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Abstract: Object detection in remote sensing scenarios plays an indispensable and significant role
in civilian, commercial, and military areas, leveraging the power of convolutional neural networks
(CNNs). Remote sensing images, captured by crafts and satellites, exhibit unique characteristics
including complicated backgrounds, limited features, distinct density, and varied scales. The contex-
tual and comprehensive information in an image can make a detector precisely localize and classify
targets, which is extremely valuable for object detection in remote sensing scenarios. However,
CNNs, restricted by the essence of the convolution operation, possess local receptive fields and
scarce contextual information, even in large models. To address this limitation and improve detection
performance by extracting global contextual information, we propose a novel plug-and-play attention
module, named Convolution with Transformer Attention Module (CTAM). CTAM is composed of a
convolutional bottleneck block and a simplified Transformer layer, which can facilitate the integration
of local features and position information with long-range dependency. YOLOv8n, a superior and
faster variant of the YOLO series, is selected as the baseline. To demonstrate the effectiveness and
efficiency of CTAM, we incorporated CTAM into YOLOv8n and conducted extensive experiments on
the DIOR dataset. YOLOv8n-CTAM achieves an impressive 54.2 mAP@50-95, surpassing YOLOv8n
(51.4) by a large margin. Notably, it outperforms the baseline by 2.7 mAP@70 and 4.4 mAP@90,
showcasing its superiority with stricter IoU thresholds. Furthermore, the experiments conducted on
the TGRS-HRRSD dataset validate the excellent generalization ability of CTAM.

Keywords: object detection; remote sensing; Transformer; CNNs; contextual information

1. Introduction

With the advancement of remote sensing technologies, images captured by various
crafts and satellites have an enormous quantity and high spatial resolution. These images
contain significant information crucial for a wide range of applications, such as land plan-
ning, forest protection, traffic monitoring, disaster detection, and personnel rescue. Object
detection plays a fundamental yet important role in remote sensing image processing. It can
extract valuable information from images by localizing and classifying regions of interest.
However, traditional object detection algorithms such as Histogram of Oriented Gradients
(HOG) [1] and Scale-Invariant Feature Transform (SIFT) [2] rely on handcrafted features
tailored to specific scenes, resulting in inferior efficiency, accuracy, and generalization.

In recent years, CNNs have rapidly revolutionized various fields in computer vision
(CV), such as image classification, object detection, instance segmentation, and pose esti-
mation. Object detection, as one of the primary tasks, is an indispensable component in
industry detection, security surveillance, and autonomous driving. Since the success of
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AlexNet [3], scholars and researchers have increasingly focused on the CNN-based detec-
tors. These detectors have gradually surpassed traditional methods and taken a dominant
position in object detection.

CNN-based detectors can be broadly categorized into two-stage and one-stage detec-
tors. Two-stage algorithms treat the detection process as region proposal generation and
proposal-wise prediction. The R-CNN series are the representative detectors in two-stage
algorithms, including R-CNN [4], Fast R-CNN [5], Faster R-CNN [6], Mask R-CNN [7],
and Cascade R-CNN [8], which have salient performance and wide applications in ob-
ject detection. On the other hand, one-stage detectors directly produce dense predictions
through CNNs, making them more efficient and suitable for various real-time applications.
SSD [9], the YOLO series, and RetinaNet [10] are the well-known detectors in one-stage
algorithms. The YOLO series is a big family of detectors including YOLOv1-v8 [11–18] and
other variants, with the goal of achieving better and faster performance. RetinaNet employs
ResNet [19] as the backbone and designs focal loss to alleviate the imbalance of hard and
easy samples. In addition, to eliminate the limitations of anchor boxes, several anchor-free
detectors have been proposed, such as FCOS [20], CenterNet [21], and RepPoints [22].
FCOS leverages the center of grids and down-sample strides to replace anchor boxes and
incorporates the center-ness prediction to suppress low-quality boxes. CenterNet detects
each object as top-left, bottom-right, and central keypoints and designs cascade corner
pooling and center pooling to enrich features. RepPoints utilizes a set of keypoints to
represent objects and automatically learns important information.

The models mentioned above are primarily designed for nature images and exhibit
excellent performance on datasets like MS COCO [23]. However, remote sensing images,
owing to the top-down view and long capturing distance, possess distinctive characteris-
tics compared with nature images, including complicated backgrounds, limited features,
distinct density, and varied scales, as illustrated in Figure 1. The contextual and comprehen-
sive information in an image is beneficial for recognizing hard targets, which is extremely
valuable in remote sensing scenarios. Nevertheless, with the limitation of local computation
in the convolution operation, the detectors based on CNNs have local receptive fields and
lack interaction among the data of distant positions in an image. To address this problem,
researchers in the field of remote sensing have made substantial efforts and innovations.
In [24], CBAM is employed to connect the backbone of YOLOv3 with an auxiliary network.
RSADet [25], a two-stage CNN framework, introduces a scale attention module to fuse
spatial and channel information. SRAF-Net [26] combines deformable convolution and
context attention by designing a context-based deformable module. GRS-Det [27] utilizes
Gaussian-Mask to enhance the perception of ships with contextual information. While
these models manage to address the problem of lacking contextual information to some
extent, there remains a scarcity of long-distance interactions in these CNN-based detectors.
Moreover, unsupervised remote sensing image analysis methods such as Spatial-Spectral
Masked Auto-encoder [28] and Nearest Neighbor-Based Contrastive Learning [29] show
promising prospects in object detection.

