of the Bugucheon and Namdaecheon watersheds are 25.5◦ ± 12.3◦ and 22.1◦ ± 12.4◦,
respectively. The steep slopes (>15◦) in the Bugucheon watershed accounted for 79.5% of
the total area, which was greater than that (70.5%) in the Namdaecheon watershed (Table 1).
These rivers are typical mountain rivers with steep river slopes, high flow velocities, short
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concentration times of peak flow, and a high risk of flooding. Therefore, flash floods can
transport a lot of bed loads as well as suspended loads, so the risk of sediment disasters
increases rapidly [43,44].

Figure 2. Topographical characteristics of the basins and field evidence photos ( 1⃝– 8⃝) of the wildfire
damage within the watersheds of Bugucheon River and Namdaecheon River in May 2022 after the
wildfire. AWS stands for automatic weather system, and MS is short for meteorological station.

Table 1. Area ratios of Bugucheon and Namdaecheon watersheds according to slope gradient classification.

Slope (◦) Description
Area Ratio (%)

Bugucheon
Watershed

Namdaecheon
Watershed

<8 Flat 11.5 16.9
8~15 General 9.0 12.6
15~25 Moderately steep 22.5 25.2
25~35 Steep 33.0 28.7

>35 Very steep 24.0 16.6

2.2. Soil Erosion Models
2.2.1. RUSLE and SEMMA

The empirical model known as the universal soil loss equation (USLE) has been widely
used as an erosion prediction technology for soil conservation. Many researchers have
developed the USLE from over 10,000 plots to measure runoff and soil erosion [45]. The
revised universal soil loss equation (RUSLE), at the plot-to-hillslope scale, is applied to estimate
soil erosion over extended areas and in different contexts, including forests, rangeland, and
disturbed areas [26]. The RUSLE has more flexibility in modelling erosion in new conditions
and is more efficient than the USLE. The GIS-based RUSLE was used to quantify the soil loss
by using rainfall, soil, a DEM, and satellite image datasets as input parameters.

The RUSLE and USLE are multiplicative relationships, as shown in Equation (1).

A = R × K × LS × C × P (1)
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where A is the mean annual soil loss, R is the rainfall erosivity factor, K is the soil erodibility
factor, LS is the slope length and steepness factor, C is the cover factor, and P is erosion
control practice factor.

The RUSLE has limited applications in other areas with different climates, topogra-
phies, soils, and cover conditions. To overcome the local heterogeneity of the RUSLE, the
SEMMA was developed in South Korea using soil loss data from mountain slopes caused
by a single period of heavy rain [35]. This model has been applied not only to natural
mountain areas but also to areas with rapid changes in the mountain environment such
as wildfires, logging, landslides, and slope management. The model was improved to the
SEMMA-Ic to enable it to be applied to large-scale mountainous areas using satellite images
and a DEM [37], as shown in Equation (2).

qs = α × Ra × Icb × Soc × Tod (2)

where qs is the sediment yield (g/m2) from the hillslopes, R is the rainfall factor consisting
of the rainfall energy and maximum rainfall intensity for 30 min, Ic is the vegetation index
calculated from the NDVI, So is the soil factor considering the coarse stone and soil depth, To is
the topography factor extracted from a DEM, α is a coefficient, and a, b, c, d are the exponents.

The basic model of the SEMMA [35] consists of eight multiple regression functions
according to the ranges of rainfall and vegetation coverage. The heavy rain condition
designated the probability of rainfall in the Gangneung area with a 50-year frequency
over 24 h. The average annual rainfall in the Uljin area is less than that in the Gangneung
area, where the SEMMA was developed, and the probable rainfall is also relatively small.
The probable rainfall with a 50-year frequency in the Uljin area is 270 mm. Therefore,
the multiple regression equations are presented in Table 2, considering the heavy rain
conditions of the SEMMA-Ic model. Equations (3) and (4) are equations classified according
to whether the vegetation index Ic is greater or less than 0.7. Under the conditions of the
vegetation index Ic being less than 0.7, the exponent of the topography factor, To, shows
a negative value. This result is generated by decreasing surface runoff and increasing
subsurface flow on steeper forested hillslopes [35,46,47]. When precipitation exceeds the
infiltration capacity of the surface, the soil loss increases generally with the length and
incline of the slope as rills develop along with the increase in overland flow accumulated
with the length of the slope. A multiple regression model undivided by the vegetation index
is presented in Equation (5). Since the equation shows a higher determination coefficient,
Equation (5) was used to estimate the erosion rate in this study.

Table 2. Multiple regression models of SEMMA-Ic corrected with an interval of rainfall depth
(>270mm) and vegetation index (≤0.7 or >0.7).

Rainfall
Depth
(mm)

Vegetation
Index Multiple Regression Model

Correlation
Coefficient r

(n)

Rd > 270
0.0 < Ic ≤ 0.7 Qs = 0.2112 R0.946 Ic−3.1005 S0.719 To−0.473 (3) r = 0.854 (23)
0.7 < Ic ≤ 1.0 Qs = 0.000938 R1.045 Ic−11.651 So−0.4665 To0.530 (4) r = 0.763 (66)
0.0 < Ic ≤ 1.0 Qs = 0.0111 R1.073 Ic−3.832 So0.478 To0.375 (5) r = 0.864 (89)

The RUSLE and SEMMA were simulated in a GIS environment using the Arc GIS 10.7
platform. Each model parameter was acquired in the form of a digital map, and the erosion
rate was estimated on a cell-by-cell basis.

