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Abstract: The urban heat island (UHI) effect, where urban areas experience higher temperatures
than surrounding rural regions, necessitates effective monitoring to estimate and address its diverse
impacts. Many existing studies on urban heat dynamics rely on satellite data with coarse resolutions,
posing challenges in analyzing heterogeneous urban surfaces. Unmanned aerial vehicles (UAVs) offer
a solution by providing thermal imagery at a resolution finer than 1 m. Despite UAV thermal imaging
being extensively explored in agriculture, its application in urban environments, specifically for
surface temperatures, remains underexplored. A pilot project conducted in Athens, Georgia, utilized
a UAV with a FLIR Vue Pro R 640 thermal camera to collect thermal data from two neighborhoods.
Ground data, obtained using a handheld FLIR E6-XT infrared imaging camera, were compared
with UAV thermal imagery. The study aimed to assess the accuracy of the UAV camera and the
handheld camera for urban monitoring. Initial testing revealed the handheld’s accuracy but tendency
to underpredict, while UAV camera testing highlighted considerations for altitude in both the rjpg
and tiff image pixel conversion models. Despite challenges, the study demonstrates the potential
of UAV-derived thermal data for monitoring urban surface temperatures, emphasizing the need for
careful model considerations in data interpretation.

Keywords: urban heat island; urban UAV; thermal imagery; FLIR thermal camera; thermal image
stitching

1. Introduction

The urban heat island (UHI) phenomenon, denoting elevated temperatures in urban
areas compared to their rural counterparts [1], was documented as early as the 1810s [2].
This temperature difference is attributed to the heat-absorbing and radiating properties
of materials such as concrete and steel, compounded by anthropogenic activities and a
lack of green spaces, impeding natural cooling processes [3,4]. The repercussions of UHI
are profound, encompassing heightened heat stress with consequential health implica-
tions, leading to health issues and over 10,500 deaths from heat between 2004 and 2018 [5].
Particularly susceptible demographics, including the elderly and socioeconomically dis-
advantaged individuals, face increased risks [6,7]. Increased heat also drives electricity
consumption for cooling, leading to pollution and health problems [8]. Additionally, UHI
affects water bodies and ecosystems [9,10]. Cities are responding with heat mitigation
plans, including reducing surface coverage, using cooler materials, and increasing green
spaces [11].

Currently, the majority of urban heat island studies follow one of two methods: either
the overall city surface temperature is estimated broadly from satellite imagery, or in situ
measurements are collected [12–15]. Both of these methods face limitations and obstacles to
linking ground measurements with overall city image estimates. In particular, urban surface
temperature studies are limited to coarser resolutions because they are usually estimated
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from satellite imagery. Landsat 7 offers 60 m thermal bands and Landsats 8–9 provide
2100 m bands. Images offered at 30 m resolution from Landsat have been resampled but are
essentially derived from the 60 m or 100 m resolutions. These coarse resolutions become
more disadvantageous due to the highly heterogeneous nature of urban environments.
In addition, satellite temperature readings are limited to surface temperatures (not air
temperatures) [16].

The second urban heat monitoring method involves microscale point data from single-
point measurements at ground level or from weather stations. These measurements are
limited to the temperature of that single point, and multiple recordings are needed to
represent an area. The majority of these studies measure air temperature (not ground
surface temperature). In one study, the air temperature was represented as a line because it
was recorded continuously on a bike, a technique that was also employed in another study
that used a car [15,17]. However, these measurements are still greatly restricted to a small
space and require greater manual labor on the ground to cover more area. In other words,
urban heat island research has been unable to scale fine-resolution temperature data to
a larger area. While some studies have been able to acquire very-high-resolution (VHR)
airborne thermal infrared data to address this need, airborne deployment can be costly and
complicated [18].

UAVs present the opportunity for fine-resolution spatial data over larger areas and are
currently implemented in other fields, such as precision agriculture and geology [19–22].
In contrast, a limited number of studies have leveraged the potential of UAVs in urban
environments for any application, including addressing the gap in the urban surface
temperature literature [23–28]. These range internationally from Chile to China, but none
to our knowledge have been conducted in the United States. Of these, only a few were
designed with the purpose of extensively testing the accuracy of a thermal camera in an
urban environment [25,28].

Thermal UAV imagery presents its own complications, regardless of the environment.
These issues include how to store temperature data in each image pixel, what type of file to
store the data in, how to process the different image file types, and how to stitch multiple
images together to cover a wider area [19,21,29]. In addition, while some studies, such as
those in agriculture, have used highly accurate ground-truthing stations or thermal tiles,
such equipment cannot be easily placed and maintained in an urban environment, meaning
that alternatives, such as handheld infrared imagers, need to be explored. These issues
together pose a major obstacle for any kind of larger-area urban application.

Several of the above questions and concerns arise from the flexibility to select different
image formats per camera. For example, FLIR, a prominent thermal camera manufacturer,
offers users the choice between an 8-bit radiometric jpg (rjpg) and a 14-bit tag image file
format (tiff). The 8-bit rjpg format, despite lower radiometric resolution, yields per-pixel
temperature values based on user-input environmental and emissivity parameters. The
rjpg image format is easy to use in the FLIR software. However, challenges emerge when
collectively analyzing large sets of images, particularly those acquired over a large area
via unmanned aerial vehicles (UAVs), and when deciding how to stitch them together. In
contrast, the 14-bit tiff format can be utilized with third-party software and integrated into
larger images. Nevertheless, it presents raw digital numbers for pixel values, disregards
user-input parameters, and necessitates independent conversion to temperature, requiring
users to account for factors such as emissivity and environmental parameters. Realizing
the significant tradeoffs between the two image types, it is questionable how comparably
accurate the two options are. To our knowledge, UAV thermal research has not compared
the two options. Moreover, in studies utilizing the tiff format, researchers either devised
their own models using a blackbody instrument or other ground-truth data or employed
the singular model provided by FLIR [19,21,25]. There is a lack of consensus on the relative
accuracy of these approaches.