Neck Attention Block (NAB) [30] is an effective block and achieves salient performance
in small object detection. However, due to channel attention used in NAB, the improved
model lacks sufficient global information for extracting and fusing important features. In
this paper, we introduce the Convolution with Transformer Attention Module (CTAM)
to enhance contextual and comprehensive information for CNN-based detectors, aiming
at improving localization capacity and detection accuracy in remote sensing scenarios.
CTAM is a novel plug-and-play attention module composed of two key components:
a convolutional bottleneck block and a simplified Transformer layer. The convolutional
bottleneck block is a bottleneck structure utilized to extract local features and retain position
biases, and the simplified Transformer layer is designed to capture long-range dependency
and provide global contextual information.
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Figure 1. Various targets in remote sensing images.

To demonstrate the effectiveness and efficiency of CTAM, we selected YOLOv8n as
the baseline, which achieves better performance while maintaining fast detection speed.
We improved YOLOv8n with CTAM and conducted extensive experiments on the DIOR
dataset [31]. YOLOv8n-CTAM surpasses the baseline by 2.8 mAP@50-95, with only a slight
increase in detection time (0.2 ms). Notably, YOLOv8n-CTAM exhibits higher superiority
with stricter IoU thresholds, such as mAP@70 and mAP@90, indicating CTAM makes
the model focus on the central regions of targets and enhances localization capacity by
integrating local features with global information. Compared with state-of-the-art detectors,
it achieves cutting-edge performance while maintaining extremely fast speed. The results
obtained on the TGRS-HRRSD dataset [32] further demonstrate the excellent generalization
ability of CTAM.

The main contributions of this paper are as follows:

(1) We construct CTAM, a novel plug-in-play attention module, which effectively ad-
dresses the limitations of both CNNs and Transformer. CTAM facilitates the integra-
tion of local features and global contextual information and significantly enhances
YOLOv8n’s localization capacity.

(2) In contrast to the original Transformer applied in CV, we design a simplified Trans-
former structure by eliminating universal yet unnecessary operations for remote
sensing scenarios, resulting in superior performance.

(3) We conducted extensive experiments on the DIOR and TGRS-HRRSD datasets, ex-
plicitly demonstrating the positive impact of CTAM. It improves localization capacity
and exhibits noteworthy effectiveness, efficiency, and generalization ability.

The remainder of this paper is organized as follows: In Section 2, we provide an
overview of related works concerning Transformer and the YOLO series. Section 3 offers
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a detailed description of CTAM and the improved model. Section 4 presents the spe-
cific datasets used in our study and the experiments and analysis of CTAM. Finally, the
conclusion is drawn in Section 5.

2. Related Works
2.1. The YOLO Series

The primary goal of the YOLO series is to make object detection better, faster, and
more scalable. YOLOv1, as the pioneering model, treats object detection as a regression
problem. It segments an image into multiple grids, and each grid is responsible for predict-
ing bounding boxes and class probabilities. With the improvements including a multi-scale
training method, anchor boxes, and a new backbone, YOLOv2 achieves a tradeoff between
accuracy and speed. YOLOv3 designs a stronger backbone called Darknet-53, implements
multi-scale prediction, and incorporates various data augmentation techniques. YOLOv4
further optimizes the backbone and establishes CSPDarknet-53 based on CSPNet. Addition-
ally, it introduces many methods to enhance the detection performance without increasing
the inference cost. To accommodate various detection tasks and ease deployment, YOLOv5
designs five models with different computational costs. In order to mitigate the overfitting
of the model, it proposes Mosaic, a novel data augmentation method, feeding a mixed
image composed of several images into the model during training. YOLOX [33] switches
YOLOv3 to an anchor-free manner with a leading label assignment strategy and constructs
a decoupled head to suppress the conflict between regression and classification. For diverse
platforms and applications, YOLOv6, an anchor-free detector like FCOS, constructs a fun-
damental CSPStackRep block for the backbone and adopts Task Alignment Learning [34]
as the label assignment method. To enhance the capacity for learning and converging,
YOLOv7 proposes Extended-ELAN to regulate the gradient paths. As the latest version
in the YOLO series, YOLOv8 creates an anchor-free detector based on ‘C2F’ with more
gradient paths. It constructs a decoupled head with Distribution Focal Loss [35]. It sup-
ports various CV tasks, including classification, detection, segmentation, pose estimation,
and tracking.