2.2.2. Rainfall Erosivity Factor

The rainfall erosivity factors used in the RUSLE and SEMMA were calculated from the
equations of the relationships between the rainfall kinetic energy and rainfall intensity. The
RUSLE uses an exponential function developed by Brown and Foster (1987) [48], as shown
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in Equation (6). The SEMMA adopts the exponential equation of Van Dijk et al. (2002) [49],
who integrated and analyzed data measured around the world, as shown in Equation (7).

E = 29.0{1 − 0.72exp(−0.050I)} × Rd (6)

E = 28.3{1 − 0.52exp(−0.042I)} × Rd (7)

where RE is the rainfall energy in J/m2, I is the average intensity of the storm in mm/h,
and Rd is the rainfall depth in mm.

The erosivity factor of the RUSLE and SEMMA is calculated by the following Equation (8).

R = E × I30 (8)

where I30 is the maximum rainfall intensity for 30 min in mm/h. R is the rainfall erosivity
factor (J h/m) in the SEMMA.

The soil erosion caused by a few large events of rainfall accounts for the high per-
centage of a common number of events [50]. According to a watershed monitoring study
by Shin et al. (2013) [44], the erosion caused by a single extreme rainfall event accounted
for 93% of the total erosion over a five-year period. When designing a grit chamber and
retention basin, it is recommended to consider recent increases in rainfall and reflect a
design frequency of 50 years or more from the past 30-year frequency. As the magnitude
of rainfall has recently increased, it is recommended to reflect the design with a 50-year
frequency or more from the past 30-year frequency. The probability of rainfall in the Uljin
area using the data from the KMA (1971–2020) were calculated by the Regional Frequency
Analysis for Hydrological Data software (ver. 2020-09-17) [51]. The probable rainfalls for a
50-year and 80-year frequency were 274.3 mm and 295.6 mm per 24 h, respectively. Table 3
shows erosivity factors such as the rainfall depth, rainfall intensity, rainfall kinetic energy,
and erosivity index used in the RUSLE and SEMMA. The rainfall erosivity factor of the
SEMMA was 5.4% larger than that of RUSLE and was actually 64.5% larger considering an
exponent of 1.073 in Equation (5).

Table 3. Erosivity factors for probability of rainfall with 50-year and 80-year frequency.

Probability
Frequency

(yr)

Rainfall Parameters RUSLE SEMMA
P

(mm)
T

(h)
I

(mm/h)
I30

(mm/h)
Iave

(mm/h)
E

(J/m2)
R

(J/m/h)
E

(J/m2)
R

(J/m/h)

50 271.6 24 50.9 63.6 11.32 6162 392.1 6263 414.5
80 292.5 24 53.7 67.1 12.19 6755 453.5 6829 476.9

2.2.3. Cover and Practice Factors

The cover factor of the RUSLE and the vegetation index of the SEMMA were extracted
from satellite images. The satellite images with a 10 m resolution were acquired, as shown
in Figure 3, to identify the vegetation cover before and after the Uljin wildfire in March
2022. Information on the location and scale of the wildfire damage was obtained from
the images from 2021 and 2022. From the changes in the images from 2022 and 2023, it is
possible to understand the recovery and secondary management of the vegetation after the
wildfire. The NDVI is an index that evaluates the vitality of vegetation using the property
that plant leaves reflect more near-infrared rays than soil [52]. Its value varies between
-1 and 1, where low values can be found at water bodies, in bare soil, and in built-up areas.
The NDVI is positively corrected with the amount of green biomass, so it can be used to
give an indication of the differences in green vegetation coverage.
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Figure 3. Sentinel-2 images of the Uljin area before, during the year of, and one year after the wildfire.

The NDVI distributions extracted from the Sentinel-2 satellite images shown in Figure 3
are shown in Figure 4. There is a clear difference in the distribution in the Bugucheon and
Namdaecheon watersheds before, during the year of, and one year after the Uljin wildfire.
The NDVI for the post-fire images in 2022 and 2023 was similar, ranging from −0.15 to
0.74. The values for the pre-fire image in 2021 showed a wider range from -0.58 to 0.94. The
minimum value for the seas and lakes and the maximum values for the forest areas should
be in a similar range before and after the wildfire. The NDVI for 2021 was corrected based
on the minimum and maximum values in 2022.

NDVIre =

(
NDVIbMax − NDVIbMin
NDVIoMax − NDVIoMin

)
(NDVIo − NDVIbMax) + NDVIoMax (9)

where NDVIre denotes the reconstructed data, NDVIo represents the observed data, NDVIb
represents the based data, and NDVIMax and NDVIMin are the maximum value and mini-
mum value, respectively. This method is similar to data assimilation, in that the noisy time
series are reconstructed by the background data and observed data with the weights [53].

Figure 4. NDVI changes in Bugucheon and Namdaecheon watersheds in 2021 before (a), in 2022,
during the year of (b), and in 2023, one year (c) after the Uljin wildfire.

Most of the pre-wildfire mountainous areas showed high values of the NDVI (>0.6),
except for rivers, cities, bare land, and non-vegetation areas. (Figure 4a). However, the areas
affected by a high fire intensity showed low NDVI values of less than 0.2 and were similar
to those of bare land (Figure 4b). The NDVI values one year after the wildfire increased
compared to those in the year of the wildfire (2022), as shown in Figure 4c. Despite the
anthropogenic disturbance caused by logging operations, the vegetation was observed to
regenerate rapidly in the burned areas.
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The cover factor, C, of the RUSLE can be calculated using the exponential function for
the NDVI, as shown in the following equation:

C = exp
[
−α × NDVI

(β − NDVI)

]
(10)

where α and β are parameters that determine the shape of the NDVI-C curve. An α value
of 2 and a β value of 1 seem to give reasonable results, according to the study by Van der
Knijff et al. (1999) [28].

