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Abstract: Seismic fault interpretation holds great significance in the fields of geophysics and geology.
However, conventional methods of seismic fault recognition encounter various issues. For example,
models trained on synthetic data often exhibit inadequate generalization when applied to field
seismic data, and supervised learning is heavily dependent on the quantity and quality of annotated
data, being susceptible to the subjectivity of interpreters. To address these challenges, we propose
applying self-supervised pre-training methods to seismic fault recognition, exploring the transfer of
3D Transformer-based backbone networks and different pre-training methods on fault recognition
tasks, thereby enabling the model to learn more powerful feature representations from extensive
unlabeled datasets. Additionally, we propose an innovative pre-training strategy for the entire
segmentation network based on the characteristics of seismic data and introduce a multi-scale
decoding and fusion module that significantly improves recognition accuracy. Specifically, during
the pre-training stage, we compare various self-supervision methods, like MAE, SimMIM, SimCLR,
and a joint self-supervised learning approach. We adopt multi-scale decoding step-by-step fitting
expansion targets during the fine-tuning stage. Ultimately merging features to refine fault edges, the
model displays superior adaptability when handling narrow, elongated, and unevenly distributed
fault annotations. Experiments demonstrate that our proposed method achieves state-of-the-art
performance on Thebe, the currently largest publicly annotated dataset in this field.

Keywords: seismic faults detection; 3D segmentation; self-supervised; pre-training

1. Introduction
1.1. Background

Seismic data obtained through reflection surveys represent an indirect depiction of the
intricate physical structures within the Earth’s subsurface [1]. Three-dimensional seismic
data offer a more detailed imaging and complex mapping of sub-surface structures than
2D because of denser sampling [2]. In 3D seismic images, geological strata create consistent
reflections, whereas faults, due to brittle deformation, cause reflection discontinuities [3,4].
This contrast enables identifying and extracting geological features like strata and faults
from the data. Seismic fault interpretation is crucial in geophysics and geology for tasks
like stratigraphic analysis, examining ancient landscapes, reservoir characterization, well
planning, resource assessment, and geological hazard risk mitigation [4–8].

Traditionally, manual and experiential seismic fault interpretation is susceptible to the
influence of data quality and interpreter subjectivity [1,9]. Moreover, in large 3D seismic
images, identifying stratum and fault mapping is a time-consuming and labor-intensive
process [3]. Various automated fault recognition methods are proposed in response to
these limitations, including phase unwrapping [10,11], ant-tracking [12,13], waveform
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classification [14], slope techniques [15], and Hough transform [16]. However, most feature-
based methods impose high computational costs and display susceptibility to noise [1].
These methods often require manual adjustment and heuristic parameter tuning to adapt
to different datasets.

The emergence of machine learning [17] has spurred the advancement of intelligent
seismic fault recognition algorithms [18,19]. End-to-end fault recognition methods based
on convolutional neural networks (CNNs) frame fault recognition as a classification or
segmentation task [20–22]. Wu et al. [22] employed synthetic data to train an end-to-end
3D-Unet network named FaultSeg3D for fault recognition tasks. Furthermore, An et al. [23]
utilized a 2D segmentation network, Mobile DeepLabV3+, for per-pixel segmentation to
extract faults and introduced Thebe, the largest currently publicly available field seismic
fault dataset. However, existing models trained on small synthetic datasets demonstrate
performance degradation and limited generalization when applied to field seismic data.
This is due to the heavy reliance on supervised deep learning on accurate annotations.
Consequently, these models need improvement in dealing with data with significant feature
variations, quality issues, high annotation costs, and subjectivity.

1.2. Related Work

Transformer [24] models, which rely on attention mechanisms, have advantages over
CNNs in capturing global context information and obtaining full-scale features. Self-
supervised learning methods using the Transformer structure, such as Vision Transformer
(ViT) [25], show excellent performance across various visual tasks. Additionally, the Swin-
Transformer [26], optimized through hierarchical and sliding window strategies, further
enhances the performance of the ViT. On the other hand, masked autoencoders (MAEs) [27]
demonstrate commendable image understanding capabilities through self-supervised
learning. The simplified mask image modeling (SimMIM) [28], tailored specifically for
the Swin-Transformer, uses a straightforward masked image modeling (MIM) approach,
a lightweight decoder, and a more adaptable token processing mechanism, making it
well-suited for downstream tasks requiring multi-scale modeling. As a self-supervised
technique that learns similarities in data through contrastive learning, a simple framework
for contrastive learning of representations (SimCLR) [29] also demonstrates significant
competitiveness in image understanding tasks.

Seismic data processing tasks are now increasingly utilizing self-supervised learning
techniques, such as seismic velocity inversion, stratigraphic phase semantic segmentation,
seismic data denoising, etc. [30–32], which demonstrates the applicability of self-supervised
pre-training methods in seismic data feature extraction. However, only a few studies
apply the Transformer framework to fault recognition tasks. Yang et al. [33] presented
a multitask learning network capable of simultaneous stratigraphy extraction and fault
detection. They utilized Transformer architecture for stratigraphy estimation, fortifying the
model’s robustness with expert geological interpretation. Tang et al. [34] proposed a novel
method that amalgamates the Unet architecture with a Transformer encoder for 2.5D fault
detection. The model, trained on synthetic datasets, demonstrates superior performance on
the Netherlands F3 dataset [35] compared to the complete 3D Unet model. The Dual Unet
with Transformer model proposed by Wang et al. [36] combines the traditional U-Net with
the Transformer U-Net, and they found that the binary cross-entropy loss (BCE) performed
best after comparing six different loss functions. Finally, FaultSSL [37] is a semi-supervised
fault recognition framework. Its supervised learning component uses synthetic data and
a small number of 2D label data, while the unsupervised learning component relies on
two proxy tasks—PaNning Consistency (PNC) and PaTching Consistency (PTC). The
approach reduces the reliance on synthetic data and purely supervised learning methods
but still needs a certain amount of labeled data support. In summary, recent research
has made progress in applying the Transformer architecture to solve fault recognition
problems. However, training on synthetic datasets limits the generalization of field datasets.
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Although the potential advantages of semi-supervised learning have been preliminarily
explored, more quantitative evaluations are still needed.

1.3. Motivation

As previously discussed, seismic fault recognition technology has evolved signifi-
cantly, transitioning from traditional manual interpretation to advanced deep learning
models. Despite these advancements, supervised learning models, heavily dependent on
accurate labeling, exhibit limitations when processing field seismic data. In response to
these limitations, self-supervised learning has become a powerful solution to compensate
for the limitations of supervised learning. However, applying the Transformer framework
in fault recognition tasks and using self-supervised learning methods within this context
are still largely undeveloped, and the resulting performance has yet to reach the expected
level. Consequently, this study explores the potential gains of using self-supervised pre-
training methods in seismic fault recognition. We adopt a 3D Transformer-based backbone
network, and during the pre-training phase, we conduct a detailed exploration of various
self-supervised pre-training techniques, including MAE, SimMIM, and SimCLR, allowing
the model to learn more robust feature representations from large-scale unlabeled data.
Our findings reveal that combining the Swin UNEt TRansformer (Swin-UNETR) [38] back-
bone with the SimMIM pre-training task significantly enhances seismic fault recognition
capabilities. We specially design our model architecture to handle the complexity inherent
in seismic fault recognition patterns. Considering the sparse distribution features of seismic
fault data, we innovatively improve the Swin-UNETR architecture, realizing multi-scale
decoding and fusion. Furthermore, our findings reveal that the Swin-UNETR model’s
decoder has significantly more parameters than its backbone network, which suggests that
pre-training the entire segmentation model can further enhance fault detection accuracy.
Our method, referred to as FaultSeg Swin-UNETR, demonstrates excellent adaptability and
precision in detecting seismic faults.