Due to its exceptional accuracy, flexibility, and efficiency, the YOLO series has ex-
tensive and significant applications in remote sensing scenarios. For instance, aiming at
identifying high-density targets in UAV aerial images, MS-YOLOv7 [36] combines the
original model with the Swin Transformer unit and proposes a new pyramidal pooling
module. To address the dense occlusion in low-resolution images from the TinyPerson
dataset, TOD-YOLOv7 [37] appends a tiny object detection layer and designs a recursive
gated convolution module. UAV-YOLOv8 [38] utilizes Wise-IoU as the box regression loss
to enhance localization ability in the UAV scenario. For UAV object detection, [39] modifies
YOLOv8 with Bi-PAN-FPN and improves ‘C2F’ with GhostblockV2. In [40], YOLOv7-TS
devises a Feature Map Extraction Module to reduce information loss.

In the YOLOv8 variants, YOLOv8n stands out for its fast speed, salient performance,
and flexible deployment, so we select it as the baseline for real-time object detection in
diverse remote sensing scenarios. With the goal of enhancing global contextual information
for CNN-based detectors, we propose CTAM to integrate long-range dependency with local
features, and YOLOv8-CTAM achieves superior performance on the DIOR and HRRSD
datasets among various detectors.

2.2. Transformer

Transformer [41] was initially conceived to model long-range dependency and intro-
duce parallel computation for natural language processing (NLP). The remarkable break-
through achieved by Transformer in NLP has motivated many scholars and researchers to
explore its potential applications in CV.

Transformer-based backbones have made enormous progress in fundamental CV
tasks, such as image classification, object detection, and semantic segmentation. Vision
Transformer (ViT) [42], a pioneering vanilla Transformer model, achieves competitive
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performance in image classification compared with state-of-the-art CNNs. ViT converts
from 2D images to sequence data through a process of flattening and mapping image
patches, which are fed into standard Transformer encoders with position embeddings.
It finally employs a multi-layer perception (MLP) head for category classification. In
contrast, DeiT [43] introduces the token-based knowledge distillation method, aiming
at reducing the reliance on large amounts of data while achieving better performance
on ImageNet-1K. Swin Transformer [44] adopts a hierarchical structure similar to the
CNN-based models. To restrict the computational complexity posed by high-resolution
images, it computes self-attention in non-overlapping local windows instead of global
dependency. Additionally, it allows cross-window communication via shifted windows.
CSWin Transformer [45] designs horizontal and vertical stripes to calculate self-attention
in parallel. In comparison to Swin Transformer, it expands the local receptive field while
constraining the computational complexity. BiFormer [46] proposes a novel sparse self-
attention called Bi-Level Routing Attention, which filters irrelevant key–value pairs and
applies self-attention to the remaining pairs to alleviate the heavy computational burden
and high memory usage of Transformer.

Treating object detection as a set prediction problem, DETR [47] utilizes a CNN-based
backbone to extract features and adopts a Transformer encoder–decoder and a feed-forward
network to obtain detection results. It avoids the heavy computational cost produced by
Transformer-based backbones while capturing global contextual information. Building
on the success of DETR, various DETR variants have been proposed, such as Deformable
DETR [48], Conditional DETR [49], and Lite DETR [50].

In contrast to natural scenes, long-range dependency captured by Transformer is
more significant for object detection in remote sensing. TPH-YOLOv5 [51] designs a
Transformer prediction head instead of the original head and incorporates an additional
scale for tiny objects. Moreover, it adopts CBAM to identify dense objects. As a result,
TPH-YOLOv5 achieves superior performance on the VisDrone dataset. Lu et al. [52] select
CSWin Transformer as the backbone and construct a hybrid patch embedding module and a
slicing-based inference method for UAV image object detection. Based on Swin Transformer,
Xu et al. [53] designed a local-perception backbone to improve small object detection.

In this paper, we assert that the original Transformer retains substantial potential in re-
mote sensing scenarios. Consequently, we devise a simplified Transformer and incorporate
it into CTAM to integrate global contextual information with local features. The feasibility
of the simplified Transformer is demonstrated in Section 4.5.

3. Materials and Methods
3.1. CTAM

With the limitations of the top-down view, long capturing distance, and complex
interference, remote sensing images exhibit some characteristics that differ from nature
images, including complicated backgrounds, limited features, distinct density, and varied
scales. Global contextual and comprehensive information can help detectors recognize
targets, which is exceptionally valuable for object detection in remote sensing scenarios.
Nevertheless, typical CNN-based detectors, restricted by the nature of convolution op-
eration, severely lack global interaction. To address this pivotal problem, we construct
a novel plug-and-play module named CTAM, aiming at integrating global contextual
information with local features. It is composed of two primary components: a simplified
Transformer layer, responsible for capturing long-range dependency, and a convolutional
bottleneck block, responsible for extracting local features and providing inductive biases
for the other component.