Therefore, due to the uncertainties in each of these areas, this study had multiple
objectives (Figure 1). The three main objectives of this research were to (1) test the accuracy
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of the FLIR Vue Pro R camera as affixed to a UAV, (2) demonstrate UAV application in an
urban environment, and more specifically, the potential for UAV thermal application in
an urban environment, and (3) perform an initial analysis of surface temperature readings
from two different neighborhoods in Athens, Georgia across different ground surfaces
compared with the Vue Pro R readings from the UAV and compare temperatures of urban
surface types in shaded and unshaded conditions in two neighborhoods. The results from
each of these three overarching goals will address technical knowledge and experience
gaps regarding larger-scale, fine-resolution thermal data collection from UAV applications
in an urban environment.
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Figure 1. The main 3 objectives related to UAV and thermal urban surface analysis, with technical
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2. Materials and Methods
2.1. Materials

The total materials included three thermal tiles, a 13 mm FLIR Vue Pro R 640 thermal
camera (FLIR, Middletown, NY, USA), a handheld FLIR E6-XT infrared imaging cam-
era (FLIR, Middletown, NY, USA), and an Autel Robotics EVO II Dual (Autel Robotics,
Bothwell, WA, USA). The three thermal tiles were each composed of a 60 cm by 60 cm
aluminum sheet, each 2.2 cm thick. Four thin-film platinum resistance temperature de-
tectors (RTDs) with three conductors were affixed underneath the tiles to give accurate
temperature readings (these sensors are classified as type A with an accuracy of ±0.15 ◦C),
which were recorded on an SD card every few seconds. To avoid heat interference from
the ground, the tiles were elevated above the ground via a PVC pipe frame, and a 25 mm
layer of expanded polystyrene insulation foam rested between the PVC pipe frame and
the aluminum plate (with the four sensors in between the foam and plate). Each tile was
painted with a matte paint in either white, gray, or black to account for different absorptive
properties. Additional details on the tile construction process can be found in Lacerda et al.
(2022) [22]. To collect other ground-truth temperature data, the FLIR E6-XT handheld was
set to record two images simultaneously: both the thermal image in the rjpg file format
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and the standard RGB image, which would aid in surface type interpretation alongside the
thermal image. A table of specifications for both thermal cameras is in Table 1.

Table 1. Camera specifications for the UAV FLIR Vue Pro R 640 and FLIR E6-XT (handheld).

Instrument Sensor
Technology

Lens and
FOV

Radiometric
Accuracy Spectral Range

Operating
Temperature

Range

Operational
Altitude

FLIR Vue Pro
R 640

Uncooled VOx
microbolometer

13 mm;
45◦ × 37◦ ±5 ◦C 7.5–13.5 µm −20 ◦C to 50 ◦C 12,192 m

(40,000 ft)

FLIR E6-XT
(handheld)

Focal plane array
(FPA), uncooled
microbolometer

45◦ × 34◦

±2 ◦C (±3.6 ◦F) or
±2% of reading for

ambient
temperatures of

10 ◦C to 35 ◦C (50 ◦F
to 95 ◦F) and object
temperature above

0 ◦C (32 ◦F)

7.5–13.5 µm −20 ◦C to 550
◦C N/A

The internal temperature calibration configuration process for FLIR is proprietary.
Publicly available information regarding the FLIR Vue Pro R camera is that it performs
internal calibration using an internal shutter for about 1 s, which occurs automatically
based on internal camera parameters. The camera’s documentation does not refer to a
stabilization period, and FLIR technical support claims that one is not required. However,
there is a stabilization period of 5 min for the handheld E6-XT camera.

2.2. Initial Testing (Objective 1)
2.2.1. Overview

In order to determine the best flying height, thermal camera file type settings, and
the accuracy of the FLIR UAV and handheld cameras compared to the most accurate
temperature values from the thermal tiles, we conducted an initial test on an open, grassy
field at the Intramural Fields on the University of Georgia campus on 19 August 2021,
when the sky was clear and the wind was still at 0 m/s. Subsequent measurements in
residential neighborhoods were planned for days exhibiting comparable meteorological
conditions, as detailed in Table 2. As seen in Figure 1, Objectives 1a–c, our goals for the
initial test were to: (1) determine the accuracy of both the handheld and UAV FLIR thermal
imaging cameras as compared to the tile readings, (2) determine whether using rjpg or tiff
files in the thermal camera provided more accurate temperature data, and (3) determine
the optimal flying height at which we could obtain the maximum area while still reading
the correct temperature of the 60 cm × 60 cm tile pixels. The results from this initial testing
phase were used to inform decisions when flying in the neighborhoods.

Table 2. Weather conditions for all data collection days in both neighborhoods in Athens, Georgia.

Day Sky Conditions Temperature (◦C), Relative Humidity

2 September Sunny with passing clouds, wind moving east at 3.6 m/s
(8.1 mph) 30◦, 48%

3 September Sunny, winds moving east-southeast at 3.1 m/s (6.9 mph) 28.3◦, 37%

9 September Sunny with scattered clouds, winds moving
north-northwest at 4.6 m/s (10.4 mph) 30.6◦, 43%

10 September Sunny, winds still at 0 m/s (0 mph) 30◦, 41%
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Two total flights were conducted over the three tiles and two grass locations on either
side of the tiles (Figure 2). The thermal camera was set to record rjpg files during the
first flight and to record tiff files during the second flight. Per flight, six different height
levels were investigated at 30.5 m (100 ft), 45.7 m (150 ft), 50.3 m (165 ft), 53.3 m (175 ft),
56.4 m (185 ft), and 61.0 m (200 ft). At each flight level, three of the clearest images were
chosen that represented the full duration the UAV hovered at that height (i.e., one image
was chosen near the beginning of the time the UAV moved to that height, then one in the
middle of the time, and one more from near the end before it transitioned to the next height).
This resulted in 180 total observations (5 ground-truth objects × 2 flights × 6 height levels
× 3 images per height), or 36 observations per ground-truth object. At each height level,
tile readings were recorded on an SD card, and the handheld FLIR camera was used to
obtain independent readings of the top of each tile, plus readings of the grass on either side
of the tiles. This totaled 60 handheld observations (5 ground-truth objects × 2 flights ×
6 height levels).
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2.2.2. Test Handheld Accuracy against Ground Data (Objective 1a)

After initial data collection, tile and handheld camera readings were compared to
determine the handheld camera’s temperature accuracy. All 60 images from the FLIR E6-XT
handheld were in rjpg format, which allowed for analysis in the FLIR Thermal Studio
software (version 1.9.40.0). Pixels comprising the center of each tile were averaged in the
software. This average value represented the handheld temperature reading for the tile.
Recorded tile temperatures were averaged around the time the handheld image was taken.
To compare handheld readings versus tile readings, we examined (1) Pearson’s correlation
coefficient test results, (2) t-test results, and (3) Tukey’s test results.

