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Abstract: Drought can have significant impacts on forests, with long periods of water scarcity leading
to water stress in trees and possible damages to their eco-physiological functions. Satellite-based
remote sensing offers a valuable tool for monitoring and assessing drought conditions over large and
remote forested regions. The objective of this study is to evaluate the hydrological consistency in the
context of drought of precipitation, soil moisture, evapotranspiration, and land surface temperature
observations against in situ measurements in a number of well-monitored sites in New Zealand.
Results showed that drought indicators were better captured from soil moisture observations com-
pared to precipitation satellite observations. Nevertheless, we found statistically significant causality
relationships between the multi-sensor satellite observations (median p-values ranging from 0.001 to
0.019), with spatial resolution appearing to be an important aspect for the adequate estimation of
drought characteristics. Understanding the limitations and capabilities of satellite observations is
crucial for improving the accuracy of forest drought monitoring, which, in turn, will aid in sustain-
able forest management and the development of mitigation and adaptation strategies in the face of
changing climate conditions.

Keywords: drought; multi-sensor; satellite; forests

1. Introduction

Drought can have significant impacts on forests, with long periods of water scarcity
leading to water stress in trees and possible damages to their eco-physiological functions [1].
While trees can somewhat control their water loss through stomatal regulation, dry condi-
tions and the associated prolonged rising temperatures can lead to greater tree mortality
and increased vulnerability [2]. There are also indirect impacts of drought on forests,
including pest outbreaks and wildfires [3]. As climate change alters the frequency and
magnitude of these disturbances and potentially exacerbates these impacts, the monitoring
of drought and understanding of its mechanisms becomes important for adapting forest
management to mitigate the associated adverse impacts. Particularly for planted forests,
understanding the locations of higher and lower drought risk areas in the forest allows
for more cost-effective management planning [4]. Satellite observations have been widely
used to provide valuable information on different drought characteristics, especially as
they can estimate the spatial and temporal development of drought events over regional to
continental scales [5]. Multi-sensor remote sensing offers several advantages for monitor-
ing drought, including potentially better capturing the complexity of process interactions
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and diversity of drought impacts [6]. Currently, satellite observations are being used for
monitoring different aspects of drought and calculating many indicators of drought, with
some being satellite-specific (e.g., [7]).

Precipitation plays a crucial role as the primary variable for the identification of mete-
orological droughts [8]. Nonetheless, there are many challenges associated with the lack
of consistency between multi-sensor or even single-sensor data products (e.g., [9]). To
address this issue, a number of studies have been performed to evaluate and/or compare
different precipitation datasets at regional to global scales (e.g., [10]), with most results
indicating that multi-sensor approaches are advantageous for drought monitoring [11].
Soil moisture is another important variable that defines agricultural drought, and therefore
its observations have been widely used in agricultural and water resources applications
(e.g., [12]). Both active and passive microwave sensors have been used to monitor drought
conditions and soil wetness [13], although they are limited by a shallow soil penetration
depth of less than 5 cm. Thermal stress, which can be a proxy for drought conditions,
particularly during an event’s onset [14], can be inferred from observations of land surface
temperature. The remote sensing of land surface temperature has a long history with
numerous sensors, although issues such as atmospheric correction can complicate the
application for drought monitoring [15]. Nonetheless, the combination of land surface
temperature observations with different vegetation indices has been successfully applied
to quantify soil water content [16]. Vegetation indices have also been used on their own to
monitor drought conditions via observing vegetation health. The primary index used for
this purpose is the normalized difference vegetation index (NDVI), although it has many
limitations, including atmospheric effects, saturation issues, and soil brightness [17]. An
alternative index that was developed to overcome some of those issues and is being used
in drought-related applications is the enhanced vegetation index (EVI) [18]. Evapotranspi-
ration contains information on land–atmosphere interface processes, and therefore such
observations can be used to estimate drought characteristics [19]. As evapotranspiration is
not directly observed from satellite sensors, a number of different algorithms have been
developed that incorporate a suite of additional data (meteorological, radiation, etc.) into
semi-empirical models. Finally, observations of total water storage that can also provide
information on groundwater storage have been used to characterize hydrological drought.
The Gravity Recovery and Climate Experiment (GRACE) and interferometric synthetic
aperture radar sensors have been used for drought monitoring [20], although they each
have their limitations, including a very coarse spatial resolution for the former or signal
coherence for the latter.

With drought having multiple facets, the use of multiple sensors to observe differ-
ent variables related to drought characteristics becomes a viable option. However, this
multiplicity of data sources brings with it the challenge of ensuring the harmonization
and reliability of observations [21]. Inaccuracies and discrepancies in data derived from
different sensors, particularly in terms of spatial scales, can propagate through the esti-
mation of drought indicators. Consequently, the need to comprehensively evaluate the
hydrological consistency across multiple sensors becomes important [22], especially in
forested environments that present additional complexities for drought estimation.