The vegetation index in the SEMMA was obtained from the relationship between Ic
and the NDVI using a contrast-stretching method [35,37]. The function obtained from the
Sentinel-2 satellite images is as follows:

Ic = 1.058 NDVI + 0.085 (11)

where the values of Ic have to be at least greater than 0.04 and, at most, less than 1.0. The
range of Ic values calculated using the above NDVI was from −0.07 to 0.85, and values less
than 0.04 were corrected to the standard value.

The practice factor of the RUSLE and the correction factor of the vegetation index
utilize the land use map. The P factor, improved by Tian et al. (2021) [54], provides
information for not only agricultural areas but also for mountainous and hilly areas. The
correction factors in the SEMMA follow P factors for the land use of cities, wetlands, and
water (Table 4). The vegetation index of the SEMMA reflects correction factors for city-,
wetland-, and water-based P factors.

Table 4. P factors in RUSLE and correction factors in SEMMA according to land use.

No. Land Use P Factor Correction Factor

1 City 0.01 0.01
2 Agriculture 0.53 1.0
3 Forest 0.28 1.0
4 Pasture 0.23 1.0
5 Wetland 0.01 0.01
6 Bare land 0.8 1.0
7 Water 0.001 0.001

2.2.4. Soil Factor

As the content of silt and sand increases, the erodibility of soil increases. In contrast, if
the content of clay with a high adhesion and chemical bonding increases, the erodibility
of the soil decreases [55,56]. The critical shear velocity that affects the detachment and
transport of soil particles is minimum for a soil particle diameter of around 0.2 mm and
increases with increasing particle size [57]. The soil texture with regard to the proportion of
sand, silt, and clay-sized particles is an important parameter for soil erodibility.

In the RUSLE, the erodibility factor, K, considers organic matter, the soil structure,
and the permeability of the soil as well as the soil texture. Organic matter reduces soil
erodibility because it reduces soil detachment and increases infiltration. The nomograph
for soil erodibility [46] consists of soil profile parameters, as shown in Equation (12).

K =
[
2.1 × 10−4(12 − OM)M1.14 + 3.25(S − 2) + 2.5(P − 3)

]
/100 (12)

where K is the soil erodibility (t/ac/unit R), OM is the content of organic matter (%),
M is the ratio of the particle size fractions, S is the structure index (1 to 4), and P is the
permeability index (1 to 6). M is a function of the primary particle size fractions and is
given by Equation (13).

M = (MS + VFS)(100 − CL) (13)
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where MS is the percentage of silt (%), VFS is the percentage of very fine sand (%), and CL
is the percentage of clay (%).

Since coarse stones beneath the surface decrease infiltration rates and increase erosion,
K f (mm/h), which is the permeability index for the fine soil fraction with less than 2 mm
soil permeability, was recalculated by Kb (mm/h) using Equation (14) [58].

Kb = K f (1 − Rc) (14)

where Rc is the ratio of coarse fragments > 2 mm.
Additionally, for samples with an organic matter content higher than 4%, an upper

limit equal to this value was imposed according to the nomograph restrictions. Since the
surface stone cover (Rc) reduces soil erodibility, i.e., the sediment yield [59], its effect was
also incorporated by using Equation (15) [60].

St =

{
1, Rc < 0.1

e−4(Rc−0.1), 0.1 ≤ Rc < 1.0
(15)

where St is the correction factor. The final value of K was recalculated by multiplying it by
the correction factor.

In particular, mountainous areas have a higher content of coarse stones, making them
more resistant to erosion than agricultural lands [61]. Coarse stones, which have a high
shear resistance and protect fine soil, reduce soil erosion. The soil ratio index in the SEMMA
was defined as the relative ratio of fine soils to coarse stones [35].

Is =
(1 − Rc)

Rc
(16)

where Is is the soil ratio index, and (1 − R c) means the ratio of fine soils less than 2 mm.
Organic material, such as leaves and twigs of trees, the litter layer, and organic matter

in forest areas, is converted to ash by fire. The permeable material that retains water on
the ground decreases with the combustion of the litter layer and organic matter. These
organic components contribute to reducing soil erosion [62,63]. The depth of permeable
soil related to the growth of plants may increase infiltration and subsurface flow [35,64].
However, soils in wildfire-prone terrain have generally shallow depths on low-permeability
bedrock [65]. The shallow depth reduces rainfall infiltration and increases surface runoff
and soil erosion [66]. Therefore, the erodibility of mountainous soils is proportional to the
mean size and ratio index of the surface soil and is inversely proportional to the organic
matter content and soil depth, as shown in Equation (17).

So =
Dm × Is
Om × Sd

(17)

where So is a dimensionless variable, since Dm indicates the mean size of surface soil (mm), Is
is the soil ratio index, Om is the ratio of organic matter, and Sd represents the soil depth (mm).

The soil maps (1:25,000) provided by the National Institute of Agricultural Sciences
and Rural Development Administration [67] were used to calculate the subfactors of the
soil. NIAS offered information on the soil texture, stone content, and effective soil depth, as
shown in Figure 5. The surface soil was mostly sandy loam in the mountain hillslopes and
loam in the deposition zones and agricultural land, as shown in Figure 5a. As shown in
Figure 5b, soils with a stone content of more than 15% occupied the widest range. The stone
content in the high-elevation areas was over 40%. The soil depth decreased from 1.0 m to
0.2 m with the increase in altitude (Figure 5c). Wildfires burn not only the vegetation
coverage but also the layers of litter and organic matter covering the ground surface.
However, the changes in the organic matter content of the soil due to the fire were not
significant according to the analysis of the field data. The content of organic matter in this
study was estimated by the multiple regression equation from the data measured in the
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wildfire area [35,37]. The new equation considers the bulk density and soil depth, as shown
in the following Equation (18):

OM = 0.00688Sd − 7.10ρb + 11.08 (r = 0.896, n = 36) (18)

where ρb is the dry bulk density of the soil (g/cm3) according to the soil texture.