2.2.3. Testing the FLIR Camera on a UAV against Accurate Ground Data (Objectives 1b and 1c)

To determine whether the rjpg or tiff images from the FLIR Vue Pro R were more
accurate, we first averaged the rjpg format’s central tile values inside Thermal Studio, as
was carried out for the handheld rjpg images. For the tiff files, we tested two methods.
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First, we used the formula supplied by FLIR to transform the pixel values to radiant
temperature (◦C):

Trad = 0.04x − 273.15 (1)

Second, we created our own model for comparison against the FLIR model. We
used linear regression to model the relationship between the recorded tile readings for
all 3 tiles and the tiff pixel values. We also integrated grass temperature readings from
the FLIR handheld after establishing that its readings were well-correlated with the tile
values. We evaluated the models’ residuals and outlying values. We then applied the
better-performing model to transform all pixels in the image to radiative temperature
values. Next, emissivity for different surface types was included to obtain skin temperature
estimates. Skin temperatures were estimated with the following equation:

Tskin =
Trad

ε
1
4

(2)

where Trad is radiative temperature, Tskin is the skin temperature, and ε is the emissivity
per surface type [30]. Vegetation emissivity was used as listed in Table 3, whereas the
emissivity of the tiles was estimated using black electrical tape with a known emissivity
value of 0.95. Emissivity values were derived by measuring the temperature of the tape
with the emissivity parameter set to 0.95. Then, while measuring the adjacent tile surface
temperature, the emissivity was adjusted until the tile’s temperature matched that of the
tape. Temperatures from all 3 methods were compared against the tile readings, and the
root-mean-square error (RMSE) was calculated for each.

Table 3. Emissivity values per surface type.

Surface Type Emissivity Value Source

Asphalt 0.94 [31]

Concrete 0.92 [31]

Grass 0.97 [30]

Roof:
[32]Tile, shingles 0.90

Galvanized steel 0.25

Soil 0.90 [31]

Vegetation 0.97 [30]

2.2.4. Determining the Best Flying Height (Objective 1b)

To determine the optimal flying height, we measured temperatures from both the
rjpg and tiff files over the center of each tile and compared these values to the actual tile
readings, as discussed in Section 2.2.3. The RMSE was calculated for the three tile and
two grass locations at each height level. We looked for the maximum flying height that
still showed temperature readings with low RMSE values. Based on a later examination of
the raw tiff digital numbers, we further ran Tukey’s HSD test to investigate which height
levels, if any, were considered significantly different.

2.3. Demonstrating UAV and Thermal Applications in Urban Environments for Urban Surface
Analysis (Objectives 2 and 3)
2.3.1. Demonstrating General UAV Applications and Larger Scale (Street-Level) Thermal
Applications in Urban Environments (Objectives 2a and 2b)

A 13 mm FLIR Vue Pro R camera was mounted to a drone. The camera was set to
record an image every two seconds, which was then stored on an SD card. While the
airspace above a residence might be considered public, respecting resident privacy and
upholding strict safety standards are key to promoting any urban UAV data collection



Remote Sens. 2024, 16, 930 7 of 20

program. To respect private neighborhood space while avoiding flying over road traffic,
flight lines were established inside a single block, following along the sidewalk, right-of-
way area, or along heavily forested areas where there were no residences (Figure 3). Thus,
each flight and its thermal data were collected on a per-block basis.
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Data collection times were set to afternoon hours during the hottest time of day. The
days selected had no or minimal cloud cover. Table 2 provides weather details for each
data collection day.

2.3.2. General Urban Surface Temperature Comparison (Objective 3a)

In order to collect ground-truth data, the three 2′ × 2′ aluminum tiles were placed
within view of the thermal camera for every flight. During each flight, additional ground
temperature measurements were taken of different surfaces (concrete, asphalt, grass, pine
straw, and mulch) using the FLIR E6-XT handheld. At the same time each ground temper-
ature was being taken, a GPS point was recorded to pinpoint each ground temperature
reading. These ground temperature measurements were used as ground data to compare
to the drone thermal data. Environmental parameters, such as the air temperature and
humidity, were input into the handheld for the day’s conditions. The emissivity values of
each surface type were input into FLIR Thermal Studio.

2.4. Data Processing and Analysis

UAV thermal images were stitched in Agisoft Metashape to produce one overall image
per each street sampled. In order to properly convert pixel values to temperatures, the
FLIR-provided linear regression model, which was the better-performing model for the
neighborhood tiff images, was applied (Equation (1)). Standard emissivity values were
applied per material type (Table 3) using Equation (2). The accompanying RGB images
from the Evo camera were also stitched to provide a high-resolution image of the street. The
RGB images contained coordinates, which allowed for easier stitching, whereas the thermal
images did not. Therefore, the stitched thermal image for each street was georeferenced
to the RGB image. GPS points were examined for accurate placement over the thermal
images and moved to accurate placement if necessary. Some points that were ultimately
concealed by vegetation cover were marked as not visible and removed from the sample.
The remaining points were used to extract the thermal image temperature data, and this
was compared to the ground-truth data for that same point.
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3. Results
3.1. Initial Testing (Objective 1)
3.1.1. Handheld Accuracy (Objective 1a)