Some of these complexities include the subtle effects to forests caused by drought
(wilting, reduced needle density, etc.), the diversity in plant species with different drought
tolerance levels, and the effects of the different types of drought, such as soil moisture,
precipitation, and temperature stress [23]. Therefore, the objective of this study is to evalu-
ate the hydrological consistency in the context of drought of precipitation, soil moisture,
evapotranspiration, and land surface temperature observations against in situ measure-
ments in a number of forested sites. This assessment of the hydrological consistency is
two-fold and includes the validation of multiple products observing the same variable
or drought indicator as well as the evaluation of the dependence relationship and causal-
ity between observations of different variables that describe the hydrological processes
controlling drought.
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2. Methods
2.1. Study Sites

Seven sites throughout New Zealand were used for this study, located in planted
forests where soil moisture sensors and meteorological stations were installed. All forests
are managed for commercial forestry with the same species, Pinus radiata (D. Don), with
ages ranging from 5 to 20 years (Table 1). These sites were used in an earlier study [24].
Regarding long-term climatic patterns, these sites have an annual total precipitation ranging
from 345 to 1420 mm, and annual mean daily temperature ranging from 10.1 to 13.7 ◦C
(Table 1). Four of the sites (Puruki, Central Kaingaroa, Southern Kaingaroa, and Rangipo)
are situated in the central region of the North Island (see Figure 1) on volcanic Andisols
(Table 1). Two sites (Ashley and Balmoral) are located in the east central part of the South
Island (see Figure 1) on Inceptisols developed from alluvial parent material, while the
last site (Tokoiti) is located on Alfisols developed from schist-derived parent material
(Table 1). All sites have canopy closure (proportion of sky obscured by canopy), and the
forest cover fractions of each site relative to the intrinsic resolution of SMAP pixels (33 km)
range from about 35% for Ashley and Balmoral to 48% for Puruki, 53% for Tokoiti, 58%
for S. Kaingaroa, and 64% for C. Kaingaroa and Rangipo. Additionally, all sites are on
topographically complex terrain with slopes being mostly moderate (Ashley being the only
very steep site) but with large variability, with the exception of the Balmoral site which
is flat.

Tokoiti

Balmoral

Ashley

Rangipo

S. Kaingaroa

C. Kaingaroa
Puruki

Figure 1. Map of New Zealand and the forested sites with ground measurements that were used in
this study (inset map of larger region is included).

Soil volumetric water content was measured by 10HS Soil Moisture Smart Sensors
(Onset Corporation, Borne, MA, USA) originally developed by Decagon Devices, now
Meter Group (Pullman, WA, USA). The sensors use capacitance (amount of electric charge
stored) to measure the dielectric constant of 1100 cm3 of the surrounding soil medium at
70 MHz. The probe converts capacitance values into a proportional single voltage value,
which directly correlates to volumetric water content with an empirical equation [25] and
provides average water content along its length [26]. The data can be used to understand
changes in soil moisture content and the direction of the flow of moisture through the
soil and how these vary both spatially and temporally [27]. The manufacturer’s default
equation was used with an accuracy of ±0.03 m3/m3 and its accuracy and performance
were demonstrated on a range of mineral soils [28]. Sensors were installed horizontally at
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5 cm below the mineral soil surface at Southern Kaingaroa (15 stations), Puruki (23 stations),
and Balmoral (9 stations). At the other four sites, one sensor was installed at a 45◦ angle,
which provided an average soil moisture for approximately the top 10 cm. Temperature and
precipitation data were collected using Onset’s 12-bit Temp/RH Smart Sensors and Rain
Gauge tipping bucket that has a minimum precipitation detection rate of 0.2 mm. Sensors
were either connected to an Onset HOBO U30-NRC metrological station data logger or an
Onset HOBO microstation data logger. Measurements were taken at 5-min intervals at the
Central and Southern Kaingaroa, and at 15 min intervals at the other sites.

Table 1. Description and characteristics of the physiography, geography, and climatology for each
forest study site.

Site Location Elevation (m) Plant Date Annual Mean
Temperature (◦C)

Annual Total
Precipitation (mm)