Figure 5. Distribution maps for soil texture (a), stone content (b), and effective soil depth (c).

2.2.5. Topography Factor

Generally, the steeper and longer a slope is, the more susceptible it is to soil erosion.
The LS factor, a topographical component in the RUSLE, consists of the L factor of the
slope length [45] and the S factor of the slope steepness [68–70] in the following traditional
version (TV):

LS =

[
λ

22.13

]m{10.8 sinθ + 0.03, sinθ < 0.09
16.8 sinθ − 0.50, sinθ ≥ 0.09

(19)

where λ is the slope length (m), m is a variable slope length exponent, 22.13 is the length
(m) of a standard erosion plot, and θ is the slope angle, which is based on an evaluation of
data from disturbed lands with slopes of up to 84%.

The exponent m of the length factor is related to the ratio of rill to inter-rill erosion [69–71].

m =
β

1 + β
(20)

For soils that are classified as being moderately susceptible to erosion, McCool et al.
(1989) [70] proposed the slope exponent addressed by Equation (21).

βmod =
11.16 sinθ

3.0 sinθ0.8 + 0.56
(21)

The slope exponent, β, is a function of the slope angle. In the RUSLE, the soils are
classified into low, moderate, and high susceptibility according to the ratio of rill erosion
to inter-rill erosion. Wildfire areas have a low susceptibility because the surface soil is
not directly disturbed by physical activities such as cultivation and construction. Rill and
gully erosion in even post-fire land as well as in forested land are frequently observed to
be less than those in agricultural and developed lands [72–74]. Post-fire soils with a low
susceptibility to rill erosion use a value of β that is defined by half that given by Equation
(20). This model considers the exponents for rangeland and pasture, where the ratio of rill
to inter-rill erosion is low [26].

In the RULSE, the LS factor was improved in order to obtain an accurate derivation
from a digital elevation model [75]. The RUSLE has attempted several times to simulate
watershed erosion using the flow accumulation versions (FAVs) [76–79] along with the
earlier TV [18,45,54]. The LS of the TV in Equation (19) considers erosion by rainfall
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within a standard plot [45]. Another LS version that was used to assess erosion from flow
accumulated along the flow direction, as presented by Moore and Burch (1986) [76], is
presented as follows:

LS =

[
Flow accumulation × Cell size

22.13

]0.4
×

[
sin θ

0.0896

]1.3
(22)

where Flow accumulation represents the contribution of an area accumulated upslope for a
given cell, and Cell size is the size of the grid cell (m).

The length factor in the SEMMA [30] takes into account the 10 m standard length
of experimental plots established in fields, and the slope factor is the same as that in
the USLE. The topological factor (To) in the SEMMA, calculated by the multiple of slope
factor and length factor (LS), is identical to that in the RUSLE. Basically, the erosion rate in
bare soil increases along with the increase in the slope and length [68–71]. However, on
natural hillslopes, the erosion rate decreases frequently with the increase in the steepness
and length of the slope due to increased depression storage, the roughness coefficient,
infiltration, and the underground flow rate [64,80]. This is the reason for the exponent
of the topography factor, To, receiving a negative value in Equation (3) of the SEMMA,
when the vegetation index, Ic, is less than 0.7. Equation (5) used in this study considered
an exponent of 0.375 for the topography factor To. In other words, the erosion rate of the
SEMMA responds less sensitively than the topography factor of the RUSLE.

A DEM (digital elevation model) with a 10 m grid was generated from digital topo-
graphic maps (1:5000) provided by the National Geographic Information Institute (NGII).
The slope angles extracted from the DEM were used to estimate the length–slope factor and
the topography factor. The watershed boundaries and flow accumulation were determined
using the process of watershed delineation in the hydrology function of ArcToolbox.

2.2.6. Simulation of Models

The distribution maps of the rainfall erosivity factor, R, shown in Figures 6 and 7, were
an interpolation of rainfall data from the five weather stations of Donghae, Bonghwa, Tae-
baek, and Uljin-Jeongok, including the Uljin MS. As a result of the fact that the probability
of rainfall in the northwest mountainous areas was greater than that in the coastal areas
surrounding the Uljin MS, indicated in the map in Figure 2, the rainfall erosivity factor (R)
increased from the coastal to the mountainous areas.

Figure 6. Simulation processes of RUSLE based on GIS using main factor maps. R is the rainfall
erosivity factor, K is the erodibility factor, LS is the length and slope factors, and CP is the cover and
practice factors.
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Figure 7. Simulation processes of SEMMA based on GIS using main factor maps. R is the rainfall
erosivity factor, Ic is the vegetation index considering correction factor, So is the soil factor, and To is
the topography factor.

The rainfall erosivity factor determined by Brown and Foster (2002) [48] was in the
range from 392.1 to 666.2 J/m/h for a 50-year and 80-year probability of rainfall. The
distribution of the soil erodibility factor, K, showed small values in areas with a high stone
content above a 500 m altitude and high values of 0.50 t/ha/unit R in agricultural lands
near waterside. The slope and length factors (LS) are dependent on the slope angle and
showed a range from 0.03 to 9.34. The cover and practice factor (CP) followed the following
order: bare land > agricultural land > wildfire area > forest land. The erosion rate of the
RUSLE was simulated using Equation (1) based on GIS, as shown in Figure 6.