In order to collect additional ground-truth data in the neighborhoods, first, we had to
evaluate the handheld’s accuracy by comparing the handheld readings to the accurate tile
readings. Table 4 shows the average tile value compared to the FLIR handheld reading,
along with the average measurement errors and RMSE for each color tile. The measurement
error of each observation was calculated by subtracting the predicted handheld reading
from the tile temperature recorded. Each of the 36 observations that are summarized in
Table 4 are in Appendix A. The average absolute measurement error was highest for gray
with 1.2 ◦C of underprediction, followed by white with 0.5 ◦C. Black tile readings were the
most accurate, with a measurement error of only 0.3 ◦C. Figure 4 shows the correlation
between the handheld and tile values, as well as the linear relationship based on tile
color. Pearson’s correlation coefficients showed the handheld measurements were highly
linearly related with the tile readings at the 99% confidence interval (r = 0.998, df = 34,
p-value < 0.001). Tukey’s HSD test of the average handheld readings compared to the
corresponding average tile readings showed that there was a not significant difference
at the 95% confidence Interval (p-value = 0.228). However, a pairwise t-test at the 95%
confidence interval comparing the handheld and tile readings showed that the difference
in means was significantly different from zero (df = 35, p < 0.001).

Table 4. For objective 1a: testing the accuracy of handheld readings against tile readings (n = 36).
This is a summary table of average readings in Celsius per color tile. For the average measurement
error with direction included, a positive sign indicates underestimation of the handheld.

Handheld
Infrared Imaging

Camera

Average Tile
Reading

Average
Measurement Error

(Direction Included)

Average Absolute
Measurement

Error
Average RMSE

White 37.3 37.8 0.5 0.5 0.7

Gray 45.7 46.9 1.2 1.2 1.3

Black 58.9 58.9 0.1 0.3 0.1

Remote Sens. 2024, 16, x FOR PEER REVIEW  9  of  19 
 

 

 

Figure 4. Handheld readings vs. tile temperature values (Celsius) (n = 36). 

3.1.2. Vue Pro R Accuracy for All Three File Format Methods (Objectives 1b and 1c) 

To determine  the accuracy of  the Vue Pro R camera as applied from a UAV  in an 

urban environment, as well as to decide which image file type to use in the neighborhoods, 

Vue Pro R images from the UAV were compared to true tile readings. The UAV was flown 

twice: once for the rjpg file type and again for the tiff file type. For the rjpg flight (the first 

flight), the average UAV-based tile values were taken from the rjpg images using Flir Ther-

mal Studio. Environmental and emissivity parameters were  input before  the flight and 

could be further modified in FLIR Thermal Studio. For the tiff flight (the second flight), 

the average tile values were taken from the tiff image using two methods: either the tiff 

digital numbers were converted to temperature values using the FLIR formula provided 

or  using  the  linear  regression model  developed  from  the  data. After  applying  either 

model,  emissivity  values were  applied  per  surface  type.  The  root-mean-square  error 

(RMSE) was estimated for each of the three methods against the tile values, which were 

averaged across the time the UAV was flying at that particular height level. 

Table 5 shows  the  temperature values  for all  three  temperature  image approaches 

along with their RMSE. For the two grass readings listed, the handheld was used as the 

ground truth. The overall RMSE values for the rjpg format, the tiff format with the FLIR 

model, and the tiff format with our model were 3.1 °C, 5.0 °C, and 2.6 °C, respectively. The 

RMSE for the rjpg method ranged from 0.1 to 7.9 °C, with an average of 3.1 °C. Thirteen 

out of the thirty (43.3%) RMSE averages were outside of the ±5 °C accuracy specified by 

FLIR [33]. The highest standard deviation was seen at the 150 ft level. The RMSE for the 

tiff using the FLIR formula ranged more than the rjpg, from 0.5 to 16.0 °C, with a higher 

average RMSE of 7.2 °C. Eighteen out of the thirty (60%) RMSE values were outside of the 

±5 °C accuracy. The highest standard deviation was seen at the 200 ft height. The RMSE 

for the tiff using the linear regression model ranged from 0.1 to 8.0 °C, with an average of 

3.3 °C. Only seven of the thirty (23.3%) RMSE values were outside the ±5 °C accuracy. As 

with the other tiff approach, the highest standard deviation was seen at the 200 ft height. 

In  the majority of  the observations,  the  lowest RMSE belonged either  to  the  tiff  linear 

model or the rjpg approach, not the tiff FLIR formula approach. 

Both the tiff FLIR formula and rjpg approaches showed the highest error for the two 

grass measurements across height levels, with one exception of a tiff FLIR formula value 

at a 200 ft height level. Among the three tiles, both approaches had the highest error for 

the white (coolest) tile, again with the exception of one tiff FLIR formula value at 200 ft. 

With  few  exceptions,  both  approaches  tended  to  have  the  lowest  error  for  the  black 

Figure 4. Handheld readings vs. tile temperature values (Celsius) (n = 36).



Remote Sens. 2024, 16, 930 9 of 20

3.1.2. Vue Pro R Accuracy for All Three File Format Methods (Objectives 1b and 1c)

To determine the accuracy of the Vue Pro R camera as applied from a UAV in an urban
environment, as well as to decide which image file type to use in the neighborhoods, Vue
Pro R images from the UAV were compared to true tile readings. The UAV was flown twice:
once for the rjpg file type and again for the tiff file type. For the rjpg flight (the first flight),
the average UAV-based tile values were taken from the rjpg images using Flir Thermal
Studio. Environmental and emissivity parameters were input before the flight and could be
further modified in FLIR Thermal Studio. For the tiff flight (the second flight), the average
tile values were taken from the tiff image using two methods: either the tiff digital numbers
were converted to temperature values using the FLIR formula provided or using the linear
regression model developed from the data. After applying either model, emissivity values
were applied per surface type. The root-mean-square error (RMSE) was estimated for each
of the three methods against the tile values, which were averaged across the time the UAV
was flying at that particular height level.