2. Datasets

In their comprehensive 2023 review on fault recognition [39], An and colleagues
synthesized information from 73 seismic datasets, of which only three field datasets and
four synthetic datasets open-sourced seismic data and labels, providing a public baseline
for research. Only two open-sourced datasets with annotations are 3D, including the
synthetic dataset FaultSeg [22] created by Wu and the field dataset Thebe [23] collected by
An’s team. FaultSeg simulates seismic signal patterns, providing detailed explanations and
opening its dataset and code. Although synthetic datasets can partially reduce the reliance
on expert annotations, the quality difference of synthetic data significantly influences the
model’s performance when dealing with practical data. When choosing the dataset type,
researchers must consider that the ultimate purpose of all models is to solve real earthquake
data-related problems. Hence, testing the model’s performance through field earthquake
datasets is a straightforward approach to gauging its performance. Currently, the Thebe
dataset is the largest publicly available earthquake fault dataset, providing many detailed
pixel-level expert annotations, allowing researchers to compare the performance of different
models more accurately and identify their advantages and limitations.

2.1. Datasets Employed

Earthquake fault recognition models trained with data from actual work areas can
fully understand and handle the complexity and uniqueness of field earthquake data. Such
models have better generalization abilities than models trained on simulated datasets.
They can adapt to varying conditions and maintain high accuracy even when encountering
previously unseen data. Therefore, considering the practical applicability of seismic fault
recognition models, our approach primarily relies on seismic data obtained from actual
working areas. Specifically, we use a large number of unlabeled private data for pre-training.
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Then, we fine-tune it on the labeled field dataset Thebe and verify the model’s effectiveness
on both the publicly available synthetic dataset FaultSeg and the field dataset Thebe.

• Synthetic dataset
A synthetic dataset was used in the earliest work using deep learning methods for
fault recognition [22]. This dataset consists of 220 seismic volumes of 128 × 128 × 128
and corresponding fault labels. The training set slice images are depicted in Figure 1.

Figure 1. Three-dimensional visual examples of the synthetic dataset. A synthetic seismic image of
the synthetic dataset and the corresponding true fault image (with labeling ones on faults and zeros
elsewhere) is overlaid with the seismic image.

• Field dataset
Most relevant works on fault recognition are trained on this synthetic dataset and
then qualitatively analyzed on field fault datasets. However, deep learning methods
typically require much training data to mitigate overfitting. Deep networks are prone
to learning patterns specific to the synthetic data, which may not apply to real-world
scenarios. Therefore, during the fine-tuning process, we conducted significant experi-
ments using Thebe [40], the currently largest publicly available seismic faults dataset.
The dataset, originally from a seismic survey called Thebe Gas Field in the Exmouth
Plateau of the Carnarvan Basin on the NW shelf of Australia, is represented in Python
Numpy format. The Thebe dataset has a size of 1803 × 1537 × 3174. Because of the
high correlation between adjacent slices, random partitioning along the crossline or
inline direction was not a reasonable choice. Following the approach proposed by
An et al. [40], we divided the data along the crossline direction. The first 900 slices
were used for training, the next 200 for validation, and the remaining 703 for testing.
The 640 × 640 × 640 cube segmented from the Thebe dataset is depicted in Figure 2.
A comparison between Figures 1 and 2 reveals that the field seismic data are compara-
tively more complex than the synthetic seismic data. The field seismic dataset exhibits
a more intricate fault distribution and finer fault annotation lines, making transferring
the model trained on synthetic data to field data challenging.

• Pre-training dataset
In addition, as self-supervised pre-training does not require annotations, we collected
private datasets from 15 different working areas for pre-training tasks. These datasets
are diverse in their geological features and size, and notably, they all lack fault annota-
tions. Our goal was for the network to independently discover and learn the intrinsic
characteristics of fault data across various contexts from various working areas during
the self-supervised learning phase. We visualize some of the data used for pre-training
in Figure 3.
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Figure 2. Three-dimensional visual examples of the Thebe dataset. A synthetic seismic image is
cropped from the Thebe dataset, and the corresponding true fault image (with labeling ones on faults
and zeros elsewhere) is overlaid with the cropped seismic image.

Figure 3. Three-dimensional visual examples of the pre-training dataset. The figure illustrates
128 × 128 × 128 segmentations from the pre-training datasets of various working areas.

2.2. Data Processing

To ensure consistency during training and comparability during predictions of seismic
data, we initially performed z-score standardization on the data. Assuming S represents
the original three-dimensional seismic data and µ and σ respectively denote its mean and
standard deviation, we utilized Equation (1) to standardize the original data.

Sstandardized =
S − µ

σ
(1)

These preprocessing steps prevent data from being overly concentrated or dispersed, miti-
gating the influence of varying feature scales. This enhances the stability and convergence
speed of the model, facilitating a more straightforward acquisition of fault distribution char-
acteristics. The distributions of standardized fault data and annotated data are illustrated
in Figure 4. The Thebe dataset is publicly available. Expert interpreters from the Fault
Analysis Group at University College Dublin manually labeled the faults in the seismic
data. Because of the slanted nature of the work area, preprocessing involved creating a
bounding rectangle to form a 3D cube and filling in blank areas with zeros. This resulted
in a higher kurtosis for the Thebe dataset than synthetic and field data typically used
for pre-training, which usually resemble a normal distribution. The field seismic cube
shows skewness, with many zeros and near-zero values, making its distribution notably
different from the synthetic and pre-training data. Therefore, fine-tuning post-pre-training
on unlabeled datasets was crucial to addressing these distributional discrepancies.

Figure 5a is a histogram showing the statistical distribution of 0–1 fault labels for
10,000 data points randomly sampled from the Thebe and synthetic datasets; on the x-axis,
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False represents non-fault points, i.e., points with a label of 0, while True represents fault
points, i.e., points with a label of 1. The y-axis represents the total number of voxel points
with a label of 0 or 1 in different datasets. It reveals substantial label imbalance, where
fault annotations are significantly fewer than non-fault annotations. The field dataset,
in particular, exhibits a more pronounced imbalance, making fault interpretation tasks
more challenging. Consequently, models trained on synthetic datasets demonstrate limited
feature extraction capabilities when applied to field datasets. Figure 5b displays the
distribution of fault and non-fault points after merging the Thebe and synthetic datasets.
The distinct difference in fault distribution between the synthetic and the Thebe datasets
highlights the crucial significance of the model’s simultaneous learning to identify seismic
fault and non-fault features.

Figure 4. The amplitude distribution of seismic datasets after z-score standardization.