As depicted in Figure 2, the simplified Transformer layer contains two reshape opera-
tions and an easier Transformer variant. Although many models in CV, such as ViT, apply
a standard Transformer to various tasks, we assume that it could not be the optimal form
for object detection in remote sensing. The experiments described in Section 4 indicate
that, at least for CTAM, the original Transformer is not a suitable form. For this paper, the
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simplified Transformer removes LayerNorm [54], Dropout, and GeLU [55] and utilizes
single-head attention to compute self-attention. It can be broadly divided into two parts:
multi-head attention (MHA) and multi-layer perception (MLP). To process 2D feature maps,
we flatten the map X ∝ RH×W×C into Xt∝ R(H∗W)×C to serve as the input for the simplified
Transformer, where (H, W, C) represents the resolution of the feature map. The matrices
of Query, Key, and Value are computed as

Q, K, V = Split( Linear(Xt) ) (1)

‘Linear’ refers to a fully connected layer, and ‘Split’ is an operation that segments a matrix
into chunks along the channel dimension. Q, K, and V maintain the same sizes as Xt. Then,
the computation of self-attention is as follows:

Attention = SoftMax(QK T/C0.5) V (2)
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‘w/o’ is an abbreviation for ‘with or without’. ‘Norm’, ‘Drop’, and ‘Activation’ represent LayerNorm,
Dropout, and GeLU, respectively. ‘Bias’ is the bias in the linear layer.

The final output of MHA with a residual connection, denoted as Xsha , can be expressed as

Xsha = Linear(Attention)+Xt (3)
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MLP is composed of two fully connected layers without GeLU in the first layer. The
entire process can be defined as

Xmlp = Linear( Linear(Xsha ) )+Xsha (4)

where Xmlp represents the output of MLP.
In summary, we express the output of the simplified Transformer layer Xtran as

Xtran = Trans f ormer(X) (5)

Regarding the convolutional bottleneck block, it contains a stack of ‘CBSs’ (Conv-
BN-SiLU), composed of one convolutional layer, Batch Normalization [56], and SiLU [57],
as shown in Figure 2. The first and final ‘CBSs’ are used for channel compression and
expansion. Those in between are employed for feature extraction and fusion. To balance
the performance and computational cost of CTAM, we introduce the hyperparameter n to
control the quantity of the middle ‘CBS’. The result of the convolutional bottleneck block
Xconv can be computed as

Xconv = CBS1 . . . CBSn+2(X) (6)

Inspired by NAB using traditional attention mechanisms to regulate the feature map
after convolutional layers instead of the original map, we employ element-wise multiplica-
tion to fuse the features generated by the convolutional bottleneck block and the simplified
Transformer layer. In this manner, we can acquire the features of each grid, guided by
both global contextual and local information. CTAM is a complementary integration that
introduces local concentration for Transformer and long-range dependency for the CNN.
With the improvement of CTAM, YOLOv8n exhibits stronger localization capacity and
better performance, as detailed in Section 4. Ultimately, the whole CTAM can be formally
expressed as

Xctam = Xconv ⊗ Xtran (7)

where Xctam and ‘⊗’ refer to the output of CTAM and element-wise multiplication, respectively.

3.2. YOLOv8n-CTAM

YOLOv8, as one of the most cutting-edge models in the YOLO series, further boosts per-
formance and flexibility across various tasks and applications. Like other common detectors,
YOLOv8 can be divided into three components, backbone, path aggregation structure [58],
and detection head. Figure 3 explicitly depicts the architecture of YOLOv8n-CTAM.

A preprocessed remote sensing image with the resolution of (800, 800, 3) serves as the
input image and is fed into the backbone. Note that YOLOv8 proposes ‘C2F’ as the basic unit
instead of ‘C3’ in YOLOv5, featuring more gradient paths. Through a sequence of ‘Stage’,
we can obtain three feature maps with 8×, 16×, and 32× downsampling rates, respectively.
Subsequently, these maps are sent into the path aggregation structure, composed of top-
down and bottom-up paths. This structure aims to enhance localization information for the
coarse maps and contextual information for the fine-grained maps. Finally, the detection
head utilizes the augmented feature maps to predict the category and bounding box for
each grid. To mitigate the conflict between classification and regression, YOLOv8 designs a
decoupled head and adopts the general distribution to model bounding box representation.

YOLOv8 develops some variants with different widths and depths for various appli-
cations. YOLOv8n acquires the fastest detection speed and the smallest memory usage by
decreasing its width and depth. Therefore, we select YOLOv8n as the baseline to satisfy
the requirement of real-time detection. CTAM is inserted between the path aggregation
structure and the detection head to integrate global contextual information with local fea-
tures for object detection in remote sensing scenarios. The visualization results in Section 4
adequately demonstrate the effectiveness of CTAM.
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4. Results
4.1. Experimental Environment and Settings

All experiments were carried out on a Linux operating system (Ubuntu 20.04) with an
Intel(R) Core (TM) i9-10940X CPU and two Nvidia RTX-3090 GPUs for distributed training.
The deep learning framework was Pytorch 1.13 based on Python 3.9.16, CUDA 11.7, and
Torchvision 0.14.1.