Table 5 shows the temperature values for all three temperature image approaches
along with their RMSE. For the two grass readings listed, the handheld was used as the
ground truth. The overall RMSE values for the rjpg format, the tiff format with the FLIR
model, and the tiff format with our model were 3.1 ◦C, 5.0 ◦C, and 2.6 ◦C, respectively. The
RMSE for the rjpg method ranged from 0.1 to 7.9 ◦C, with an average of 3.1 ◦C. Thirteen
out of the thirty (43.3%) RMSE averages were outside of the ±5 ◦C accuracy specified by
FLIR [33]. The highest standard deviation was seen at the 150 ft level. The RMSE for the
tiff using the FLIR formula ranged more than the rjpg, from 0.5 to 16.0 ◦C, with a higher
average RMSE of 7.2 ◦C. Eighteen out of the thirty (60%) RMSE values were outside of the
±5 ◦C accuracy. The highest standard deviation was seen at the 200 ft height. The RMSE
for the tiff using the linear regression model ranged from 0.1 to 8.0 ◦C, with an average of
3.3 ◦C. Only seven of the thirty (23.3%) RMSE values were outside the ±5 ◦C accuracy. As
with the other tiff approach, the highest standard deviation was seen at the 200 ft height. In
the majority of the observations, the lowest RMSE belonged either to the tiff linear model
or the rjpg approach, not the tiff FLIR formula approach.

Both the tiff FLIR formula and rjpg approaches showed the highest error for the two
grass measurements across height levels, with one exception of a tiff FLIR formula value
at a 200 ft height level. Among the three tiles, both approaches had the highest error for
the white (coolest) tile, again with the exception of one tiff FLIR formula value at 200 ft.
With few exceptions, both approaches tended to have the lowest error for the black (hottest)
tile. For most observations, the error was due to overestimation of the actual ground
temperature by both methods.

Results from the linear regression model overall varied from the other two approaches.
Figure 5b illustrates the resulting linear regression model developed from the raw tiff digital
numbers and observed ground temperatures. In comparison to the FLIR formula, the model
was 0.04963x − 354.3. Notably, there is a spread in the model’s predicted temperature
values despite having similar or only slightly increased observed ground temperature
values. The raw tiff digital numbers show the same trend, revealing it to be an underlying
pattern and not a result of either tiff prediction formula (Figure 5a). Upon investigation, it
was revealed that the the tiff values and subsequent predicted temperatures were directly
increasing with every height level. Thus, the 100 ft level had the lowest tiff values and
predicted temperatures, with each succeeding height showing an increase through 185 ft.
This pattern was broken at the 200 ft height level, which had even lower values than those
at 100 ft. Inspection of the residuals and outlying points revealed that the points with the
highest error were all from the 200 ft level. Thus, all points from the 200 ft height were
removed to create the final model (n = 75), which was 0.049–345.7.

When performing simple pairwise t-tests with Bonferroni correction, each of the three
method types, compared to the true ground temperature, had a non-significant p-value
(p > 0.10).
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Table 5. Summary of average values for ground-truth temperature versus average readings from the three methods using UAV thermal imagery (n = 270 UAV
images total, with three images selected and averaged per image method type, per altitude). The three methods were: (1) using the tiff file type and applying the
FLIR-supplied formula, (2) using the tiff file type and applying the linear regression model, and (3) using the RJPG file type, which gives the temperature per pixel
directly in FLIR Thermal Studio software. For the grass surfaces, handheld readings were used as the ground-truth data. Standard deviations are included alongside
averages to show variation among readings per flight altitude.

Temperature (◦C) Per Surface by Height Level

Ground Truth Temperature (◦C) TIFF FLIR Formula TIFF Linear Regression RJPG

Height (m)
Tile

Color/Surface
Type

Tiff Flight
Average (St. dev) n

Rjpg Flight
Average
(St. dev)

n Average
(St. dev) RMSE Average

(St. dev) RMSE Average
(St. dev) RMSE

30.5 (100 ft)

White 38.3 (0.2) 9 35.9 (0.2) 6 41.3 (1.0) 3.1 35.6 (1.2) 2.8 38.4 (2.3) 4.4
Gray 48.4 (0.2) 5 43.8 (0.2) 6 49.0 (0.9) 0.7 45.2 (1.1) 3.6 44.8 (2.1) 1.8
Black 60.9 (0.2) 6 56.4 (0.7) 6 60.7 (0.8) 0.7 59.8 (1.0) 1.5 56.7 (2.0) 0.6

Grass1 34.4 1 32.9 1 38.2 (0.8) 4.4 31.9 (1.0) 2.1 37.0 (1.9) 7.0
Grass2 36.6 1 35.7 1 39.4 (0.9) 3.4 33.3 (1.1) 2.8 39.2 (2.1) 6.0

45.7 (150 ft)

White 38.5 (0.1) 3 36.2 (0.1) 3 43.6 (0.3) 5.2 38.5 (0.4) 0.3 39.8 (3.2) 6.4
Gray 48.7 (0.2) 4 44.2 (0.1) 3 50.8 (0.3) 2.0 47.5 (0.4) 1.4 45.7 (3.2) 2.9
Black 61.1 (0.3) 3 56.6 (0.7) 3 61.6 (0.4) 0.6 61.0 (0.4) 0.4 56.9 (3.5) 0.7

Grass1 33.8 1 33.4 1 39.7 (0.5) 6.5 33.7 (0.6) 0.7 37.4 (2.5) 7.0
Grass2 35.6 1 35.8 1 41.0 (0.5) 6.0 35.3 (0.6) 0.6 39.7 (3.6) 6.8

50.3 (165 ft)

White 38.7 (0.1) 6 36.4 (0.2) 4 44.2 (0.3) 5.6 39.2 (0.4) 0.7 39.0 (0.6) 4.7
Gray 48.9 (0.2) 5 44.5 (0.2) 5 51.3 (0.1) 2.3 48.1 (0.1) 0.9 44.9 (0.6) 0.8
Black 61.1 (0.4) 6 56.9 (0.7) 5 61.9 (0.1) 1.1 61.3 (0.2) 0.5 56.2 (0.4) 0.9