The rainfall erosivity factor determined by van Dijk et al. (2002) [49] was in the range
from 414.0 to 700.8 and was generally bigger than that determined by Brown and Foster
(1987) [38], as shown in Figures 6 and 7. The vegetation index (Ic) considering that the
correction factor was in the range from 0.0002 to 0.860 and showed similar low values in
intense wildfire areas, urban areas, and water. The soil factor (So) in the range from 0.042 to
2.53 followed the following order: agricultural land > ridge of mountain > forest hillslope.
The topography factor (To) showed a range from 0.03 to 15.1 and a similar distribution to
that of the slope and length factors (LS). The SEMMA simulation, which used Equation (5),
was carried out through the processes employing GIS tools, as shown in Figure 7.

3. Results
3.1. Estimation of Erosion Rate

The traditional versions of the RUSLE and SEMMA, which were used to assess the
erosion rate for the wildfire watersheds, used Equation (19) to calculate the topographical
indices. The simulations by the TVs of the RUSLE and SEMMA were evaluated for two
watersheds and for two rainfall conditions with a 50-year and 80-year frequency of rainfall
and for three NDVI conditions before, during the same year of, and one year after the
wildfire. The Food and Agriculture Organization (FAO) of the United Nations [81] classified
the degree of erosion into four levels: low erosion if less than 10 t/ha, moderate erosion
if greater than 10 t/ha and less than 50 t/ha, high erosion if greater than 50 t/ha and less
than 200 t/ha, and very high erosion if greater than 200 t/ha. The erosion rates estimated
in this study were evaluated by the erosion degree of the FAO.

The simulation results of the RUSLE for a probability of rainfall with a 50-year and
80-year frequency showed that moderate erosion (>10 t/ha and <50 t/ha) extended over
a wide area in the Bugucheon and Namdaecheon watersheds in 2022 and 2023 after the
wildfire (Figure 8a,b). The level of high and very high erosion (>50 t/ha) increased with
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increasing the probability of rainfall and decreased from 2022 to 2023 after the fire. A
very high erosion rate (>200 t/ha) was seen in developing bare slopes such as quarries,
construction, and transmission towers and on the artificial bare slopes of roadsides and
riversides as well as steep hillslopes damaged significantly by the wildfire. As a result of
an RUSLE simulation for a basin in Attica, eastern Greece [18], the post-fire erosion rate
was significantly higher overall, ranging from 4.53 to 5.98 t/ha/yr, and areas disturbed by
development showed higher erosion rates of 3.75~18.58 t/ha/yr. The RUSLE has shown
high erosion rates (265 t/ha/yr) on steeper slope parts, even in non-fire watersheds [33].
The erosion rates estimated in the Uljin wildfire watersheds were relatively high, as more
than 70% of the hillslopes are steep slopes. The erosion rate of the SEMMA, which is less
susceptible to topographical factors, showed that low erosion (<10 t/ha) occupied the
largest area in the Bugucheon and Namdaecheon watersheds, as shown in Figure 9. High
erosion rates (>50 t/ha and <200 t/ha) were predominantly observed in steep hillslopes
damaged by the 2022 wildfire (Figure 9a,b). The erosion rate decreased generally in 2023,
one year later, rather than in 2022, the same year after the fire.

Figure 8. Change in erosion rates simulated by traditional version of RUSLE for 50-year probability
of rainfall according to elapsed years after wildfire.

Figure 9. Change in erosion rates simulated by traditional version of SEMMA for 50-year probability
of rainfall according to the elapsed years after wildfire.
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Table 5 shows a comparison of the statistical results of the erosion rates estimated by
the traditional versions of the RUSLE and SEMMA for the Bugucheon and Namdaecheon
watersheds according to the year and probability of rainfall. The RUSLE overestimated the
mean erosion rates in the two watersheds by from 3 to 15 times compared to the SEMMA. As
most wildfires occur in areas with steep slopes (>15◦), the RUSLE, which is more susceptible
to slope factors, oversimulated the erosion rate compared to the SEMMA. The maximum
erosion rates calculated by the RUSLE and SEMMA were 762.2 t/ha in the bare steep slopes
of developed areas and 588.0 t/ha in the artificial bare slopes of roadsides, respectively. The
mean erosion rates calculated by the RUSLE and SEMMA for the two watersheds were
14.8 ± 10.7 t/ha and 3.0 ± 3.0 t/ha, respectively. The highest erosion rates for the wildfire
areas were estimated to be 517.8 t/ha on a 40.4◦ hillslope by the RUSLE and 288.8 t/ha on a
40.4◦ hillslope by the SEMMA. As shown by the data observed in the wildfire areas in South
Korea, the erosion rate from plots with sandy soils were in the range of 86~180 t/ha, and
the sediment yield from the small basin was 71.2 t/ha after an extremely heavy rain event
(>500-year probability of rainfall) [44]. Although the wildfire areas have steep slopes, the
actual erosion rates were less than 200 t/ha because they have aggregated soil, coarse stones,
burnt trees, and roots. The RUSLE overestimated the erosion rates in the post-fire hillslopes
despite considering a low value of the P factor of 0.28 for forests. The Bugucheon watershed,
which suffered a damage level of 45.1% from wildfires, showed a higher mean erosion rate
than the Namdaecheon watershed, which had a lower damage level of 27.0%. On the other
hand, the total level of soil erosion in the Namdaecheon watershed, which has a large area,
was greater than that in the Bugucheon watershed. The erosion ratio is the ratio of the erosion
amounts before and after a wildfire. The changes in the SEMMA-estimated erosion ratio from
2022 to 2023 decreased generally. Nonetheless, the changes in the RUSLE-estimated erosion
ratio were not significant. In this study, although the SEMMA appeared to estimate more
reasonable erosion rates than the RUSLE, the applications of this model for wildfire areas
around the world still requires caution.