US Soil
Taxonomy

Puruki 38◦25′S
176◦20′E 624 August 1997 13.7 1340 Typic

Udivitrands

Central
Kaingaroa

38◦53′S
176◦54′E 462 July 2016 12.2 1294 Humic

Ustivitrands

Southern
Kaingaroa

38◦79′S
176◦50′E 757 August 2015 11.3 1176 Humic

Ustivitrands

Rangipo 39◦09′S
175◦82′E 546 August 2016 11.8 1420 Humic

Ustivitrands

Balmoral 42◦79′S
172◦37′E 301 August 2002 11.7 345 Udic

Haplustepts

Ashley 43◦22′S
172◦56′E 242 August 2017 12.3 762 Udic

Haplustepts

Tokoiti 46◦19′S
169◦99′E 147 September

2018 10.1 890 Typic
Fragiudalfs

2.2. Satellite Observations

Table 2 lists the observational datasets that were used in this study along with their
primary characteristics (variable observed, spatial and temporal resolutions). Precipitation
observations were acquired from two sources: the Global Precipitation Measurement
(GPM) satellite mission and the Climate Hazards Group Infrared Precipitation with Station
(CHIRPS) datasets. GPM is a joint NASA/JAXA mission comprising a constellation of
sensors with a dual-frequency radar and a microwave imager as the core observatory,
and provides global precipitation products at relatively high spatial (0.1◦) and temporal
(30 min) resolutions. The algorithm processing these observations is the Integrated Multi-
Satellite Retrievals for GPM (IMERG) [29], and here we used the IMERG late run data
product (version 6). CHIRPS is a quasi-global and long-term daily precipitation dataset
with high spatial resolution (0.05◦) derived from infrared cold cloud duration (CCD)
observations [30]. Both GPM and CHIRPS precipitation estimates have been evaluated
globally and regionally (e.g., [9,31]) as well as in a variety of contexts, including drought
identification and estimation (e.g., [32,33]).

Soil moisture observations were obtained at multiple resolutions from the Soil Mois-
ture Active Passive (SMAP) satellite mission [34]. Although there has been a long history
of microwave sensors providing soil moisture observations, the attenuation and scatter-
ing characteristics of vegetation at their operating frequencies (e.g., C-band) limited their
applicability in forested environments. The lower frequency (L-band) of SMAP can over-
come some of those limitations and has been shown to produce accurate estimates of soil
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moisture in forests (e.g., [24]). In addition, there have been numerous studies that have
evaluated the potential for using SMAP soil moisture observations to monitor drought
characteristics (e.g., [12,35]). The SMAP data products that we used in this study include
the SPL3SMP_E Enhanced Level-3 soil moisture and the SPL2SMAP_S Level-2 product,
which combines SMAP and Sentinel-1 measurements to derive soil moisture at 3 and 1 km.
The 9 km product samples the coarser brightness temperature (TB) measurements from
the SMAP radiometer (~36 km) on a 9 km grid using the Backus–Gilbert approach and
inverts them to a soil moisture estimate [36]. On the other hand, the 3 and 1 km prod-
ucts merge the SMAP radiometer and Sentinel-1 C-band synthetic aperture radar (SAR)
observations to downscale TB and then invert it to soil moisture [37]. A limitation of this
algorithm is that the SMAP temporal coverage is degraded due to the narrower width of
the Sentinel-1 swath, which reduces the spatial overlap between the two sensors, leading
to an approximate 12-day observation frequency.

A number of different earth observation datasets are derived from Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) measurements, and, for this study, we used the
land surface temperature (LST) and evapotranspiration data products. The MODIS sensors
have 36 spectral bands in the visible, near-infrared, and thermal infrared portions of the
electromagnetic spectrum and have been used for a multitude of earth science applications
in the past two decades [38]. The land surface temperature data products (MOD11A1.061
from Terra used here) provide daily observations globally at a 1 km spatial resolution with
a validation accuracy of the order of 1–2 ◦C under clear-sky conditions [39]. Land surface
temperature is retrieved from emissivity and other land surface/atmospheric parameters
with split-window algorithms [40], and although there have been efforts to ameliorate
the effects of cloud cover (i.e., missing data) (e.g., [41]), we did not employ any of those
approaches in the data used here. The evapotranspiration data product from MODIS
(MOD16A2.061 from Terra used here) is an 8-day composite dataset with a 500 m spatial
resolution, and is derived from a set of semi-empirical equations that are based on the
Penman–Monteith model [42]. In addition to the satellite observations, the MOD16 algo-
rithm uses regional meteorological data and parameter calibration, with the latter leading
to potentially sub-optimal performance in certain regions and land covers [43].

Table 2. List and characteristics (resolution and variable) of satellite observation datasets
used in this study.

Sensor Variable Spatial Resolution Temporal Resolution

GPM Precipitation 0.1◦ 3-hourly
CHIRPS Precipitation 0.05◦ Daily
SMAP Soil moisture 1–9 km 1–12 days

MODIS Land surface
temperature 250 m 8 days

MODIS Evapotranspiration 1 km 8 days

All satellite datasets were acquired using the earthaccess Python library for NASA
Earthdata APIs and the earthengine-api Python interface to the Google Earth Engine.

2.3. Assessing Hydrologic Consistency

Drought affects different parts of the water cycle and generally falls on the spectrum
of meteorological, agricultural, hydrological, and socioeconomic in terms of drivers and
impacts [44]. Consequently, many hydro-meteorological variables and a number of different
indices have been used to characterize different aspects of drought. The former include
precipitation, soil moisture, and runoff, while the latter are numerical representations that
describe drought features such as magnitude, severity, duration, extent, etc., and can be
based on uni- or multi-variate calculations [45,46].