Grass1 33.7 1 33.5 1 40.1 (0.2) 7.1 34.2 (0.3) 1.3 37.1 (0.6) 6.2
Grass2 34.4 1 36 1 41.0 (0.2) 7.2 35.4 (0.2) 1.6 38.7 (0.7) 4.6

53.3 (175 ft)

White 38.8 (0.1) 5 36.7 (0.2) 7 45.4 (0.7) 6.7 40.8 (0.8) 2.1 40.1 (0.3) 5.8
Gray 49.0 (0.3) 6 45.1 (0.2) 6 51.9 (0.7) 3.4 49.5 (0.8) 0.8 46.0 (0.3) 1.7
Black 60.8 (0.7) 5 57.5 (0.7) 5 62.6 (0.6) 2.2 62.2 (0.8) 1.9 57.0 (0.4) 0.9

Grass1 33.7 1 33.4 1 40.9 (0.8) 7.9 35.2 (1.0) 2.4 37.8 (0.3) 7.6
Grass2 36.2 1 36.1 1 42.0 (0.8) 6.6 36.7 (0.9) 1.4 39.6 (0.4) 6.1

56.4 (185 ft)

White 38.8 (0.1) 8 37.0 (0.2) 5 45.9 (0.8) 7.1 41.3 (1.0) 2.7 40.3 (0.0) 5.8
Gray 49.0 (0.4) 10 45.6 (0.2) 5 52.4 (0.7) 3.6 49.8 (0.7) 1.0 46.4 (0.3) 1.5
Black 60.4 (1.0) 8 58.0 (0.5) 5 62.5 (0.5) 2.1 62.0 (0.7) 1.7 57.1 (0.4) 1.5

Grass1 32.8 1 33.9 1 41.5 (0.9) 9.2 36.0 (1.1) 3.8 38.5 (0.3) 7.9
Grass2 34.7 1 35.9 1 42.9 (0.8) 8.9 37.8 (1.0) 3.8 39.5 (0.6) 6.3
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Table 5. Cont.

Temperature (◦C) Per Surface by Height Level

Ground Truth Temperature (◦C) TIFF FLIR Formula TIFF Linear Regression RJPG

Height (m)
Tile

Color/Surface
Type

Tiff Flight
Average (St. dev) n

Rjpg Flight
Average
(St. dev)

n Average
(St. dev) RMSE Average

(St. dev) RMSE Average
(St. dev) RMSE

61 (200 ft)

White 38.9 (0.2) 5 37.3 (0.1) 5 41.3 (2.6) 3.3 35.6 (3.2) 4.2 39.3 (0.9) 3.6
Gray 49.2 (0.4) 8 45.9 (0.2) 4 48.5 (2.3) 2.1 44.7 (2.9) 5.2 45.6 (0.9) 0.1
Black 60.4 (1.0) 7 58.3 (0.3) 6 58.0 (2.2) 2.9 56.5 (2.8) 4.4 56.6 (0.6) 2.9

Grass1 33.4 1 34.1 1 37.1 (2.7) 4.8 30.5 (3.3) 3.6 37.1 (0.9) 5.3
Grass2 36.2 1 35.7 1 37.8 (3.1) 3.4 31.4 (3.8) 5.2 38.4 (1.2) 4.7
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3.1.3. Optimal Flying Height (Objective 1b)

For the tiff digital numbers, Tukey’s HSD test revealed that there was a significant
difference between height levels (df = 89, p-value < 0.001). Specifically, there was a signifi-
cant difference between all height levels whose difference from each other was more than
4.6 m (15 ft). The 30.5 (100 ft) and 61.0 (200 ft) height levels were significantly different
from all other height levels, except with each other (the 30.5 and 61.0 height levels were not
significantly different). Other height levels that were significant were 45.7–53.3, 45.7–56.4,
and 56.4–50.3. In contrast, there was no significant difference between height levels for
rjpg values (df = 89, p-value > 0.10). Figure 6 shows the progression of temperature values
across all height levels and their estimated values from both tiff image sets and rjpg images.
As seen in Table 5, values from both tiff approaches at 200 ft plunged in relation to the
actual ground temperature, whereas the rjpg values did not.

3.2. Urban Surface Thermal Analysis (Objective 3)

Although the linear model developed from the ground-truth data in the initial testing
phase produced the lowest RMSE, its application to the neighborhood images showed
higher errors than when applying the FLIR-provided model. Further analysis showed that
the FLIR model predicted the hotter manmade surfaces more accurately than the field-
developed model. Therefore, the FLIR model was applied for the neighborhood images.

For most surfaces, both shaded and non-shaded, the average temperature prediction
from the camera fell within the specified ±5 ◦C (Table 6). The three exceptions were for
averages of shaded grass on two different days and for shaded asphalt on one day. Surfaces
with RMSEs above 5 included both shaded and non-shaded grass, non-shaded pine straw,
and shaded asphalt. In contrast, the hottest manmade surfaces (not including pine straw)
showed the lowest average measurement errors and RMSEs. Following the trend evidenced
in the initial testing phase, the vegetated and shaded surfaces (i.e., the cooler surfaces)
showed higher measurement errors, up to an average 8.7 ◦C measurement error and 9.5 ◦C
RMSE for shaded grass on the second day. While overall averages for cooler surfaces
appeared to be more consistently inaccurate, the hotter, nonshaded surfaces show a wider
range in error. Based on the measurement error average (with direction included), the
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temperature predictions tended to overpredict the temperature relative to the handheld in
every case but four, in which the hottest surfaces of asphalt, pine straw, and concrete were
slightly underpredicted.
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ground-truth measurements (tile and handheld values during either flight). Height levels are 100,
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gray, and black tiles, and grass 2 (cooler grass) and grass 1 (warmer grass).