(a) (b)
Figure 5. (a) The distribution of labels in synthetic seismic data and field seismic data exhibiting a
0–1 distribution. (b) Labels distribution of faults and non-faults after merging synthetic and
field datasets.

Figure 6 is a boxplot of the data distribution. The values on the vertical axis represent
the seismic data values after z-score normalization. The False part on the left shows the
distribution of non-fault data for Thebe and synthetic data, and the True part on the right
shows fault data. The distribution of non-fault data in Thebe on the far left even loses
the shape of the box because of the over-concentration of zero values and includes many
outliers, in which the maximum outlier even reaches a positive 12.5. However, the synthetic
data values are evenly distributed on both sides of the 0 axis after standardization. The an-
notation of fault data is relatively uniform, with both Thebe, in blue, and the synthetic
data, in orange, being standard and symmetrical. The boxplot vividly illustrates the highly
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concentrated distribution of non-fault points within the Thebe dataset and the considerable
presence of outliers. This challenges the model, potentially leading to biases toward specific
features or regions during training, neglecting other crucial information. Such biases can
impede the model’s comprehensive understanding of geological structures.

Figure 6. The boxplots of fault and non-fault data in the Thebe dataset and synthetic dataset.

Additionally, random flipping, 90-degree random rotations, and random cropping
are common data augmentation techniques in the computer vision domain. They expand
the training dataset, enabling the model to learn diverse features better. Random cropping
effectively extracts feature information of different scales and positions, bolstering the
model’s generalization ability. Random flipping and 90-degree random rotations aid
the model in learning features from various orientations, enhancing its robustness. This
combination of techniques augments the model’s capability to extract seismic data features
and generalizability, bolstering its effectiveness and stability in real-world applications.

3. Seismic Fault Recognition with Self-Supervised Pre-Training

Inspired by successful self-supervised pre-training schemes in image processing, we
explored various pre-training tasks on a large volume of unlabeled seismic field data
using 3D Transformer-based backbones. These backbones include U-Net TRansformers
(UNETR) [41] and Swin-UNETR, with pre-training strategies comprising MAE, SimMIM,
SimCLR, as well as three joint self-supervised tasks used in [38]: masked volume inpainting,
image rotation, and contrastive coding. Following this pre-training phase, the network
learned rich features within the seismic domain. We fine-tuned and tested it on field
datasets, discovering that the strategy combining Swin-UNETR with SimMIM yields the
best results. Building on this insight, to address challenges such as the scarcity of seismic
fault data and the narrow and uneven distribution of seismic faults, we further refined
the Swin-UNETR model. We propose a full-network pre-training scheme named FaultSeg
Swin-UNETR specifically for seismic fault segmentation tasks. We observe a notable
disparity between the size of parameters in the backbone network and the decoder head
of Swin-UNETR. To address this, we employed full-network self-supervised pre-training
with SimMIM, which achieved better outcomes. Additionally, we found that introducing
multi-scale decoding and fusion modules significantly enhanced identification precision.
Section 3.1 introduces the backbone network and pre-training schemes, while Section 3.2
discusses the full-network pre-training of FaultSeg Swin-UNETR.
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3.1. Backbone and Pre-Training Methods
3.1.1. 3D Transformer-Based Backbone

Our research uses a Transformer-based model, different from many past studies that
used CNNs [23,42], for fault recognition in seismic images. It is adept at capturing multi-
scale contexts and managing tasks that require understanding long-distance relationships,
which is crucial for segmenting images by pixel relationships. Because of the difficulty
of annotating seismic faults, it is common for researchers to annotate faults slice by slice
along a specific direction (inline or crossline) within a particular working area. Therefore,
previous studies often used 2D segmentation networks for fault recognition, but these
could not capture the full spatial context of seismic faults. While 2.5D data have been
employed to address this partially, proper integration of 3D spatial information necessitates
a 3D segmentation network. Therefore, our model uses a 3D Transformer backbone as the
main network.

UNETR and Swin-UNETR [38], as classic 3D Transformer-based frameworks, redefine
the task of 3D cube fault recognition as a sequence-to-sequence prediction problem. These
architectures divide the input 3D seismic image into volumetric patches. Each patch is
linearly embedded and then processed through a series of Transformer or Swin-Transformer
blocks, enabling the models to learn rich, context-aware data representations. UNETR
combines the architecture of U-Net with the advantages of Transformers and typically
features an encoder–decoder structure: the encoder utilizes Transformer blocks to capture
global context information, while the decoder employs conventional convolutional layers
to reconstruct the segmentation output of seismic faults intricately. Swin-UNETR builds
upon the UNETR concept but incorporates the Swin-Transformer as its backbone. “Swin”
in Swin-Transformer stands for “shifted window”, a novel attention mechanism that
adopts a window-based approach to handle local information in images better. As shown
in Figure 7, the Swin-Transformer consists of multiple Swin blocks. In Swin-UNETR,
the Swin-Transformer’s shifted windowing approach is adapted to handle 3D images,
allowing the model to dynamically adjust its focus between smaller, local areas and the
broader global context. This mechanism provides a more nuanced understanding of the
spatial relationships within volumetric data, which is crucial for accurate segmentation
and analysis in seismic imaging. For more details about Swin-Transformer, please refer
to Appendix A.

Figure 7. Architecture of 3D Swin-Transformer backbone.

3.1.2. Self-Supervised Pre-Training of Seismic Data

We collected many unlabeled field seismic data, covering many scenarios. In order
to explore the potential information within seismic data, we compare several mainstream
self-supervised pre-training methods, including MAE, SimMIM, SimCLR, and the masked
volume inpainting, image rotation, and contrastive coding implemented within the Swin-
UNETR architecture. MAE and SimMIM focus on improving the model’s prediction
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capabilities for masked parts within the data, thereby strengthening the model’s overall
understanding of seismic data. Meanwhile, SimCLR enhances the model’s ability to
discriminate between different seismic features via contrastive learning. Masked volume
inpainting trains the model on how to infer the overall structure from partially visible
seismic data; image rotation compels the model to learn the direction invariance of seismic
images; contrastive coding encourages the model to identify and understand the differences
and similarities within different parts of the images. Our goal was to comprehensively
evaluate the applicability of each method in the field of earthquakes to determine which
method performs better on seismic datasets.

3.2. FaultSeg Swin-UNETR

This research introduces FaultSeg Swin-UNETR, a self-supervised pre-training model
for seismic fault segmentation based on Transformer. This model innovatively combines
the Swin-UNETR architecture with the SimMIM pre-training method, optimizes the uneven
distribution of parameters through full-network pre-training, and incorporates multi-scale
decoding fusion modules to adapt to the peculiarities of seismic data.

3.2.1. Full-Network Pre-Training

Our findings highlight that the Swin-UNETR backbone, particularly when combined
with the SimMIM pre-training strategy, outperforms traditional tasks like masked volume
inpainting, image rotation, and contrastive coding in terms of earthquake fault recog-
nition capability. This empirical evidence led us to adopt the Swin-UNETR backbone
in conjunction with the SimMIM pre-training approach in our proposed FaultSeg Swin-
UNETR method.