As the objective of this study is the evaluation of the consistency of different remotely
sensed observations related to drought characteristics, we calculate a number of indices
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related to each variable observed by each sensor and compare them against ground-based
estimates. The standardized precipitation index (SPI) measures the deviation of precipita-
tion from its long-term average and provides a standardized measure of drought severity.
The SPI can be calculated for different duration (1 to 24 months usually) [47] with a non-
parametric approach that transforms precipitation to a z-score [48]. The other precipitation-
based indicator of drought that we calculated was the duration of dry spells [49], which
were defined as the number of consecutive days with zero precipitation. Although there
are studies that have defined dry spells using different precipitation thresholds (e.g., [50]),
we argue that a non-zero threshold value is subjective and could be sensor-dependent.

Soil moisture is a key indicator of water availability in forested environments, and
therefore we examined the drydown rates, moisture content during summer months,
and probability distribution of soil moisture. A drydown can be defined as a period
of a sustained decrease in soil moisture [51], and quantifying it can provide insights on
soil hydraulic properties and land–atmosphere feedback mechanisms, although spatial
heterogeneity and coupled soil–vegetation–climate dynamics appear to dominate the
drydown signal at larger observation scales (e.g., remotely sensed) [52,53]. In order to
identify drydown periods, we adapted the approach from McColl et al. [54] by finding
periods in each time series where the total decrease in soil moisture was at least 5% of
the observed range. Subsequently, we selected only periods with a duration longer than
1 day and calculated the drydown rate as the change in soil moisture (expressed as percent
volumetric content) divided by the duration in days. When comparing estimated drydown
rates between different datasets (ground- and satellite-based), the drydown periods will
most likely not be identical. Therefore, we aligned the drydown events identified in the
satellite and ground observation time series by matching periods of soil moisture decreases
in the two time series that were within 7 days of each other in terms of starting date.
Another important indicator for forest health during dry periods is the number of days
that soil moisture is below a certain threshold (e.g., critical drying threshold [55]). For
our study sites, we selected a threshold value of 0.2 cm3cm−3 as it corresponds to “very
dry” conditions [56]. The number of days below that threshold was then calculated from
the ground measurements and both SMAP and SMAP/Sentinel observations between
December and March of each year as this is typically the driest period [57]. Finally, we
examined the agreement between the probability distributions of soil moisture in terms
of the empirical CDF as the latter can be used to define drought severity for different
events [58]. There are a number of different metrics used to evaluate the agreement between
distributions [59], but here we chose to use the two-sample Kolmogorov–Smirnov statistic,
which is non-parametric and quantifies the distance between the cumulative distributions
of two samples [60].

We evaluated the consistency of satellite land surface temperature and evapotranspi-
ration from MODIS by directly comparing against estimates from ground measurements,
as well as assessing their variability with soil moisture. The objective of this analysis was
the evaluation of the relationship between land surface temperature and evapotranspira-
tion with soil moisture and particularly soil water deficits. Many studies have shown the
use of land surface temperature as a proxy for soil moisture during drought conditions
(e.g., [61]), and therefore a simple correlation analysis should suffice as an initial verifica-
tion of that relationship from satellite observations. A similar assessment was performed
with satellite evapotranspiration from MODIS and soil moisture from SMAP, but we also
compared the former with ground-based estimates of evapotranspiration calculated using
the Priestley–Taylor method [62]. Although the MODIS evapotranspiration is calculated
based on a Penmann–Monteith method, we used the Priestley–Taylor method to compute
the ground-based estimates as it has comparatively reduced data requirements and has
been shown to be effective in forested environments [63,64]. A summary of the indices that
were calculated for and the datasets used in this assessment is shown in Figure 2.
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Figure 2. Diagram of the variables, satellite datasets, and drought indicators/analyses performed in
the assessment of multi-sensor hydrologic consistency at the studied forested sites.

The calculation of some of the aforementioned drought indices from satellite observa-
tions and subsequent comparison with ground-based estimates can be problematic due
to missing data in the former. In particular, the number of dry summer days and the
empirical CDF for soil moisture could not be calculated for the SMAP/Sentinel observa-
tions due to their temporal frequency. Therefore, we applied an imputation method based
on Gaussian process regression to interpolate the missing data in the soil moisture time
series. Although there are many methods for time series imputation [65], Gaussian process
regression is a non-parametric, kernel-based method that can be used for interpolation [66].
Figure 3 shows an example of applying the imputation method on the ground soil moisture
measurements sampled at the SMAP/Sentinel observation days and then comparing the
interpolated (“Prediction”) and the actual (“Truth”) time series. Although the imputation
is not able to capture some of the short-scale variability, it does provide a realistic estimate
with relative root mean squared errors less than 10% when tested across the study sites.
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Figure 3. Validation example of the time series imputation approach at the Ashley forest site. The actual
daily time series is derived from the ground measurements at the site, with the observations being
subsampled to match the SMAP/Sentinel observation frequency. The prediction time series was then
generated from the observations and a Gaussian process model along with the 95% confidence intervals.