Manmade surfaces were expectedly hotter than live, natural surfaces (i.e., the grass).
Pine straw, a natural but dead material, exhibited high temperatures near the level of
asphalt (Table 6). In order to examine additional surface types and to extend measurements
past the areas publicly accessible by the handheld camera on the ground, 50 random points
were created for each of the 10 streets/thermal images (n = 500), and the UAV camera
temperature readings were extracted. Figure 7 shows the distribution of readings by surface
types for all types that totaled more than 15 random sample points. The results continue to
support the findings in Table 6 in which live natural surfaces, even when non-shaded, tend
to be cooler than manmade surfaces. Trees that existed in forested or clumped conditions
showed the coolest temperatures in comparison to trees that existed in isolated conditions.
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Table 6. Average shaded and non-shaded surface temperatures per neighborhood and day. Thermal image temperatures were predicted using the FLIR-supplied
formula. Measurement error is calculated as the handheld temperature minus the UAV thermal image temperature prediction. RMSE is calculated using the
handheld values as the actual observations and the FLIR model temperature predictions from the UAV imagery as the predicted observations.

Neighborhood Day Surface Shaded n
Handheld
Reading
Average

Thermal
Camera
Average

Measurement
Error Range

Absolute
Measurement Error

Average

Measurement Error
Average (Direction

Included)
RMSE

1

9/2/2021

Asphalt
No 10 49.2 49.7 11.9 3.5 −0.5 4.1

Yes 6 30.3 34.3 7.1 4.0 −4.0 4.9

Concrete
No 13 44.8 45.8 16.8 4.2 −1.0 5.0

Yes 9 29.6 32.5 7.4 3.5 −3.0 4.1

Grass
No 7 36.5 41.2 14.0 5.5 −4.7 6.3

Yes 7 26.2 30.5 16.5 5.6 −4.4 7.0

9/3/2021

Asphalt
No 15 52.8 53.2 9.6 2.7 −0.4 3.1

Yes 9 29.6 35.2 18.9 7.0 −5.6 8.0

Concrete No 14 43.7 45.6 17.3 3.2 −1.9 4.5

Grass
No 18 36.8 39.3 14.7 4.4 −2.5 5.0

Yes 9 22.6 31.3 10.5 8.7 −8.7 9.5

Pine straw No 6 48.3 46.9 17.6 5.3 1.5 6.4

2

9/9/2021

Asphalt
No 31 50.1 49.4 10.8 2.1 0.8 2.7

Yes 19 32.5 37.0 13.7 5.0 −4.6 6.4

Concrete No 27 44.5 45.0 14.9 2.9 −0.4 3.5

Grass
No 31 40.8 44.0 20.7 5.1 −3.2 6.2

Yes 9 29.4 35.4 9.8 6.0 −6.0 6.6

9/10/2021

Asphalt
No 20 50.7 49.1 8.7 2.1 1.6 2.7

Yes 19 32.0 36.4 12.4 4.4 −4.4 5.6

Concrete No 10 44.4 42.9 8.1 2.5 1.6 3.0

Grass
No 23 40.2 42.0 16.9 4.0 −1.8 4.8

Yes 10 26.2 31.2 9.2 5.0 −5.0 5.7
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4. Discussion

Several limitations of this study should be acknowledged and considered for future
research. Emissivity values were accounted for based on general reported values. However,
values can vary even within the same material type. In addition, the urban environment
offers a multitude of surface types, such as a variety of rooftop materials and mulch or
plant bedding types. An inclusive survey of different urban materials and their emissivity
values could be valuable for future thermal research. Atmospheric correction is the other
pre-processing method common to thermal data collected from the space- or airborne
level. However, the UAV-based thermal literature seems to have largely avoided this step.
Atmospheric correction seems to be applied only when the user has selected the rjpg setting,
which accepts various environmental input parameters. As such, we likewise did not apply
atmospheric correction for the tiff images. A further analysis would be exceedingly useful
to examine the effects of the atmosphere at levels as low as the 30.5 m (100 ft) to 61 m
(200 ft) range used in this study, specifically for thermal data. The field data acquisition
was performed during sunny days in summer, when most of the sky conditions were
clear. If small clouds were present, the UAV was always flying below them. While we
attempted to measure on days with these similar meteorological conditions, factors such as
air temperature and relative humidity will inevitably vary. Additionally, it is important
to note that our study did not incorporate consideration of potential interference from
radiation reflected by nearby objects surrounding the target of interest.

Testing the handheld with the tiles showed mixed results. While Tukey’s test showed
no significant difference between each tile average and handheld average, a pairwise t-test
showed a significant difference (p-value < 0.001). Because carrying and protecting cumber-
some sensors such as the tiles in urban settings present challenges and because handhelds
allow the extension and proliferation of many urban surface temperature measurements,
we relied on the handheld measurements to compare against those from the camera. Initial
testing with the tiles showed that the handheld measurements for the hottest surfaces, such
as asphalt and pine straw, are likely highly accurate, whereas measurements for the coolest
surfaces have higher error. This might contribute, in part, to the higher error from shaded
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surfaces, as seen in Table 6, yet the fact that the handheld tends to underpredict in contrast
to the camera, which overpredicts, may also explain some of the error.

Testing of the three image file type methods (rjpg, tiff with the FLIR formula, and tiff
with the linear model) shows that, while the tiff format with the linear model tended to
have the lowest RMSE at most height levels during initial testing, its application to the
wider urban environment revealed higher error than when applying the FLIR-provided
formula to the tiff values. However, our own linear model is similar to other published
regression models, including that of Sangha et al. (2020), who also used a ground-truthing
station with tiles [21]. It is likely that the FLIR-given formula was derived by using a
blackbody instrument, as did Sagan et al. (2019), who, by utilizing this approach, derived
their own formula, which was very similar to the FLIR formula [19].

Initial testing showed that tiff image values ranged across flight heights despite
barely any accompanying change in temperature on the ground. This suggests that model
development and application will be partially dependent on the height level flown and
should be considered well before model development and application. While our results
showed a drastic change in temperature values at the 61 m (200 ft) level, the camera is
advertised as capable of flying up to 12,192 m (40,000 ft), and the same camera has been
used in other research at levels higher than 61 m [20,25,28,33]. In addition, the error of
the FLIR formula and rjpg method actually saw a decrease. We might surmise that the
rjpg format and FLIR formula may have been developed for application at flight altitudes
greater than 61 m, which supports the decreased RMSE for both at that height. However,
other studies that flew at low altitudes have not reported such inaccuracy. Based on the
results of this study, those hoping to apply the FLIR Vue Pro R camera in an urban setting
will need to decide if flying higher than 61 m will still provide enough of the desired detail
and resolution for their particular project. Small targets and their temperatures will be
increasingly altered with greater height due to coarser resolutions and the interference of
temperatures from surrounding objects. Future research could investigate accuracy up to
the US FAA legal limit of 400 ft above ground level.