Figure 8 illustrates the workflow of using SimMIM in seismic data. Given a fixed
size (128 × 128 × 128) seismic dataset, it was first divided into 262,144 non-overlapping
patches of size 2 × 2 × 2. After specifying a mask ratio (usually 75%), a random portion
of the seismic data was masked from these 262,144 patches to serve as the input for the
backbone network, Swin-Transformer. However, it is not reasonable to randomly mask
overly dense patches, as it would make the reconstruction task more similar to a super-
resolution task. Therefore, we adopted the strategy of simulating larger patch sizes in ViT,
where during random masking, we simulated the effect of 16 × 16 × 16 large patches on
2 × 2 × 2 small patches. In the specific implementation, after the image was divided into
patches, it could go through a tokenization module to convert it into tokens inputted to
the Transformer. The masking operation was then performed on these tokens (Figure 8
optional branch). Consider the 3D seismic dataset represented by S. The formulation for
the masking operation can be elegantly expressed as Equation (2).

MaskedInput = PE(Tokenization(S)⊙M+ Repeat(MaskToken)⊙ (1 −M)) (2)

Herein, Tokenization(·) represents the operator that segments the input seismic data into
blocks and then projects them into tokens that can be accepted by the Swin-Transformer.
PE(·) denotes the application of positional embeddings to introduce spatial awareness.
The term M represents a masking matrix, which is designed to obscure a random 75%
of the input tokens, thereby facilitating a robust learning process. MaskToken, a tunable
parameter, serves to supplant the elements obscured by the mask, thus preserving the
integrity of the data’s structural composition. After inputting the masked tokens into
the Transformer, they went through its internal self-attention mechanism. Afterward, we
obtained a feature map with a smaller spatial size at the output. We needed a simple
upsampling network (composed of transpose convolutions) to upsample it to the same
size as the input. Then, through the same patch-based masking operation, we calculated
the l1 loss between the masked regions and the original input. Despite the difficulty
of annotating earthquake data, collecting it was relatively easier. This made it possible
to perform SimMIM on many unlabeled seismic data. Compared to using pre-trained
backbone networks for supervised tasks such as classification, segmentation, and object
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detection on natural scene data (such as Imagenet, COCO), directly using earthquake data
for self-supervised learning could learn the essential features of the seismic domain, making
it easier and more accurate in the downstream fine-tuning process.

Figure 8. Overview of simplified mask image modeling.

Furthermore, we found a significant disparity in parameter proportion between the
backbone network and the segmentation decoder network in the Swin-UNETR network
used for seismic fault segmentation. This mainly arose from using the self-attention mecha-
nism in the Swin-Transformer, resulting in far fewer parameters than the 3D convolutional
layers in the segmentation decoder. Specifically, the parameter size of the Swin-Transformer
backbone network is only one-eighth of the total parameter size of the segmentation net-
work (see Table 1). This design contradicts the ideas of many self-supervised pre-training
models. Generally, in self-supervised pre-training frameworks, the parameter size of the
backbone network is much larger than that of the decoding heads of downstream tasks.
The backbone network mainly accomplishes the learning of input data features, and it is
preferable to have a simple design for the decoding heads. In light of these observations, we
propose an innovative shift in strategy. Rather than confining the self-supervised learning
task, such as SimMIM, to merely a network component, we advocate for utilizing the
entire Swin-UNETR structure, including both the backbone and the segmentation head,
for self-supervised pre-training. This method is particularly suitable for the inherently
image-to-image nature of most seismic-related downstream tasks. To some extent, it can
solve the problem of unreasonable parameter settings when Swin-UNETR integrates the
Unit architecture. The original self-supervised pre-training method of Swin-UNETR only
focuses on the model’s backbone and needs to fully explore the potential of unlabeled
data. Our training strategy not only allows the decoder to learn prior information from a
large number of unlabeled data during the pre-training stage but also ensures that this pre-
training information can be fully utilized in FaultSeg Swin-UNETR through the parameter
replication of the three decoder heads downstream tasks.

Consequently, we engaged in extensive pre-training of the complete Swin-UNETR
network on a vast corpus of seismic fault data. In response to this situation, we made
certain modifications to the input processing. We performed patching and masking opera-
tions directly on the seismic data at the input stage, in contrast to the typical approach of
manipulating tokens post the patch embedding layer. This reimagined strategy addresses
the parameter distribution challenge and aligns more congruently with the intrinsic require-
ments of seismic fault recognition tasks. This direct masking operation on the input seismic
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S can be described by Equation (3), where Fpatch(·) denotes the operation of segmenting
the input into patches and M represents the mask matrix.

MaskedInput = Fpatch(S)⊙M+ Repeat(MaskPatch)⊙ (1 −M). (3)

Additionally, the dimension of MaskPatch is also smaller than that of MaskToken. This
approach is more in line with the original design of SimMIM. It allows the backbone
network and decoder to learn some essential features from unlabeled data during the
pre-training phase. The goal of the SimMIM pre-training task is to reconstruct masked
seismic data. The learning objective for the task is

LSimMIM = ∥M⊙ (Sreconstruct − S)∥1. (4)

During the pre-training phase, the network starts learning from weights initialized ran-
domly. The chosen optimizer is AdamW, and a cosine annealing learning rate decay
strategy is employed.

Table 1. Parameters of the Swin-Transformer-based model.

Model Name Backbone Decode Head Total Params

Swin-Transformer + Up Sample Net 7.8 M 3.1 M 10.9 M
Swin-UNETR 7.8 M 54.1 M 61.9 M

FaultSeg Swin-UNETR 7.8 M 93.3 M 101.1 M

3.2.2. Multi-Scale Decoding and Fusion Module

Figure 9 illustrates the segmentation network FaultSeg Swin-UNETR that we designed
for fault recognition. Based on our findings, earthquake faults are typically narrow and
account for a deficient proportion, resulting in a serious class imbalance issue in training
targets. In order to alleviate this phenomenon, we use multiple segmentation decoders to
learn from fault segments that have been expanded at different levels. Specifically, let us
assume our annotated samples are {Sj, Fj}N

j=1, where Sj ∈ R128×128×128 represents the input

seismic and Fj ∈ {0, 1}128×128×128 represents the corresponding labeled faults. The Swin-
Transformer encodes the input seismic and then decodes it separately by three segmentation
decoders. These three decoders need to learn seismic faults that have been expanded by
1x, 3x, and 5x, respectively. Our main loss function is defined as Equation (5), where
Dilate(Fj, 2i − 1) represents the j-th labeled faults Fj after being dilated 2i − 1 times using
the dilation operator, and Decodei,j = Decoderi(Backbone(Sj)) represents the predicted
dilated fault result of seismic sample Si after passing through the j-th decoder of FaultSeg
Swin-UNETR. We conceptualize fault identification as a per-pixel binary classification
problem for 3D seismic data, thereby configuring the loss function as binary cross-entropy
(BCE) loss. The design of the main loss function is employed to supervise the three
decoding branches of our FaultSeg Swin-UNETR, enabling them to independently learn
the annotated fault information after being dilated at three different scales. Afterward,
to restore the original fault body, we introduce a fusion module that re-calibrates the
fault bodies learned from the three branches to their original thickness. The fusion module
consists of a series of 3D convolutions. The three predictions of dilated faults {Decodei,j}3

i=1
are concatenated along the channel dimension and passed through the fusion module. We
define the fusion loss function as Equation (6), where Fusion(·) denotes the fusion layer
we designed, and Cat(·) represents the concatenation operator. Given that the decoded
outputs Decodei,j ∈ RH×W×D are three-dimensional, we extend an additional dimension to
the predicted results {Decodei,j}3

i=1 from the three decoding heads and concatenate them
along this new dimension, resulting in Cat(Decode1,j, Decode2,j, Decode3,j) ∈ RH×W×D×3.
Since the fusion module is designed solely to learn how to restore the expanded fault
body during gradient backpropagation, we disconnect it from the main segmentation
network. The fusion loss function L f usion does not participate in the updates of the main
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network. The total loss is composed of a weighted combination of the losses from two parts
(Equation (7)), where λ is used to adjust the strength of the supervisory signal between the
backbone network of FaultSeg Swin-UNETR and its fusion module.