Finally, we evaluated the potential causality relationships between satellite observa-
tions of precipitation, soil moisture, land surface temperature, and evapotranspiration using
the Granger causality statistical test. The Granger causality test has been widely used in
many disciplines and essentially quantifies the dependence when regressing two variables
for different time lags [67]. This statistical test is used to determine the direction of causality
between two time series variables by regressing each variable with the other’s lagged
values. If the coefficients of the regression equation are different from zero to a specific
statistical significance level, then there is a causal relationship between the variables [68].
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The regression can be performed with a vector auto-regressive model after choosing the
maximum time lag. Here, we compute and evaluate the statistical significance of the test
for both the ground measurements and the satellite observations using the Sciki-learn
Python machine learning library.

3. Results
3.1. Precipitation

In contrast to floods, droughts are slower phenomena with persistence, and therefore
an initial comparison of satellite precipitation for characterizing drought can be performed
at the monthly scale. We aggregated the daily satellite observations of precipitation to
monthly values and compared them against ground measurements (aggregated from
sub-daily to monthly). In order to focus on dry conditions, we evaluated the satellite
observations only for months when precipitation was less than the mean precipitation for
each site (based on the in situ measurements). Figure 4 shows a scatter plot of monthly in
situ precipitation against satellite precipitation for both GPM and CHIRPS during months
with below-average precipitation. Both satellite datasets perform relatively poorly when
compared to the ground measurements, with R2 values that range from 0.01 to 0.37 for
CHIRPS and 0.01 to 0.32 for GPM. That performance appears to be consistent across all
the study sites, with a mean R2 of 0.09 and 0.11 for CHIRPS and GPM, respectively. If
we do not apply the filtering of months with below-average precipitation (i.e., include all
months), the error metric improves to an average of 0.31 (CHIRPS) and 0.32 (GPM) across
the study sites.
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Figure 4. Comparison of in situ and satellite (both CHIRPS and GPM datasets) monthly precipitation
amounts for all study sites when in situ measurements were below each site’s respective mean.

In contrast to the comparison of precipitation amounts, a more direct comparison
for drought identification is the SPI. Figure 5 shows a comparison of time series of the
3-month SPI (SPI-3) between the satellite and in situ observations at each study site. There
is significant disagreement between both the satellite and the in situ observations but also
between the two satellite datasets. The SPI calculated from CHIRPS observations did
exhibit the highest correlations with in situ observations for two of the sites (Balmoral
and S. Kaingaroa) albeit they were only 0.23 to 0.34, with the mean correlation being
0.11 across all sites. The correlation of SPI calculated from GPM observations has an
average of 0.02, with four of the sites (Rangipo, Balmoral, C. Kaingaroa, and Puruki)
actually having negative correlations. These results are in contrast to the correlations of
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the precipitation amounts, with the average correlations being 0.55 and 0.52 for CHIRPS
and GPM, respectively. When SPI is calculated for a 6-month duration, results do improve,
with the highest correlations being 0.73 for Balmoral (CHIRPS) and 0.56 for C. Kaingaroa
(GPM), although the average correlations remain relatively low (0.24 and 0.12 for CHIRPS
and GPM, respectively).
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Figure 5. Comparison of SPI-3 time series derived from in situ, GPM, and CHIRPS observations at
each study site.

Figure 6 shows the average duration of dry spells (i.e., consecutive days with zero
precipitation) per month for each site and all three datasets (in situ, GPM, and CHIRPS).
The Ashley and Balmoral forest sites do show relative agreement between the satellite
datasets, at least when compared to the rest of the study sites. The difference in the satellite-
estimated dry spell duration from the ones estimated from ground observations is ~5 and
~4 days for those two sites, but CHIRPS consistently overestimates duration for all other
sites. The root mean squared error (RMSE) for duration ranged from 2.0 to 5.9 days for
GPM, and 4.8 to 9.9 days for CHIRPS. On the other hand, when comparing the monthly
time series of dry spell duration, the correlations between the satellite and ground-based
estimates ranged from 0.12 to 0.52 for GPM (mean of 0.37) and −0.44 to 0.21 for CHIRPS
(mean of 0.01).
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with zero precipitation per month.
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3.2. Soil Moisture