As seen consistently across all three methods and in the final results, temperature
accuracy was seen to range from least accurate for the coolest surfaces to most accurate for
the hottest. Given that FLIR products are known largely for both military and manufac-
turing/factory applications, it follows that such sensors would be more accurate at higher
temperatures because of their original application purpose. While the average RMSE and
the absolute average error still remained within the ±5 ◦C specified by FLIR, individual
temperature readings from the camera sometimes strayed outside of 5 ◦C. However, the
increased error linked to cooler or shaded surfaces has received minimal attention in pre-
vious reports, with one notable exception. These findings support those from Song et al.
(2020), who found that vegetation readings exhibited a high RMSE of 8.2 ◦C. Furthermore,
they found that the points with the highest errors were those cast in shadow, concluding
that surface temperatures cannot be accurately detected by the FLIR Vue Pro R when the
surface is shaded. Thus, urban or other applications that are interested in obtaining cooler
temperatures and surfaces in shade, especially at flight altitudes lower than 61 m (200 ft),
must realize that such readings will be less accurate.

While urban surface results support widely known findings that manmade surfaces are
hotter than natural, green surfaces, our findings also point to potential spatial configuration
effects for trees. Specifically, trees that are clustered together are known to have cooler
surrounding air temperatures due to evapotranspiration, which may have an effect on
canopy temperature [15,17]. However, this may also be due in part to taller trees, which
will cast some shading on smaller trees [25]. Monitoring the tree canopy’s temperature will
likely become more important as climate change progresses since higher temperatures lead
to decreased and eventually totally halted photosynthetic rate and thus other impaired
processes, including cooling processes [34–36]. This situation might be more acute in urban
areas, which are already experiencing higher temperatures.
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5. Conclusions

This research sought to identify the accuracy of both the FLIR Vue Pro R 640 thermal
UAV camera and the handheld FLIR E6-XT infrared imaging camera, whose application
could then be demonstrated in an urban environment. Initial testing of the handheld against
thermal tiles showed the handheld tended to underpredict, with a maximum RMSE of up
to 1.3 ◦C for the gray tile and a low RMSE of 0.1 ◦C for the black (hottest) tile. The results
show that the handheld can be used as ground-truth data in an environment where the use
of other accurate thermal ground truth is challenging. Initial testing of the UAV camera, its
image types, and its image pixel conversion methods showed that the rjpg image type had
the highest standard deviation at the 100 and 150 ft altitudes but had a lower RMSE than
using the FLIR-supplied formula with the tiff image type. Both methods showed the same
trend in which the error was higher for the cooler surfaces (the white tile and both grasses)
and lowest for the hottest surfaces (the gray and black tiles). However, the use of the tiff
image with the ground-truth-created model showed lower RMSE values for both grass
surfaces than the use of the rjpg image and tiff image alone. The application of the model to
urban surfaces in both neighborhoods showed greater error to the handheld ground-truth
data than when using the FLIR-supplied model for the tiff image. This method similarly
showed lower RMSE values for the hotter surface types than for the cooler surfaces in the
neighborhoods. Our results suggest that flight altitude should be carefully considered if
creating a model for pixel conversion for the tiff image and that, at least in the case of the
other two methods, readings will range from higher to lower error along the cool-to-hot
temperature gradient. Finally, the use of the UAV in urban neighborhoods demonstrates
a method of urban data collection that balances privacy considerations with safety and
practical applications.
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Appendix A

Table A1. For objective 1a: testing the accuracy of the handheld against the tile readings. Readings
are in degrees Celsius.

Reading White Gray Black Measurement
Error (ME %)

Handheld
FLIR Infrared

Imaging
Camera

Average
Tile

Reading

Handheld
FLIR Infrared

Imaging
Camera

Average
Tile

Reading

Handheld
FLIR Infrared

Imaging
Camera

Average Tile
Reading

White
Gray
Black

1 35.6 35.9 43.0 43.8 56.4 56.4
0.3 (0.9)
0.8 (1.8)
0.0 (0.1)

2 35.6 36.2 42.5 44.2 55.9 56.6
0.6 (1.6)
1.7 (3.8)
0.7 (1.3)

3 36.2 36.7 43.5 44.5 57.2 56.9
0.5 (1.4)
1.0 (2.3)

−0.3 (−0.5)

4 36.0 37.0 43.6 45.1 57.0 57.5
1.0 (2.8)
1.5 (3.2)
0.5 (0.9)

5 36.44 37.0 44.2 45.6 58.4 58.0
0.6 (1.6)
1.4 (3.0)

−0.4 (−0.7)

6 36.5 37.3 44.7 45.9 58.3 58.3
0.8 (2.0)
1.2 (2.7)
0.0 (0.0)

7 38.7 38.7 47.9 48.7 61.3 61.1
0 (0.1)

0.8 (1.7)
−0.2 (−0.3)

8 38.6 38.8 47.8 48.9 61.0 61.1
0.2 (0.6)
1.1 (2.3)
0.1 (0.1)

9 38.6 38.8 48.1 49.0 60.6 60.8
0.2 (0.5)
0.9 (1.8)
0.2 (0.3)

10 38.6 38.9 47.8 49.0 60.7 60.4
0.3 (0.8)
1.2 (2.5)

−0.3 (−0.5)

11 38.6 39.0 47.7 49.2 60.1 60.4
0.4 (1.1)
1.5 (3.0)
0.3 (0.5)

12 38.4 39.1 48.0 49.3 60.0 60.1
0.7 (1.8)
1.3 (2.6)
0.1 (0.2)
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