Lmain =
1

3N

3

∑
i=1

N

∑
j=1

BCE(Decodei,j, Dilate(Fj, 2i − 1)) (5)

L f usion =
1
N

N

∑
j=1

BCE(Fusion(Cat(Decode1,j, Decode2,j, Decode3,j)), Fj) (6)

Ltotal = Lmain + λL f usion (7)

The redesigned FaultSeg Swin-UNETR network can learn fault features more easily.
It is worth noting that after pre-training with Swin-UNETR on SimMIM, we can create
three copies of the parameters of the decoder part to initialize the weights of FaultSeg
Swin-UNETR. This allows us to leverage the prior knowledge obtained from pre-training in
the seismic fault domain, speeding up network convergence and improving recognition ac-
curacy. In the finetuning phase, we start from the weights obtained during self-supervised
pre-training. We continue to use the AdamW optimizer and employ a cosine annealing
learning rate decay strategy to gradually decrease the learning rate, ensuring the conver-
gence of the network.

Figure 9. The architecture of the FaultSeg Swin-UNETR network.

4. Experimental Results and Analysis

This section introduced the experiments conducted and the results obtained. Section 4.1
details the evaluation metrics used for fault recognition tasks. Section 4.2 describes the
training details of our algorithm. Finally, Sections 4.3 and 4.4 provide a detailed discussion
of the results and an ablation study.

4.1. Evaluation Metrics

Fault recognition is a typical binary segmentation task; therefore, classic classification
task metrics such as precision, recall, and F1 score can be used to measure the model’s
performance. However, evaluating the model solely based on precision or recall is not
reasonable because of the low proportion of real earthquake faults. Therefore, following
the work of An et al. [23], we use the per-image best threshold (OIS) and fixed contour
threshold (ODS) metrics, calculated based on the F1 score, to assess the performance of
the model. In the case of deep segmentation networks, the output is a 3D score volume
with logits of the same size as the input seismic data. After applying the sigmoid activation
function, the output is a 3D score volume ranging from 0 to 1. To calculate the OIS
and ODS, the seismic faults in the test set are considered as multiple images along the
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crossline, i = 1, 2, ..., N. The F1 score is computed for the network’s output score volume at
100 different thresholds. The best threshold is then selected either per image or for the entire
volume to evaluate the model’s performance. In this context, let us denote the model’s
output score as Ypred and the ground truth labels for the faults as GT. Both Ypred and GT
are represented as 3D volumes with dimensions H × W × D. The evaluation metrics, OIS
and ODS, are defined by the following equations (refer to Equation (8)):

OIS =
1
N

N

∑
i=1

max

({
F1
(

Ypred[i, :, :] >
j

100
, GT[i, :, :]

)}100

j=1

)

ODS = max

{ 1
N

N

∑
i=1

F1
(

Ypred[i, :, :] >
j

100
, GT[i, :, :]

)}100

j=1

 (8)

The formulations reveal that ODS, which determines the optimal threshold across the entire
dataset, typically yields a value less than or equal to OIS. The latter metric computes the op-
timal threshold for each individual slice. Consequently, ODS offers a more comprehensive
assessment of the model’s efficacy across the whole seismic dataset.

4.2. Training and Validation

Regarding the datasets from Thebe and our collection, we divided the entire dataset
into smaller chunks because of its large size. During the self-supervised stage, we used
a patch size of 128 × 128 × 128 and a stride of 64 × 64 × 64 for chunking. Since we
applied random masking to the input to the network each time, we did not perform
excessive data augmentation. Instead, we only normalized each chunk of data by adjusting
its mean to 0 and standard deviation to 1, making it easier for the neural network to
process. During the fine-tuning stage, we divided the Thebe data into blocks of size
256 × 256 × 256 with a corresponding stride of 128 × 128 × 128. Before inputting each
data block into the segmentation network, we applied random flips, random rotations by
90 degrees, and random cropping of seismic data from the blocks of size 256 × 256 × 256 to
128 × 128 × 128.

Additionally, we performed data normalization and other data augmentation oper-
ations. We utilized the slide window inference technique during the inference stage to
generate predictions for the entire work area. This involved predicting a volume of size
128 × 128 × 128 at a time, with a sliding stride of 64 × 64 × 64. We calculated the average
values in overlapping regions to address inconsistent predicted results at the boundaries.
This choice of data augmentation method helped effectively mitigate the issue of incon-
sistent predictions at the junctions. The code for the entire pre-training and fine-tuning
tasks was implemented using PyTorch 1.12.1 and accelerated using 4 × 4 NVIDIA A100
GPUs supported by the High-performance Computing Platform of Peking University.
Because of memory limitations, we set the batch size for all tasks to two. The SimMIM
self-supervised pre-training for the backbone network Swin-Transformer and the whole
segmentation network Swin-UNETR was trained for 300 epochs. During the fine-tuning
stage, all Transformer-based models ran for 100 epochs.

4.3. Results

Table 2 shows the OIS and ODS performance indicators of our FaultSeg Swin-UNETR
model on the Thebe dataset. We primarily compare our results with An’s work [42]. In that
study, they found that the DeeplabV3 segmentation network pre-trained on ImageNet with
ResNet-101 performed the best and even surpassed the foundational work of FaultSeg in 3D
fault detection. Our experimental results show that our end-to-end SimMIM pre-training
FaultSeg Swin-UNETR surpasses previous methods in both indicators, improving by at
least 0.25 points compared to An’s state-of-the-art work. In this section, we delve into
the motivations behind the design of FaultSeg Swin-UNETR, validate the effectiveness
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of various pre-training strategies through a series of experiments, and confirm that every
technique we propose significantly improves the detection accuracy of seismic faults.

Our research used UNETR and Swin-UNETR based on the 3D Transformer architecture
as backbone networks. We conducted experiments on several self-supervised pre-training
tasks, including MAE, SimMIM, SimCLR, and the masked volume inpainting, image
rotation, and contrastive coding implemented within the Swin-UNETR. The results show
that even in the absence of self-supervised pre-training, the performance of UNETR and
Swin-UNETR is superior to the traditional 3D convolutional network-based FaultSeg3D,
emphasizing the effectiveness of the combined Transformer and U-Net architecture for
seismic fault segmentation tasks. However, the performance of the Swin-UNETR model
without pre-training is similar to that of UNETR and needs improvement. Both backbone
and entire segmentation networks can achieve better results than UNETR or Swin-UNETR
under self-supervised pre-training. This indicates that self-supervised pre-training further
enhances the ability of these models to extract seismic fault features. Despite this, we
observe that after self-supervised pre-training, the performance improvement of UNETR
is different than expected. This may be because, compared to CNN, the Transformer
architecture requires more training samples to achieve optimal performance. Although we
provided a large number of unsupervised data, the fault annotation data in the Thebe
dataset still needs to be improved for the standard version of the Transformer. Relative to
this, the Swin-Transformer structure with fewer parameters is more suitable for this task.