Table 5. Comparison of statistical results of erosion rates simulated by TVs of RUSLE and SEMMA
for Bugucheon and Namdaecheon watersheds according to the year and probability of rainfall.

Watersheds Area
(ha) Models Year Probability

Frequency

Maximum
Erosion Rate

(t/ha)

Mean
Erosion Rate

(t/ha)

Total Soil
Erosion (kt)

Erosion
Ratio

Bugucheon 5458 RUSLE 2021 50 yr 269.7 2.08 11.4 1.0
80 yr 314.2 2.43 13.2 1.0

2022 50 yr 478.0 26.39 144.1 12.7
80 yr 558.0 30.77 168.0 12.7

2023 50 yr 495.5 22.87 124.8 11.0
80 yr 577.5 26.66 145.5 11.0

SEMMA 2021 50 yr 19.5 0.25 1.4 1.0
80 yr 22.8 0.29 1.6 1.0

2022 50 yr 502.9 7.91 43.2 31.6
80 yr 588.0 9.31 50.8 31.7

2023 50 yr 220.4 3.45 18.8 13.8
80 yr 259.1 4.05 22.1 13.8

Namdaecheon 12,748 RUSLE 2021 50 yr 343.5 1.62 20.7 1.0
80 yr 397.2 1.88 24.0 1.0

2022 50 yr 659.0 14.54 185.3 9.0
80 yr 762.2 16.88 215.2 9.0

2023 50 yr 643.8 14.69 187.2 9.1
80 yr 744.7 17.06 217.4 9.1

SEMMA 2021 50 yr 86.2 0.11 1.4 1.0
80 yr 100.3 0.13 1.6 1.0

2022 50 yr 247.6 2.91 37.1 27.0
80 yr 288.1 3.41 43.4 27.1

2023 50 yr 230.4 1.79 22.9 16.7
80 yr 269.5 2.09 26.7 16.7
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3.2. Evaluation of Erosion Risk in Wildfire Watersheds

The erosion risk aggravated in the watersheds due to the wildfire was evaluated by
comparing the amount of erosion before and after the wildfire. The evaluation of the erosion
risk using the RUSLE and SEMMA was conducted for a 50-year and 80-year probability
of rainfall events and for the post-fire years of 2022 and 2023. The erosion risk evaluated
by the RUSLE increased most significantly for an 80-year probability of rainfall in 2022
immediately after the wildfire. Figure 10 shows the changes in erosion risk estimated by
the RUSLE for a 50-year probability of rainfall according to the elapsed years after the
wildfire. The erosion risk of a high erosion degree (>50 t/ha) greatly increased in 2022 and
decreased according to the elapsed years after the wildfire. The extent of moderate erosion
(>10 t/ha and <50 t/ha) in 2023 increased significantly compared to 2022. May is a time
when the vitality of natural vegetation increases rapidly. The satellite image in 2023 was
acquired on 9 May, which is approximately 10 days earlier than the image acquired on
19 May 2021, and approximately 20 days earlier than the image acquired on 29 May 2022.
In other words, it was judged that the vegetation vitality in 2023 would have been relatively
low compared to 2021 and 2022. This is the reason why the risk of erosion increased by
more than 10 t/ha on the non-fire steep slopes (Figures 8 and 10b). Therefore, it is necessary
to acquire high-quality satellite images and accurate data assimilation in the analysis of
noisy time series.

Figure 10. Changes in erosion risk estimated by RUSLE for 50-year probability of rainfall according
to the elapsed years after wildfire.

The erosion risk estimated by the SEMMA was also the highest for an 80-year prob-
ability of rainfall in 2022 after the wildfire. The erosion risk changes evaluated by the
SEMMA for a 50-year probability of rainfall, according to the elapsed years after the wild-
fire, are shown in Figure 11. In particular, an erosion risk of a very high erosion degree
(>200 t/ha) was observed on the steep mountain ridges where the wildfire intensity was
high. The erosion risk was greatly reduced in 2023 due to rapid vegetation recovery and
the stabilization of the topsoil.

The mean and total erosion risks simulated by the RUSLE and SEMMA, according
to the watersheds and a 50-year and 80-year frequency of rainfall, are simultaneously
displayed in one graph in Figure 12. The mean and total erosion risks determined by
the RUSLE were 4.5 ± 1.9 times greater than that determined by the SEMMA for the
two watersheds. The erosion risk determined by the SEMMA decreased by 2 times with
the elapsed time. However, the erosion risk determined by the RUSLE did not change
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significantly from 2022 to 2023. The total erosion risk determined by the RUSLE increased
with the increase in the watershed area due to the RUSLE’s overestimation. However,
the total erosion risk determined by the SEMMA did not change significantly with the
watershed area. This means that the RUSLE can oversimulate spatially more than the
SEMMA. The GIS-based SEMMA can be a useful empirical model for conducting an urgent
quantitative assessment of the erosion risk in large-scale wildfire areas.

Figure 11. Changes in erosion risk estimated by SEMMA for 50-year probability of rainfall according
to the elapsed years after wildfire.