Hyperparameter settings play a significant role in the training process and greatly
impact the final detection accuracy. To ensure a fair comparison, each model in this paper
adopted the same hyperparameters outlined in Table 1. ‘Image size’ is the resolution of
input images, restricting the sizes of targets and computational cost. ‘Epoch’ represents
the number of iterations that a detector is trained on a dataset. Appropriate epochs make
a model achieve excellent performance while saving computational resources. ‘Learning
rate’, ‘Momentum’, and ‘Weight decay’ regulate the convergence rate and training stability.
‘Mosaic’ is a valuable measure for alleviating data overfitting. In addition, ‘n (#CBS)’,
utilized to control local feature extraction, is introduced into the convolutional bottleneck
block of CTAM. According to the experiments in Section 4.5, YOLOv8n is improved with
CTAM (n = 2) to integrate long-range dependency with local features.
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Table 1. Hyperparameter settings.

Hyperparameter Details

Image size (800, 800)
Epoch 100

Batch size 16
Learning rate 0.01~0.0001
Momentum 0.937

Weight decay 0.0005
Mosaic True (close at the last 10 epochs)

n (#CBS) 2

4.2. Evaluation Metrics

To evaluate the effectiveness and efficiency of CTAM, we adopt common metrics in
object detection, including precision, recall, average precision (AP), mean average precision
(mAP), model parameters, FLOPs, and detection time. Precision denotes the proportion of
true positive samples among the total positive samples, and recall measures the proportion
of true positive samples among the total true samples. The AP value for each category is
obtained by calculating the area under the precision–recall curve, and mAP denotes the
mean of AP values across all categories. The AP and mAP can be expressed as

AP =
∫ 1

0
P(R)dR (8)

mAP =
1
nc ∑nc

1 APi (9)

where ‘P(R)’ denotes the precision–recall curve and ‘nc’ represents the number of categories.
To evaluate the performance of the detector more comprehensively and accurately,

we utilized different IoU thresholds to acquire corresponding mAP values. A higher
threshold signifies a more rigorous criterion for the overlaps between bounding boxes and
ground truth boxes. Specifically, mAP@50 represents an mAP value computed with an IoU
threshold of 0.5. mAP@50-95 is the average of the mAP values under the IoU thresholds
between 0.5 and 0.95, with a step of 0.05. To explicitly verify the localization capacity of
CTAM, mAP@50, mAP@70, mAP@90, and mAP@50-95 were adopted as the evaluation
criteria in the next experiments.

4.3. Datasets

DIOR is a large-scale, diverse, and publicly available remote sensing dataset con-
taining 23,463 images and 192,472 instances. It is divided into three subsets: a training
set (5862 images), a validation set (5863 images), and a test set (11,738 images). It has
20 categories: airplane, airport, baseball field, basketball court, bridge, chimney, dam,
expressway service area, expressway toll station, harbor, golf course, ground track field,
overpass, ship, stadium, storage tank, tennis court, train station, vehicle, and windmill.
Each image in DIOR is standardized to the resolution of (800, 800, 3). The sizes of bounding
boxes range from 2 to 764 pixels, posing a considerable challenge for object detection on
the DIOR dataset. Each object in DIOR is annotated with a horizontal bounding box. In
comparison to VEDAI, HRSC2016, and COWC, DIOR has more images and instances,
which is beneficial for the robustness and generalization of detectors. For this paper, we
conducted extensive experiments on the DIOR dataset to demonstrate the efficiency and
effectiveness of CTAM.

Aiming at validating the generalization ability of CTAM, experiments were conducted
on the TGRS-HRRSD dataset, another large-scale remote sensing dataset. This dataset
possesses 21,761 images categorized into 13 classes, and the mean scale per class ranges
from 42 to 277 pixels. Furthermore, it elaborately balances the number of each category.
The comprehensive results are detailed in the next section.
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4.4. Experiments on the DIOR Dataset

To testify to the efficiency and effectiveness of CTAM, we initially trained YOLOv8n
on the training and validation sets of the DIOR dataset with 100 epochs and evaluated its
performance on the test set. For a fair comparison, we improved YOLOv8n with CTAM
(n = 2) using the same settings and strategies. The experimental results for all categories
are documented in Table 2. YOLOv8n-CTAM achieves 84.6 precision, 68.5 recall, and
54.2 mAP@50-95. It outperforms the baseline by a large margin, indicating the effectiveness
of CTAM. ‘Time’ represents the total time, including preprocessing, inference, and post-
processing time on an NVIDIA RTX 3090 with a batch size of 16. Due to the calculation of
global contextual information occurring in the feature maps with 8×, 16×, and 32× strides,
YOLOv8n-CTAM has a slight growth in ‘FLOPs’, ‘Param’, and ‘Time’. It remains an ex-
tremely lightweight detector meeting the real-time requirement. Furthermore, with an
increasing IoU threshold, YOLOv8n-CTAM achieves progressively better performance,
surpassing the baseline by 1.8 mAP@50, 2.7 mAP@70, and 4.4 mAP@90. These results
provide substantial evidence that CTAM can enhance localization capacity and detection
performance by introducing global contextual information.