We improved the multi-task self-supervised pre-training method proposed by Tang et al.
for Swin-UNETR in the field of medical imaging [38]. The previously designed tasks
(masked volume inpainting, image rotation, and contrastive coding) have limited pre-
training effects on seismic data, as shown in the 12th row of Table 2. Although these
multi-task self-supervised pre-training tasks have a role in improving model performance,
they are not as effective as the SimMIM method in seismic fault recognition tasks. Likewise,
the effect of SimMIM is superior to MAE and SimCLR, indicating that the simple SimMIM
is more suitable for fault recognition tasks. The original three-task-pre-trained task of
Swin-UNETR may increase the complexity and difficulty of model training. Contrastive
learning in SimCLR focuses more on global features, which may not be sufficient to capture
tiny changes in seismic data. MAE is more suitable for ViT structures. In comparison,
SimMIM, designed for Swin structures, provides a more straightforward and efficient
method, focusing on the most critical learning tasks. Predicting the masked part encourages
the model to pay attention to the subtle differences in the image, making it more effective
in seismic fault detection.

Pre-training the entire segmentation network with SimMIM can yield the most signif-
icant improvements in downstream segmentation tasks. We attribute this phenomenon
to the fact that all network components gain substantial prior knowledge during the
pre-training stage and are not just limited to the Swin-Transformer backbone with fewer
parameters. However, this may also be due to the irrational design of Swin-UNETR, whose
backbone parameters are much smaller than those of the segmentation decoding head,
only one-eighth the size. The design goal of most self-supervised pre-training networks
is to make the backbone as complex and parameter-rich as possible, while smaller pa-
rameter networks usually handle downstream tasks. Nevertheless, pre-training the entire
segmentation network can significantly alleviate this problem. As shown in the lower
half of Table 2, both Swin-UNETR and FaultSeg Swin-UNETR, which incorporates the
multi-scale decoding and fusion module, have greatly improved performance because of
full-network pre-training.

Ultimately, our FaultSeg Swin-UNETR model is optimized explicitly for seismic faults’
sparseness and slender characteristics. This model can restore the original fault structure
more accurately by introducing multi-scale decoding objectives and integrated fusion mod-
ules. We deeply analyze the design of FaultSeg Swin-UNETR to demonstrate its rationality.
Even without pre-training support, FaultSeg Swin-UNETR significantly outperforms the
standard Swin-UNETR in detection performance. This enhancement allows us to further
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improve the performance of models based on the Swin-UNETR structure, making it reach
the industry-leading level on the Thebe dataset.

Table 2. Performance on the Thebe dataset using OIS and ODS metrics, evaluating FaultSeg Swin-
UNETR multi-scale decoding and fusion module design and SimMIM pre-training strategy for the
entire segmentation network.

Model Pre-Trained Method OIS ODS

UNet - 0.769 0.766
HED - 0.811 0.806
RCF - 0.806 0.800

DeeplabM - 0.759 0.756
DeeplabV3 Imagenet-pre-trained 0.849 0.845
FaultSeg3D - 0.840 0.836

UNETR - 0.845 0.841
UNETR SimCLR 0.849 0.845
UNETR MAE 0.847 0.844
UNETR SimMIM 0.846 0.843

Swin-UNETR - 0.844 0.840
Swin-UNETR Three-task-pre-trained 0.852 0.845
Swin-UNETR SimCLR 0.855 0.852
Swin-UNETR MAE 0.859 0.857
Swin-UNETR SimMIM 0.861 0.857
Swin-UNETR Overall SimMIM 0.872 0.868

FaultSeg Swin-UNETR - 0.851 0.847
FaultSeg Swin-UNETR SimMIM 0.866 0.862
FaultSeg Swin-UNETR Overall SimMIM 0.875 0.870

4.4. Ablation Study

Although neural networks based on the Transformer model require a large number
of training data to achieve outstanding detection performance, we conducted fine-tuning
experiments on a small-scale synthesized dataset to demonstrate that self-supervised
pre-training can still achieve specific results under such stringent conditions. For our
experiments, we used a synthetic dataset of 220 samples of size 128 × 128 × 128, as used
by Wu et al. [21] in the FaultSeg3D model. We only used 200 samples to train the model,
and the model selection was based on the performance of 20 validation samples from the
synthetic dataset. After completing the fine-tuning, we directly evaluated the performance
of the trained model on the test set of Thebe using the OIS and ODS metrics (Table 3).
Because of the smaller scale and lower quality of the synthetic dataset compared to field
seismic data, the model’s performance showed a significant drop. However, compared to
the FaultSeg3D model, the Swin-UNETR model performed significantly better, and fur-
ther improvements can be achieved through the SimMIM self-supervised pre-training.
Similar to previous conclusions, using the FaultSeg Swin-UNETR model combined with
self-supervised pre-training yielded the best results. Moreover, the model could still achieve
acceptable predictive performance on a relatively more minor annotated dataset, which
indicates that our method can maintain decent performance in transferring between dif-
ferent work regions even with limited annotated data. This finding provides a baseline
data volume reference for new work regions with less data. In addition, it also suggests
our method provides an efficient pre-trained model. This pre-trained model offers an
optimal starting point for fault prediction in new work regions. This experiment also
significantly improves deep network performance by introducing large-scale annotated
data. Though the Thebe dataset is currently the most extensive earthquake fault annotation
dataset, it still needs more data compared to medical imaging to fully demonstrate the
advantages of deep models.
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Table 3. Testing results on the Thebe dataset using our proposed method fine-tuned on a small
synthetic dataset.

Model Pre-Trained Method OIS ODS

FaultSeg3D - 0.441 0.431
Swin-UNETR Three-task-pre-trained 0.482 0.473
Swin-UNETR SimMIM 0.503 0.495

FaultSeg Swin-UNETR Overall SimMIM 0.525 0.510

Because of the sizeable seismic data volume, it is often necessary to divide it into blocks
for training data in the deep network. However, because of the limitation of GPU memory,
the size of the input data given to the segmentation network is only 128 × 128 × 128. We
used the sliding window method during prediction to infer the entire test data volume.
To improve the consistency between sliding windows, we usually chose half of the window
size as the sliding stride and took the average value of logits at the overlapping areas.
In our deep network setup, the window size was 128 × 128 × 128, and the sliding stride
was 64× 64× 64. However, the choice of block size during data partitioning was also worth
considering. Since random cropping during the training process can serve as a powerful
data augmentation technique and help the model learn fracture information at different
positions in the data volume, it was necessary to set the block size larger than the input size
that the network could accept. Therefore, we explored the block size of the data volume
based on the Swin-UNETR baseline model. From Table 4, it can be seen that if the block size
is set to 128 × 128 × 128, which means no random cropping during the training process,
the performance is the worst in terms of OIS and ODS indicators. As we gradually increase
the block size, both evaluation metrics significantly improve. However, the block size
should not be too large, as this can lead to a significant difference in the randomly cropped
128-sized inputs encountered by each epoch when fitting the same data block, making it
difficult for the network to converge. In this baseline model, we found that the OIS and
ODS scores were highest when the block size was 256. Therefore, we used this setting in all
experiments, as shown in Table 2.