Figure 12. Changes in mean and total erosion risks in Bugucheon and Namdaecheon watersheds
according to the year and probability of rainfall.
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3.3. Estimation of Models Considering Flow Accumulation

The erosion rates were additionally estimated by the flow accumulation versions (FAVs)
of the RUSLE and SEMMA using Equation (22) to calculate the LS factor. The maximum flow
accumulations of the Bugucheon watershed and Namdaecheon watershed were 2.10 × 106

and 4.95 × 106, respectively. The erosion rate by the FAV of the RUSLE for the Bugucheon
watershed and Namdaecheon watershed in 2022 after the wildfire increased significantly, and
the maximum value exceeded 10,000 t/ha, as shown in Figure 13a. Such extreme erosion may
be possible through huge gully expansion or landslides. The maximum post-fire sediment
yield was observed at 2800 t/ha on the channel volume following the Johnston Peak Fire in
1960, and their means were in the following order: channel volume (240 t/ha), hillslope point
(110 t/ha), and hillslope plot (60 t/ha) [82]. As with the published post-fire measured rates of
hillslope erosion, the maximum erosion rates decreased in the following order: hillslope point
(<415 t/ha), bounded plots (<170 t/ha), and sediment traps (<70 t/ha) [83]. This is explained
by the fact that as the hillslope length increases, the deposition also increases in the runoff
process. The GIS-based RUSLE and SEMMA cannot simulate the runoff process. However,
they must be simulated so that the erosion rate increases on the hillslope of the cell unit due
to rill development with an increase in surface runoff. In post-fire mountainous hillslopes, the
incision and expansion of rills are not frequently observed due to obstruction by residues and
the stems and roots of plants [74,84]. The FAV of the RUSLE greatly overestimated compared
to the TV, as shown in Figure 13a. The FAV of the SEMMA was simulated to have increased
slightly compared to the TV (Figure 13b). The statistical results of the erosion rates estimated
by the FAVs of the RUSLE and SEMMA are compared in Table 6. The last column of Table 6
shows the erosion ratio of FAV to TV in 2022. While the erosion rates of the RUSLE increased
by 1.65~2.31 times, those of the SEMMA only increased by 1.03~1.19 times. Additional
research for flow accumulation should be conducted to find an improvement direction and to
determine the use scope of the GIS-based SEMMA model in evaluating watershed erosion.

Figure 13. Comparison of erosion rates simulated by flow accumulation version of RUSLE and
SEMMA for 50-year probability of rainfall in 2022.

Table 6. Comparison of statistical results of erosion rates simulated by flow accumulation version of RUSLE
and SEMMA for Bugucheon and Namdaecheon watersheds in 2022 according to probability of rainfall.

Watersheds Area
(ha) Models Probability

Frequency

Maximum
Erosion Rate

(t/ha)

Mean Erosion
Rate (t/ha)

Total Soil
Erosion (kt)

Ratio of FAV to
TV

Bugucheon

5458 RUSLE 50 yr 9261 60.89 332.2 2.31
80 yr 10,812 70.98 387.2 2.30

SEMMA 50 yr 795 9.40 51.3 1.19
80 yr 932 11.03 60.2 1.18

Namdaecheon

12,748 RUSLE 50 yr 11,750 24.06 306.7 1.65
80 yr 13,637 27.95 356.2 1.66

SEMMA 50 yr 966 3.02 38.4 1.04
80 yr 1127 3.52 44.9 1.03
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4. Discussions
4.1. Effect of Heavy Rainfall in Post-Fire Watersheds

There was no heavy rain immediately after the wildfire. The biggest rainfall event
in 2022 was just 79 mm/d of rainfall caused by Typhoon Hinnamnor. In 2023, the max-
imum rainfall caused by Typhoon Khanun was 150 mm/d at the Uljin MS (Table 7), as
indicated on the map in Figure 2. The rainfall depth recorded at the Jukbyeon AWS, located
8.0 km north of the Uljin MS, was 171.0 mm/d. The rainfall at the Sogok AWS, located
11.4 km northwest of the Uljin MS, was certainly 70 mm/d more than that at the Uljin MS,
as shown in Table 6. Since the weather in mountainous areas changes rapidly, there was
a large difference in the rainfall distribution within nearby distances. The 1-h maximum
rainfall intensity recorded at the Sogok AWS was 51.5 mm/h, which was higher than the
Uljin MS. At the Sogok AWS, the 24-h rainfall was smaller than the probability of rainfall of
a 50-year frequency in the Uljin area, but the rainfall intensity was greater than that.

Table 7. Comparison of observed data of rainfall events caused by Typhoon Khanun in rainfall
stations and probability of rainfall of 50-year frequency in the Uljin area.

Rainfall Stations

Observed Data 50-year Probability of
Rainfall

24 h Max.
Rainfall

(mm)

1 h Max.
Rainfall
(mm/h)

30 min
Max.

Rainfall
(mm/h)

24 h Max.
Rainfall

(mm)

1 h Max.
Rainfall
(mm/h)

Uljin MS 150.1 33.2 40.5 274.3 50.9
Jukbyeon AWS 171.0 38.0 45.5

Sogok AWS 221.0 51.5 57.0

The photos of hillslopes and rivers after the typhoon were plotted on the map of
the erosion rate simulated by the SEMMA, as shown in Figure 14. Erosion and sediment
damages were observed in the Bugucheon watershed due to Typhoon Khanun one year after
the wildfire. However, the damages were not observed in the Namdaecheon watershed.
The photo of the tributary of the Bugucheon River shown in Figure 14 shows the deposition
of a large amount of sediment at the confluence with the mainstream. The reason for the
high sediment yield ratio in the Bugokcheon watershed located near the Sogok AWS was
that the precipitation exceeded the 50-year frequency. Moreover, in the post-fire regions
where there were forest roads for transmission tower construction and logging, the incision
and expansion of rills, gully erosions, and landslides were active, and a large amount of
sediment that was transported into the rivers was deposited at the confluences where the
flow velocity decreased. In the case of the Namdaecheon watershed, where the rainfall was
relatively low, soil erosion from the post-fire hillslopes was not serious, and there was no
significant change in the sediments deposited on the riverbeds (Figure 14).