Figure 7 shows scatter plots of the drydown rates estimated at each study site from
the ground measurements versus the ones estimated from the satellite observations. The
calculation of the drydown rates can be affected by the temporal resolution of the satellite
datasets. Although the time series matching procedure ensures to a reasonable degree that
the same events are identified, the frequency of the 1 and 3 km SMAP observations could
lead to an overestimation of the duration of the drydown event. With the exception of the
Rangipo and the Tokoiti sites, where the mean duration was 6.8 and 5.6 days, all other sites
had a mean duration between 9.9 and 24.6 days, making the comparison with the SMAP
1 and 3 km datasets appropriate. Overall, the drydown rates calculated from the SMAP
observations exhibit disagreement with the ground-based estimates to varying degrees. It
is clear, however, that the finer spatial resolution estimates (SMAP/Sentinel data products)
are closer to the ground-based estimates when compared to the SMAP 9 km data product.
In particular, the average R2 across the study sites for the 9 km SMAP product is 0.03,
whereas it is 0.07 for the 3 km SMAP/Sentinel dataset and 0.06 for the 1 km SMAP/Sentinel
dataset. In terms of RMSE, the average over the study sites was 0.01 for the SMAP/Sentinel
dataset and 0.02 for the SMAP dataset. Apart from C. Kaingaroa, at each of the sites there
was at least one of the satellite datasets that had a RMSE less than 0.01 cm3cm−3/day. The
SMAP 9 km dataset only satisfied the 0.01 RMSE threshold for Balmoral, which was the
only site where the 1 km dataset exceeded that RMSE value; the 3 km product, on the other
hand, exceeded it for only Tokoiti and C. Kaingaroa.
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Figure 7. Comparison of estimated soil moisture drydown rates between in situ (x-axis), SMAP (9 km
resolution, y-axis) and SMAP/Sentinel (3 and 1 km resolution, y-axis) observations at each study site.
Drydown events were identified for each dataset and rates were calculated and aligned between the
in situ and satellite observations.

The number of summer days with “very dry” soil columns in the study sites showed
very good agreement overall with the ground observations. Figure 8 shows a scatter plot
of the summer days with soil moisture less than 0.2 cm3cm−3 calculated from ground
measurements and satellite observations for the different satellite products. The only
outlier relative to the 1:1 line is the summer 2018 for the SMAP/Sentinel dataset, when
the number of summer “very dry” days was 9 (1 km) and 11 (3 km) versus 60 (in situ).
The correlations were relatively high, with R2 being 0.93 for the SMAP 9 km dataset and
0.85 and 0.83 for the SMAP/Sentinel 3 and 1 km datasets. Similarly, the difference from
the ground measurements in terms of RMSE was 10.2, 14.3, and 15.0 days for the 9, 3, and
1 km datasets.
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Figure 8. Comparison of summer days with soil moisture below a 0.2 cm3cm−3 threshold computed
from in situ (x-axis) and SMAP satellite observations (y-axis).

Finally, we examine the probability distributions of soil moisture from the ground mea-
surements and the satellite observations, shown in Figure 9 for each study site. The distri-
butions of soil moisture show a general qualitative agreement between the SMAP/Sentinel
datasets and the ground measurements. With the exception of the S. Kaingaroa and Ashley
Forest sites, the SMAP dataset shows relatively poor agreement with the in situ empirical
CDF. These results are reflected in the values of the Kolmogorov–Smirnov (K-S) statistic,
which is closer to 0 if the distributions agree and 1 if they disagree. The SMAP dataset has a
statistic of 0.06 for the S. Kaingaroa site and 0.22 and 0.29 for Ashley and Balmoral, but over
0.44 for the rest of the sites, with the average being 0.41 for all sites. The SMAP/Sentinel
datasets, on the other hand, had average scores of 0.19 (3 km) and 0.27 (1 km), with the
best-performing site being S. Kaingaroa and the worst being Rangipo (both) and Tokoiti
(just the 1 km product).
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Figure 9. Comparison of empirical CDFs calculated from in situ and SMAP satellite observations
(including the SMAP-E and SMAP/Sentinel data products) of soil moisture at each study site.
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3.3. Land Surface Temperature

Although ground measurements of land surface temperature were not available, we
can evaluate the MODIS observations against measurements of 2 m air temperature at the
study sites. The correlations ranged from 0.70 (Puruki) to 0.87 (C. Kaingaroa), with an
average correlation of 0.79, suggesting that the satellite observations captured the variability
in temperature. More importantly, we assessed how consistent the MODIS land surface
temperature observations were with soil moisture observations. Figure 10 shows time
series plots of SMAP soil moisture and MODIS land surface temperature for each study site.
Although results were similar for the SMAP/Sentinel observations, we opted to use the
SMAP 9 km product for this assessment as its temporal resolution matches better with that
of the MODIS data. There is a relatively strong inverse relationship between the satellite
soil moisture and land surface temperature. The correlations are the lowest for the Rangipo
(−0.33) and Tokoiti (−0.23) sites, which are also the ones with the smallest sample size.
In contrast, the other sites have much higher anti-correlations, which are −0.83 (Ashley),
−0.78 (Puruki and C. Kaingaroa), −0.74 (S. Kaingaroa), and −0.71 (Balmoral). When the
same analysis is performed with the ground soil moisture measurements, the satellite
land surface temperature exhibits a similar negative correlation but weaker than the one
with the SMAP observations. The correlations in that case range from −0.42 (Balmoral) to
−0.71 (Ashley), with an average of −0.51.
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Figure 10. Relationship between the time series of SMAP soil moisture (left y-axis) and MODIS land
surface temperature (right y-axis) at each study site.