Table 2. The experimental results of YOLOv8n and YOLOv8n-CTAM on the DIOR dataset for
all categories.

Model Precision Recall mAP@50 mAP@70 mAP@90 mAP@50-95 FLOPs Param Time

YOLOv8n 82.7 67.2 74.7 62.5 21.9 51.4 8.1 G 3.0 M 2.1 ms
YOLOv8n-CTAM 84.6 68.5 76.5 65.2 26.3 54.2 11.2 G 4.7 M 2.3 ms

Table 3 presents the performance of the baseline and YOLOv8n-CTAM across each cate-
gory. In almost all classes, YOLOv8-CTAM displays higher accuracy, recall, and mAP@50-95
compared with the baseline, especially in golf field detection, where it exceeds the baseline
by 5.0 precision, 4.4 recall, and 11.4 mAP@50-95. Apparently, we can confirm that CTAM
is beneficial for multi-scale target detection in remote sensing scenarios. Furthermore, we
analyze the training processes of both detectors, as shown in Figure 4. YOLOv8n-CTAM
exhibits a faster convergence rate in both regression and classification loss. Notably, the loss
curves of both models show a rapid decline in the last 10 epochs, indicating that closing
Mosaic in the last 10 epochs can lead to an enhancement in the final performance.

Table 3. Comparison of YOLOv8n and YOLOv8n-CTAM on the DIOR dataset across each category.

Category
YOLOv8n YOLOv8n-CTAM

Precision Recall AP@50-95 Precision Recall AP@50-95

Airplane 95.3 64.1 54.4 96.8 65.5 57.1
Airport 78.2 79.2 54.1 79.7 82.1 60.1

Baseball field 95.3 69.2 68.3 95.7 71.4 69.2
Basketball court 91.7 85.1 75.3 93.4 85.4 76.8

Bridge 72.3 35.8 24.6 73.4 36.9 27.0
Chimney 94.9 72.4 64.2 95.3 73.0 65.6

Dam 63.4 63.5 35.4 70.5 65.4 40.4
Expressway service area 78.8 81.0 57.7 85.0 82.5 64.7
Expressway toll station 85.3 59.1 52.1 88.8 61.0 53.0

Harbor 74.0 58.3 45.1 76.9 59.6 47.6
Golf field 72.2 75.9 53.8 77.2 80.3 64.2

Ground track field 70.6 80.3 59.9 70.9 81.2 62.4
Overpass 82.0 52.3 40.8 84.0 54.1 43.1

Ship 92.2 85.4 55.8 93.5 85.4 56.7
Stadium 83.6 61.2 58.9 84.4 64.5 61.4

Storage tank 95.4 58.5 47.1 96.2 52.8 46.7
Tennis court 95.5 86.0 76.9 95.7 85.3 77.6
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Table 3. Cont.

Category
YOLOv8n YOLOv8n-CTAM

Precision Recall AP@50-95 Precision Recall AP@50-95

Train station 59.4 59.1 30.8 59.2 64.6 35.1
Vehicle 87.3 37.2 28.9 88.5 36.9 29.4

Windmill 86.9 80.3 44.0 87.7 81.9 46.6
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Figure 4. The loss curves of the baseline and YOLOv8n-CTAM. ‘ORG’ and ‘CTAM’ denote the
original YOLOv8n and YOLOv8n-CTAM, respectively.

In comparison with the state-of-the-art detectors, YOLOv8n-CTAM achieves the most
cutting-edge performance, as listed in Table 4. Specifically, the improved detector outper-
forms the well-known detectors in natural scenes by a large margin. In the field of remote
sensing, it also surpasses SCRDet++ with ResNet-101 and CANet by 1.4 and 2.2 mAP@50,
respectively. Above all, YOLOv8n-CTAM is a lightweight detector with an impressive
435 frames per second (FPS) on a single NVIDIA RTX 3090. YOLOv8n-CTAM demon-
strates considerable potential for various applications and deployments in diverse remote
sensing scenarios.

Table 4. The experimental results of different detectors on the DIOR dataset. ‘--’ denotes difficult-to-
obtain data.

Detector Year mAP@50 Parameters

Mask R-CNN 2017 63.5 44.4 M
SSD 2016 58.6 34.3 M

YOLOv3 2018 57.1 61.9 M
FCOS 2019 69.4 32.3 M

CenterNet 2019 69.4 32.3 M
DETR 2020 68.6 54.7 M

SCRDet++ (ResNet-101) [59] 2022 75.1 --
CANet [60] 2020 74.3 64.6 M
YOLOv5n 2020 72.0 1.9 M
YOLOv8n 2023 74.7 3.0 M