Table 4. Comparison of different data chunking sizes.

Model Chunk Size OIS ODS

Swin-UNETR

128 × 128 × 128 0.830 0.827
192 × 192 × 192 0.841 0.835
256 × 256 × 256 0.844 0.840
512 × 512 × 512 0.832 0.829

The proportion of positive samples in the fault labels is too low (Figure 5). Therefore,
it is easy to consider increasing the weight of positive samples in the BCE loss to enhance
the model’s ability to detect faults. However, adjusting the weight of positive samples
only changes the balance between precision and recall and does not significantly affect the
OIS and ODS, which are evaluated using the F1 score. This is also why we do not use the
average precision (AP) as an evaluation metric. We can increase the precision of the model
by adjusting the weight of positive samples in the BCE loss. However, this comes at the
cost of reducing recall. The experimental results in Table 5 also confirm our observation.
Therefore, we used the regular BCE loss without any special weighting for positive samples
in the remaining experiments.
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Table 5. The impact of BCE positive weight.

Model Positive Weight OIS ODS

Swin-UNETR
1.0 0.844 0.840
5.0 0.845 0.839
10.0 0.843 0.841

5. Discussion

This section presents test cases for the 2D slices and 3D cubes of the Thebe dataset.
The 2D showcase is shown in Figure 10, and the 3D showcase is shown in Figure 11.

Figure 10. Comparison of different deep learning models on the Thebe test sets’ 0th, 100th, and 200th
crosslines. The first row represents expert annotations, followed by the second through fifth rows,
displaying the inferences from the models proposed by An et al. [23] for comparison. The sixth
and seventh rows present the visual probability maps predicted by Swin-UNETR and our FaultSeg
Swin-UNETR, respectively.
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(a) seismic (b) ground truth

(c) UNET prediction (d) HED prediction

(e) RCF prediction (f) DeeplabM prediction

(g) Swin-UNETR prediction (h) FaultSeg Swin-UNETR prediction

Figure 11. The 3D images are 640 × 640 × 640 cubes extracted from the testing subset of the Thebe
dataset. We superimposed various deep learning models’ predictive probabilities onto profiles in
different directions, denoted as (c–h) for UNET, HED, RCF, DeeplabM, Swin-UNETR, and FaultSeg
Swin-UNETR, respectively. Notably, FaultSeg Swin-UNETR accurately delineated the majority of
fault lines.

5.1. Performance of 2D Slices

We tested the performance of several fault recognition methods on parts of the Thebe
seismic data test set. Figure 10 displays the crossline of 0, 100, and 200 traces. The white lines



Remote Sens. 2024, 16, 922 19 of 25

in the first row represent the real faults of the strata on the seismic images as interpreted by
experts for comparison with the performance of each automatic fault recognition model. We
use fault likelihood to represent the prediction results of each model. The range of each pixel
in the figure is zero to one. Values close to one (red) represent a higher probability of faults,
and values close to zero (blue) represent a higher probability of non-faults. As expected,
as shown in the quantitative evaluation results in Table 2, compared to the prediction results
of the four models proposed by An et al. [23]—UNET (second row), HED (third row),
RCF (fourth row), DeeplabM (fifth row)—Swin-UNTER achieves significant performance
improvement, and our model achieves more accurate interpretations. Continuous fault
prediction for the Thebe dataset means better results [23]. Specifically, the four models
in Figure 10 (second through fifth rows) are susceptible to noise. In the probability map,
many minor points and line segments appear in the non-fault part and are misjudged as
faults, confirming the work [23], which said, “All four models struggle with the migration
noise within the deeper layers, which the models do not see during the training phase”.
In comparison, UNet and DeeplabM are more accessible to identify non-faults than HED
and RCF. At the same time, the HED and RCF models with weighted cross-entropy loss
functions pay more attention to the fault part, so it is easier to misjudge non-fault pixels as
faults. In particular, model RCF goes to the extreme of labeling non-fault pixels or noise as
faults. Additionally, when calculating OIS and ODS values, these four models only extract
the concentrated distribution of faults in the image. However, we lack prior knowledge of
the concentrated fault areas in practical applications. The significant misjudgment in non-
fault areas challenges the models when applied in real scenarios. Encouragingly, the Swin-
UNETR segmentation model shows good prediction performance. Its prediction outcomes
align more closely with expert interpretations than the previous four models, effectively
identifying noise and non-fault areas, indicating this model’s successful extraction of
noise and non-fault features. The model structure and self-supervised pre-training tasks
effectively improve the fault recognition capabilities. However, Swin-UNETR also has
some redundant false detections and artifacts, and some faults are disconnected. This is due
to the sparse and narrow earthquake faults, resulting in highly imbalanced data annotation.
Therefore, the FaultSeg Swin-UNETR we proposed solves this problem to a certain extent
through a multi-scale fusion decoder. As shown in the last row of Figure 10, our method is
improved based on Swin-UNETR. Most fault points have a very high probability (close to
one), the noise points are minimal, the predicted faults are complete, and they have more
excellent continuity and refinement, almost comparable to expert explanations.

5.2. Performance of 3D Volumes

To further verify our model’s fault recognition performance on 3D seismic volumes,
we visualize the 3D inferences of Swin-UNETR, FaultSeg Swin-UNETR, and four other
fault recognition methods on the Thebe test set in Figure 11. Figure 11c–f display six fault
recognition probability maps computed by UNET, HED, RCF, DeeplabM, Swin-UNETR,
and our FaultSeg Swin-UNETR methods. Figure 11a exhibits the extracted seismic volume,
while the deep red annotations in Figure 11b represent seismic faults interpreted by experts.

Consistent with the 2D scenario, FaultSeg Swin-UNETR performs best in calculation
accuracy, fault clarity, and completeness compared to the former four methods. It show-
cases more apparent fault characteristics and more continuous fault tracking in the 3D
visualization. To observe multiple sets of fault features in different directions distinctly, we
specifically visualize fault hard labels in Figure 12 using the following method:

label[Ypred < 0.7] = 0

label[Ypred ≥ 0.7] = 1
(9)

where Ypred is the model output score, i.e., the probability of that pixel point being predicted
as a fault. We regard voxels with a prediction probability greater than 0.7 as faults and the
others as non-faults. The faults obtained by the former four methods are noisier, with nu-
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merous misidentified non-fault regions, discontinuities at connection points, and a lack of
coherent structures within complex fault areas. However, our method provides clear and
accurate fault segmentation results with good continuity at the intersection of three faces,
aligning closely with real fault annotations. Dou et al. [43] explained that larger angles
between faults and slices lead to poorer predictive outcomes. The skewed distribution
of faults in the Thebe dataset poses substantial learning challenges for models and likely
contributes to misjudgments in the former four models. Our model adeptly extracts 3D fea-
tures, significantly enhancing predictive consistency. Compared to Swin-UNETR, FaultSeg
Swin-UNETR demonstrates finer fault segmentation results with fewer misidentified fault
points, indicating the effective enhancement of the model’s ability to characterize faults
through the multi-scale fusion module.