3.4. Evapotranspiration

We compared the ground-based estimates of evapotranspiration with the MODIS
satellite dataset, with Figure 11 showing their scatter plot for all the forest sites. There is a
relatively large bias in the MODIS observations when compared with the ground-based
estimates of −2.4 mm/day. Nevertheless, the two datasets have a relatively high degree of
agreement, as the average R2 is 0.79, ranging from 0.73 (Tokoiti) to 0.84 (Rangipo).

When examining the relationship between the satellite observations of evapotranspira-
tion (MODIS) and soil moisture (SMAP 9 km), we have a similar result to the land surface
temperature comparison. There is a relatively strong inverse relationship between the
two datasets, with correlations that range from −0.56 (Balmoral) to −0.79 (C. Kaingaroa).
Two exceptions to those correlations were the Rangipo and Tokoiti sites, which have correla-
tions of −0.37 and −0.11, respectively. These lower (in absolute value) correlations could be
attributed to the smaller sample size of coincident observations, but do result in an average
correlation of −0.57. Figure 12 shows a scatter plot between SMAP soil moisture and
MODIS evapotranspiration along with regression lines and their 95% confidence intervals.
Results with the SMAP/Sentinel products also exhibited a negative relationship with the
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MODIS observations, although it was not as strong, with average correlations of −0.44
(1 km) and −0.40 (3 km) that can be attributed to the smaller sample size.
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Figure 11. Comparison of evapotranspiration at each study site estimated from the MODIS satellite
observations (y-axis) and in situ measurements (x-axis).
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Figure 12. Scatter plots and linear fit between SMAP satellite soil moisture (x-axis) and MODIS
evapotranspiration (y-axis) showing the relationship between these two datasets at the study sites.
Confidence intervals (90%) for each of the linear fits are also shown.

3.5. Causality Tests

We computed the p-values of the Granger causality test with a maximum lag of 15 days
for the relationship of precipitation, evapotranspiration, and temperature with soil mois-
ture. Figure 13 shows the p-values of the Granger test for the three examined relationships
and each study site. The dependence was evaluated using both satellite observations and
ground measurements, with the only caveat being that air temperature measurements were
used for the ground soil moisture–temperature relationship instead of the unavailable land
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surface temperature. With few exceptions, the causality test was statistically significant at
the 95% level for all relationships. The median p-values for the satellite observations were
0.050 for evapotranspiration, 0.001 for precipitation, and 0.019 for land surface tempera-
ture. On the other hand, the median p-values for ground measurements were 0.0003 for
evapotranspiration, 0.000002 for precipitation, and 0.0012 for temperature. Some of the
higher p-values could be attributable to the sample size effects, e.g., Rangipo and Tokoiti
for soil moisture with precipitation and temperature. The worst p-value was found for the
Rangipo site and the soil moisture/temperature relationship (both ground and satellite
observations). Overall, the statistically significant unidirectional relationship between soil
moisture and the other variables quantitatively confirms the results from the previously
made comparisons, showing that satellite observations have a relatively high degree of
consistency despite limitations with some of the drought indicators.
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Figure 13. p-values of the Granger causality hypothesis F-test for both ground and satellite obser-
vations of soil moisture with observations of precipitation, evapotranspiration, and land surface
temperature. The dashed line signifies the 95% significance level.

4. Discussion

The characterization of meteorological drought from satellite observations appears to
be somewhat problematic. The comparison of rainfall amounts with ground measurements
revealed relatively large errors even at the monthly scale. Although the calculated drought
indicators such as SPI and dry spell duration did not show differences as significant as the
amount comparison, they were still inadequate for reproducing drought characteristics. In
terms of the drought indicators, the record length could also be affecting the calculation
of the SPI, especially at shorter time scales [69]. The sites in this study do represent a
fairly challenging environment for sensing precipitation both in terms of topography and
land cover. In addition, the scale discrepancy between the 5–10 km resolution of the
satellite observations with the ground-based measurements could also be attributed to the
disagreements in rainfall amounts [70].