YOLOv8n-CTAM 2023 76.5 4.7 M

Some detection results obtained by YOLOv8n-CTAM are displayed in Figure 5.
YOLOv8n-CTAM successfully overcomes the challenges posed by remote sensing im-
ages, including complicated backgrounds, limited features, distinct density, and varied
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scales. It achieves salient performance across various scenes and multi-scale categories.
Although it may miss some targets or yield incorrect results in extremely hard situations,
the acceptable detection accuracy with the remarkably low computational burden renders
YOLOv8n-CTAM flexible and robust for deployment on real-time hardware platforms. In
conclusion, the integration of global and local information within CTAM can compensate
for inherent drawbacks in CNN and Transformer, leading to excellent localization capacity
and detection accuracy in remote sensing images.
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4.5. Ablation Study
4.5.1. The Simplified Transformer in CTAM

Transformer is a powerful structure that can acquire long-range dependency by calcu-
lating scaled dot-product attention among all positions. To address the critical limitation
of CNNs lacking global contextual information, we incorporate Transformer into CTAM
to integrate local features with contextual and comprehensive information. Although
the standard Transformer derived from NLP has been widely applied in CV, we assume
that sequences and images have essential differences, and the standard Transformer can
be optimized to achieve better performance for object detection in remote sensing sce-
narios. In this paper, we delve into a detailed analysis of the Transformer structure and
construct a simplified Transformer layer in CTAM to accommodate the task of remote
sensing object detection.
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Extensive experiments for the optimal Transformer encoder structure were conducted
on the DIOR dataset, as documented in Table 5. At first, ‘Initial’ has the worst mAP@50-95
among all Transformer variants. The absence of LayerNorm in ‘A’ results in an improve-
ment of 0.5 mAP@50-95 compared with ‘Initial’, indicating that LayerNorm, widely applied
in NLP, may hinder detection performance in remote sensing scenarios. Subsequently,
the variants with different numbers of heads, specifically two and four, exhibit identical
performance to the variant with ‘#Heads’ = 1. Hence, we removed this hyperparameter
and viewed it as a constant. Similarly, ‘Dropout’ has a negative impact on the detection
accuracy, so it was set to 0. Finally, we eliminated the activation function ‘GeLU’ from MLP
and constructed the simplified Transformer layer for CTAM. Moreover, the investigation of
the influence of biases in MHA and MLP illustrates that the simplified Transformer encoder
with both biases achieves the most salient performance on the DIOR dataset.

Table 5. Ablation study for the Transformer structures. ‘Initial’ and ‘Simplified’ denote the initial
and final Transformer structures, respectively. ‘A’–‘G’ are the Transformer variants with different
hyperparameters. The number of heads in self-attention is represented as ‘# Heads’.

Transformer LayerNorm GeLU MHA bias MLP bias # Heads Dropout mAP@50-95

Initial
√ √ √ √

1 0 53.3
A

√ √ √
1 0 53.8

B
√ √ √

2 0 53.8
C

√ √ √
4 0 53.8

D
√ √ √

1 0.1 53.6
E 1 0 53.6
F

√
1 0 53.4

G
√

1 0 53.4
Simplified

√ √
1 0 54.2

4.5.2. The Number of ‘CBSs’

In the convolutional bottleneck block of CTAM, the number of ‘CBSs’ serves as a
hyperparameter introduced to regulate the extraction of local features and restrict compu-
tational complexity, as depicted in Figure 2. We varied the value of ‘n’ within the range
[0, 1, 2, 3], and the corresponding experimental results are listed in Table 6. YOLOv8n with
CTAM (n = 2) achieves the best precision, recall, mAP@50, and mAP@50-95, illustrating that
it adequately extracts and fuses local features while increasing negligible computational
burden. Consequently, CTAM (n = 2) is considered as the default module for YOLOv8n
due to its optimal performance.

Table 6. Ablation study for the number of ‘CBSs’ within the convolutional bottleneck block.

# CBSs Precision Recall mAP@50 mAP@50-95 Parameters

Baseline 82.7 67.2 74.7 51.4 3.0 M
n = 0 83.8 68.0 75.7 53.0 4.3 M
n = 1 84.1 67.7 75.7 53.4 4.5 M
n = 2 84.6 68.5 76.5 54.2 4.7 M
n = 3 83.9 68.7 76.0 53.6 4.9 M

4.5.3. Comparison with Traditional Attention Modules

Traditional attention modules in CV such as SE [61], CBAM [62], and ECA [63] have
widespread applications in CV. To enhance features and suppress noises, these modules uti-
lize the information extracted from the feature map to recalibrate themselves. However, like
NAB, we claim this way is inflexible and harmful for feature extraction. In contrast, CTAM
utilizes the global information generated by the simplified Transformer layer to integrate
with the local features of the convolutional bottleneck block. For a fair comparison, we
replaced CTAM with SE, CBAM, and ECA in the same positions, and the corresponding ex-
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perimental results are displayed in Table 7. Compared with the original model, SE, CBAM,
and ECA are nearly useless in performance, but CTAM brings an obvious improvement.

Table 7. Ablation study for traditional attention modules.