The management of hillslopes after a wildfire is divided into three types: (1) wildfire
damage and natural recovery, (2) wildfire damage and logging, (3) wildfire damage, logging,
and roads. These are roads created to install transmission towers before a wildfire or newly
built roads to transport firewood. It was assessed that this heavy rain may have caused
low-level erosion (<10 t/ha) on the hillslopes of (1) wildfire damage and natural recovery.
However, it is believed that high-level erosion occurred on the steep hillslopes, as predicted
by the SEMMA. On the other land, the hillslopes of (3) wildfire damage, logging, and roads
appear to have experienced very-high-level erosion (>200 t/ha), as predicted by the RUSLE,
and Gupta (2001) [85] also mentioned that the erosion risk increased intensively in areas
with a low NDVI due to wildfires and logging.
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Figure 14. The field evidence photos of erosion and sediment damage in the Bugucheon and
Namdaecheon watersheds by rainfall events of Typhoon Khanun in 2023 after the wildfire in 2022.
The stars and arrows indicate rainfall stations and photo points, respectively. Yellow texts in the
photo mean that there was erosion and sediment damage, and white texts mean that there was no
major damage.

4.2. Comparison of TVs and FAVs of RUSLE and SEMMA

The spatial patterns of erosion rates estimated by the TVs and FAVs of the RUSLE
and SEMMA were plotted to match the actual points of rill and gully development and
landslides on roadcuts (Figure 15). Both the RUSLE and SEMMA predicted the erosion
risks for the selected points, although their accuracy varied in terms of the intensity and
extent. A very high erosion level of over 200 t/ha is accompanied by rill and gully erosions.
The TV and FAV of the RUSLE estimated a soil erosion level of over 200 t/ha; however,
the estimated scales were excessively broad. The circular photo shows that rill and gully
developments were limited on the hillslopes due to the heterogeneity of vegetation cover.
The square photo indicates the location of landslides on roadcuts. The FAV of the SEMMA
implemented these spatial patterns better. In particular, excessive erosion on hillslopes
caused a large amount of sediment to flow into the rivers; even so, this was influenced
by the spatial pattern of erosion and deposition zones during the runoff process. Mallinis
et al. (2009) [86] noted that the spatial pattern of erosion processes must be an important
consideration because fire-induced cover heterogeneity is a major factor controlling runoff
and sediment transport capacity.
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Figure 15. The spatial patterns of erosion rates determined by the traditional versions (TVs) and
flow accumulation versions (FAVs) of the RUSLE and SEMMA. The circles and squares indicate the
locations of rill and gully development and landslides on roadcuts, respectively.

5. Conclusions

This study utilized the RUSLE and SEMMA based on the ArcGIS analysis tools to
evaluate erosion risk in watersheds before and after a wildfire. The NDVI extracted from
Sentinel-2 images decreased greatly compared to before the wildfire; nevertheless, in the
next year, it increased as the vegetation recovered despite logging operations. Multiple
regression models of the SEMMA were represented by considering extreme rainfall in
the Uljin area. The RUSLE considered the recent P factor following land use and the
K factor recalculated by the ratio of coarse stones to correct overestimation in mountainous
areas. The LS factors were calculated by the traditional versions and flow accumulation
versions of the RUSLE and SEMMA. The distributions of the rainfall erosivity factor were
an interpolation of rainfall data from five weather stations, including the Uljin MS, and
appeared to increase from the coastal to mountainous areas.

The erosion rates of the TV of the RUSLE in 2022 and 2023 showed that the ex-
tent of moderate erosion (>10 t/ha and <50 t/ha) increased significantly after the wild-
fire. The estimated erosion rates of the TV of the SEMMA indicated that low erosion
(<10 t/ha) occupied the largest area. The erosion rates determined by the RUSLE for the
two watersheds were overestimated compared to the SEMMA. The RUSLE for post-fire
hillslopes oversimulated the erosion rates due to steep slopes even though wildfire areas
have aggregated soil, coarse stones, burnt trees, and roots. The Bugucheon watershed,
where the wildfire was severe, showed a higher mean erosion rate than the Namdaecheon
watershed. The erosion risk increased most significantly for an 80-year probability of
rainfall in 2022 immediately after the wildfire. While the erosion risks determined by the
SEMMA decreased with the elapsed time, those determined by the RUSLE did not change
significantly from 2022 to 2023. The FAV of the RUSLE greatly oversimulated the erosion
rate compared to the TV. The FAV of the SEMMA calculated slightly greater values than
the TV and appropriately implemented spatial patterns. Typhoon Khanun in 2023 was
accompanied by heavy rain exceeding the 50-year probability of rainfall in the post-fire
Uljin area. Rill and gully erosions and landslides due to the heavy rainfall occurred in the
Bugucheon watershed with forest roads for transmission tower construction and logging.
The Uljin watersheds have topographical characteristics such as steep mountainous rivers
and hillslopes and climatic characteristics with a high risk of locally extreme rainfall. Even
in areas where vegetation recovery is rapid, excessive artificial disturbance should be
avoided to reduce erosion risk in post-fire areas. In particular, to prepare for disastrous
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extreme heavy rainfall, continuous efforts are needed to increase the accuracy of model
simulations that assess erosion risk.
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