The scale discrepancy between satellite and ground observations is a pervasive issue
across all observational datasets used here that can be challenging to amend [71]. This was
also evident in the soil-moisture-related comparisons of drydown rates and probability
distributions, with the higher resolution SMAP/Sentinel products outperforming the
coarser SMAP observations. The number of dry summer days, which is a very important
metric for managing forest resources, on the other hand, was captured accurately by
all SMAP soil moisture observations. These results are also supported by a number of
previous studies that found that SMAP soil moisture can be a valuable indicator of drought
conditions either in terms of moisture content [72], soil moisture dynamics [73], probability
distributions [74], and threshold-based drought detection [75].

Evapotranspiration estimates from satellite observations showed good correspondence
with estimates from ground measurements, with high correlations. There was a relatively
large bias though but, overall, the performance of the MODIS product was on par with
results from other studies [43].
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Most importantly, the satellite observations appear to be hydrologically consistent, par-
ticularly when examining the relationships between soil moisture and evapotranspiration
or land surface temperature. Although this is the first such result in forested environments,
it is in agreement with other studies that examined the relationship of SMAP soil mois-
ture with evapotranspiration and land surface temperature [76]. The inverse relationship
between them was evident at the temporal frequency of the satellite observations, with
periods of drier soil conditions directly corresponding to periods of higher land surface
temperature and higher lagged evapotranspiration. These relationships were quantitatively
confirmed using a Granger causality test, which showed statistically significant causal
relationships at the 5% level (with very few exceptions) between soil moisture and the
precipitation, land surface temperature, and evapotranspiration.

Although there are many more drought indices that we could have calculated to
evaluate the hydrological consistency of the satellite observations (e.g., [77–79]), we selected
a subset of either widely used ones (e.g., SPI) or ones that are important for forest resources
(e.g., drydown rates). Two exceptions of some widely used indices that we did not focus
on in this study were the leaf area index (LAI) and normalized difference vegetation index
(NDVI). The results were inconsistent and, as there were no direct in situ observations to
compare them against, we opted to exclude them from the analysis here, although we have
included them in Appendix A.

5. Conclusions

Droughts in forested environments are increasingly recognized as a critical component
of global climate change, affecting ecosystem services. Satellite-based remote sensing
offers a valuable tool for monitoring and assessing drought conditions over large and
remote forested regions. However, the consistency and accuracy of satellite observations in
quantifying forest drought remain subject to various sources of uncertainty, including sensor
characteristics, data processing, and spatial heterogeneity. We performed an assessment of
the consistency of satellite observations of drought from multiple sensors in a number of
well-monitored sites in New Zealand. Results showed that drought indicators were better
captured from soil moisture observations compared to precipitation satellite observations.
Nonetheless, we found statistically significant causality relationships between the multi-
sensor satellite observations, with spatial resolution appearing to be an important aspect for
the adequate estimation of drought characteristics. Causality was tested for the relationship
of precipitation, evapotranspiration, and temperature with soil moisture. With a few sites
being the exception, relationships were found to be statistically significant at the 95% level,
with stronger relationships between soil moisture and precipitation.

The findings of this study, particularly the ability to quantify the dry summer days,
can have implications for the utilization of satellite-based drought information in forest
management, ecosystem modeling, and climate change assessments. Understanding the
limitations and capabilities of satellite observations is crucial for improving the accuracy of
forest drought monitoring, which, in turn, will aid in sustainable forest management and
the development of mitigation and adaptation strategies in the face of changing climate
conditions. Lastly, the methodology presented in this study is not necessarily limited to
forested areas but could be applied for evaluating multi-sensor satellite observations for
drought estimation in other types of landscape.

Author Contributions: Conceptualization, K.M.A.; methodology, K.M.A. and D.M.; software, K.M.A.;
validation, K.M.A., P.C.-L., N.D., and D.M.; formal analysis, K.M.A.; investigation, K.M.A.; resources,
K.M.A. and D.M.; data curation, P.C.-L. and B.H.; writing—original draft preparation, K.M.A.;
writing—review and editing, K.M.A., D.M., B.H., and N.D.; visualization, K.M.A.; supervision,
K.M.A.; project administration, D.M.; funding acquisition, D.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Ministry of Business, Innovation and Employment of New
Zealand Endeavour Fund grant number C04X1905.



Remote Sens. 2024, 16, 852 16 of 19

Data Availability Statement: The data presented in this study are openly available in https://dx.doi.
org/10.6084/m9.figshare.24899733 (accessed on 18 February 2024).

Conflicts of Interest: Author Dean Meason and Priscilla Corbett-Lad were employed by the company
Scion-New Zealand Forest Research Institure Ltd. And author Barbara Höck was employed by the
company Candleford Ltd. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

Appendix A

Figure A1. Time series of satellite soil moisture observations from SMAP (left y-axis) and NDVI
observations from MODIS (right y-axis) for all study sites.

Figure A2. Time series of satellite soil moisture observations from SMAP (left y-axis) and LAI
observations from MODIS (right y-axis) for all study sites.
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