Model Precision Recall mAP@50 mAP@50-95

Baseline 82.7 67.2 74.7 51.4
YOLOv8n-SE 83.7 67.1 74.9 51.4

YOLOv8n-CBAM 83.1 66.9 74.7 51.2
YOLOv8n-ECA 82.4 66.9 74.2 51.0

YOLOv8n-CTAM 84.6 68.5 76.5 54.2
YOLOv8n-CTAM (Local) 83.0 67.9 75.3 53.1

YOLOv8n-CTAM (Global) 82.4 66.4 74.0 51.0

Moreover, YOLOv8n-CTAM (Local) and YOLOv8n-CTAM (Global) represent YOLOv8n-
CTAM only with the convolutional bottleneck block and the simplified Transformer layer,
respectively. Their results in Table 7 demonstrate that the integration of local features and
global attention is indispensable and significant.

4.6. Visualization

To further comprehend the influence of employing CTAM between the path aggrega-
tion structure and the detection head in YOLOv8n, we visualize the feature maps before
and after the employment of CTAM, as depicted in Figure 6. The raw image contains
two small-size vehicles and two medium-size airplanes. The detection results generated
by YOLOv8n-CTAM exhibit highly accurate bounding boxes and reliable probabilities,
demonstrating the effectiveness of CTAM. YOLOv8n is structured with three branches
for multi-scale prediction, where the feature maps with 8×, 16×, and 32× downsampling
rates are responsible for small-size, medium-size, and large-size targets, respectively. In the
small-scale branch, the feature map behind CTAM exhibits higher and more centralized
attention towards the two vehicles, compared with the map before CTAM. Meanwhile, in
the medium-scale branch, the former feature map focuses on multiple parts surrounding
the two airplanes, while the attention of the latter map converges on the centers of the
airplanes. Since the responses mainly concentrate on the first two feature maps for these
targets, the visualization and discussion of the large-scale branch are omitted.

This visualization provides valuable insights into how CTAM influences the feature
extraction and fusion in YOLOv8n. The detailed comparison illustrates that CTAM en-
ables YOLOv8n to focus on the central regions of targets and generate extremely accurate
bounding boxes by integrating local features with global contextual information. This
visualization corresponds with the conclusion that CTAM can significantly improve the
localization capacity according to the mAP values with different IoU thresholds.

4.7. Experiments on the TGRS-HRRSD Dataset

To validate the generalization ability of CTAM, we also conducted experiments on the
TGRS-HRRSD dataset, a multi-scale remote sensing dataset containing 55,740 instances
and 13 categories. For a fair comparison, we adopted the consistent hyperparameters and
strategies used in the DIOR dataset and trained detectors on the train–validate set. As listed
in Table 8, YOLOv8n-CTAM outperforms the baseline by 0.9 mAP@50 and 2.1 mAP@50-
95. Compared to typical detectors, YOLOv8n-CTAM achieves a superior performance
on the TGRS-HRRSD dataset while maintaining a rapid detection time. Compared with
lightweight models, YOLOv8n-CTAM exceeds YOLOv4-Tiny and YOLOv4-Tiny-NAB by
a large margin. Hence, these experiments indicate that CTAM is not limited to a specific
dataset and exhibits excellent generation ability in various remote sensing scenarios.
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Table 8. The experimental results of different detectors on the TGRS-HRRSD dataset.

Detector Year mAP@50 Parameters

SSD 2016 73.0 34.3 M
YOLOv3 2018 91.1 61.9 M

FCOS 2019 86.9 32.3 M
YOLOv4-Tiny 2020 83.4 5.9 M

YOLOv4-Tiny-NAB 2022 87.2 7.1 M
YOLO-RS 2023 87.7 --

AALFF 2023 88.9 21.7 M
YOLOv8n 2023 91.9 3.0 M

YOLOv8n-CTAM 2023 92.8 4.7 M

5. Conclusions

Remote sensing images have complicated backgrounds, limited features, distinct
densities, and varied scales, rendering global contextual information extremely significant
and valuable for object detection. However, CNN-based detectors with the limitation
of local receptive fields have difficulty in capturing long-range dependency, resulting
in inferior performance. To eliminate this inherent deficiency, we make the following
contributions in this paper:

(1) We construct a novel plug-in-play attention module called CTAM, composed of a
convolutional bottleneck block and a simplified Transformer layer. It can integrate
local features with global contextual information through the interaction between the
two components.

(2) We design a simplified Transformer in CTAM that is unlike the standard Transformer
encoder widely applied in CV, and we demonstrate its validity in various remote
sensing scenarios.

(3) For real-time object detection in remote sensing, we adopt YOLOv8n as the baseline
and introduce CTAM to build YOLOv8n-CTAM. Extensive experiments demonstrate
that YOLOv8n-CTAM achieves cutting-edge performance and generalization ability
while maintaining an extremely rapid inference speed.

(4) The visualization of CTAM explicitly explains why CTAM can enhance localization
capacity and improve detection accuracy by incorporating global information into
local features.

Despite the remarkable performance and efficiency displayed by CTAM, it also brings
unacceptable computational complexity and memory usage due to the defect of self-
attention. In the future, we will optimize the computation of self-attention in CTAM and
further explore the feasibility and flexibility of designing a backbone based on CTAM for
object detection in remote sensing.
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