(a) seismic (b) ground truth

(c) UNET prediction (d) HED prediction

(e) RCF prediction (f) DeeplabM prediction

Figure 12. Cont.
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(g) Swin-UNETR prediction (h) FaultSeg Swin-UNETR prediction

Figure 12. Visualizations of the hard scores predicted by the six models on the Thebe dataset are
presented in a 3D cube. The deep red indicates that the probability of a pixel being predicted as a
fault is equal to or greater than 70%; otherwise, it is considered a non-fault.

6. Conclusions

In our work, we explore the application of the most popular self-supervised pre-
training in seismic fault recognition in recent years.

In summary, the contributions of this article are as follows:

• Utilizing the 3D Swin-Transformer backbone network, we investigated diverse pre-
training methods with a substantial volume of field 3D seismic data. The integration of
SimMIM’s pre-training method with the enhanced Swin-UNETR model markedly im-
proved performance. Consequently, we introduced FaultSeg Swin-UNETR, a method
meticulously crafted for the unique characteristics of seismic data.

• We improved the Swin-UNETR model structure to adapt to the sparse distribution
of seismic fault data and the narrow line profile characteristics in the inline or cross-
line directions, promoting multi-scale decoding and fusion, thereby making fault
detection easier.

• Furthermore, upon recognizing the significant imbalance in the number of parameters
between the decoder and the backbone network in the Swin-UNETR model, we
proposed a strategy for pre-training the complete segmentation model, which further
improves fault detection accuracy.

• In the end, our proposed method achieves state-of-the-art performances on the Thebe
dataset according to the standard metrics of the optimal image scale (OIS) and optimal
dataset scale (ODS) metrics.

• Our research significantly advances the precision and efficiency of seismic fault recog-
nition, overcoming the constraints associated with reliance on annotated datasets. This
breakthrough paves the way for developing more robust and generalizable models
capable of addressing the inherent complexities of field seismic data.

Our research robustly demonstrates the substantial potential of self-supervised learn-
ing in interpreting seismic data. Using self-supervised pre-training on extensive datasets,
we find that models can generalize and significantly enhance identification accuracy, even
when only a minimal number of labeled data are available in new work zones. This is
particularly valuable considering the often complex and costly nature of annotating seismic
datasets. The models can identify and segment faults, thus aiding geologists and engineers
in precisely understanding subsurface structures, which have potential application values
in earthquake risk assessment, research on seismic resilience of infrastructure and build-
ings [44,45], etc. However, our current focus has been mainly on fault recognition. Future
work can include a broader range of seismic image-to-image tasks, such as stratigraphic
layer segmentation. Implementing multi-objective training can improve the model’s feature
extraction and generalization capabilities.
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Furthermore, our validation work has been confined to the two publicly available
datasets we could access because of the scarcity of publicly available labeled datasets. Given
the opportunity, we would conduct extensive testing across various geological conditions.
In summary, seismic analysis needs a universally applicable pre-trained model akin to
ImageNet [46] in computer vision or the GPT [47] series in natural language processing.
In addition, there needs to be more high-quality, open-source, large-scale, and diverse
seismic datasets within the field. Given these challenges, it is imperative to forge a data-
driven, unified model akin to SAM [48]. A model fortified with semi-automated annotation
capabilities will significantly enlarge our fault dataset, propelling us toward creating a
universally applicable fault recognition AI.
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Appendix A

Our study incorporates the Swin-Transformer encoder, a sophisticated feature extraction
network tailored for analyzing 3D data. This network processes three-dimensional seismic
data, denoted as S ∈ RH×W×D, where H, W, and D represent the dimensions of inline,
crossline, and timeline, respectively. The initial step involves a patch partitioning of the
input 3D seismic data into non-overlapping volumetric blocks, each of size 2 × 2 × 2. This
partitioning results in a total of H

2 × W
2 × D

2 blocks, which are subsequently flattened and
mapped into a 48-dimensional embedding space through a linear projection layer, forming
the inputs for the Swin-Transformer.

The architecture of the Swin-Transformer is divided into four distinct stages, each
meticulously designed to extract information from the 3D data volumes in a hierarchical
manner. Within each stage, a reduction of the spatial dimensions by half along each axis
leads to a significant decrease in the number of tokens, specifically to one-eighth of their
original count, while simultaneously doubling the channel count. This process is visually
represented in the left half of Figure 7, which annotates the dimensions of the feature
maps fed into each stage. Comprising Swin-Transformer blocks and a merging module,
each stage is pivotal in transforming the feature maps, with the merging module solely
responsible for all such deformations.

The detailed structure of a Swin-Transformer block is showcased in the right half
of Figure 7, emphasizing the employment of two window-based self-attention mecha-
nisms: window multi-head self-attention (W-MSA) and shifted-window multi-head self-
attention (SW-MSA). These mechanisms are instrumental in calculating self-attention
scores among the input tokens. Considering sin ∈ RH′×W ′×D′×C′

as the input to a Swin-

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YBYGBK
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Transformer block, where it is perceived as tokens of dimension C′ arranged across a grid of
H′ × W ′ × D′, the forward pass through this module can be articulated through the follow-
ing set of equations. It is noteworthy that the dimensions of the feature maps are preserved
throughout this process:

s′ = W-MSA(LN(sin)) + sin,

s′′ = MLP(LN(s′)) + s′,

s′′′ = SW-MSA(LN(s′′)) + s′′,

sout = MLP(LN(s′′′)) + s′′′.

In this context, LN denotes the layer normalization layer, strategically placed before each
sub-module within the network to address the internal covariate shift dilemma encoun-
tered during training phases. The MLP, or multi-layer perceptron, along with W-MSA
and SW-MSA, the dual window-based self-attention mechanisms devised for the Swin-
Transformer, play crucial roles. These mechanisms partition the input tokens into groups
confined by a predetermined window size of M × M × M, leading to H′

M × W ′
M × D′

M groups,
within which self-attention scores are computed as follows:

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
V

Here, Q = Wqs, K = Wks, and V = Wvs represent the query, key, and value components
within the self-attention framework, respectively, with dk reflecting their dimensionali-
ties. The matrices Wq, Wk, and Wv facilitate the transformation of the input s into Q,
K, and V, respectivelyx. In the W-MSA approach, tokens are partitioned in a manner
that allocates equal window sizes across the board. Conversely, the SW-MSA strategy
involves segmenting the input tokens by offsetting the windows along the three spatial
dimensions by M

2 each. Figure A1 shows the visual results of these two window par-
titioning mechanisms. This partitioning scheme effectively balances the computational
demands of the self-attention mechanism with the interactions among tokens across differ-
ent window partitions, ensuring a harmonious integration of computational efficiency and
inter-token dynamics.

Figure A1. W-MHA and SW-MHA window partitioning mechanism.
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