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Abstract: The Biomass Proxy is a new cloud-free vegetation monitoring product that offers timely and
analysis-ready data indicative of above-ground crop biomass dynamics at 10m spatial resolution. The
Biomass Proxy links the consistent and continuous temporal signal of the Sentinel-1 Cross Ratio (CR),
a vegetation index derived from Synthetic Aperture Radar backscatter, with the spatial information
of the Sentinel-2 Normalized Difference Vegetation Index (NDVI), a vegetation index derived from
optical observations. A global scaling relationship between CR and NDVI forms the basis of a novel
fusion methodology based on static and dynamic combinations of temporal and spatial responses of
CR and NDVI at field level. The fusion process is used to mitigate the impact on product quality of low
satellite revisit periods due to acquisition design or persistent cloud coverage, and to respond to rapid
changes in a timely manner to detect environmental and management events. The resulting Biomass
Proxy provides time series that are continuous, unhindered by clouds, and produced uniformly across
all geographical regions and crops. The Biomass Proxy offers opportunities including improved crop
growth monitoring, event detection, and phenology stage detection.

Keywords: agricultural monitoring; crop biomass; fusion algorithm; radar; optical; field scale;
vegetation index; remote sensing

1. Introduction

As the global population continues to rise, feeding the world requires the intensifica-
tion of agricultural systems to meet the growing demand. This intensification should be in
harmony with sustainable practices if we are to alleviate the environmental strain imposed
on our climate and resources [1]. Thorough monitoring of agricultural systems is key if
we are to achieve the intensification of agriculture in a sustainable manner [2,3]. A lack
of knowledge on local crop conditions results in the non-conservative application of agri-
cultural inputs (such as fertilizers, herbicides, pesticides), which may result in significant
amounts in our environmental waters [4]. Accurate field-level data can provide guid-
ance on how to increase crop productivity without increasing environmental pressure [5].
Timely information on crop biomass status, intra-yield variability, or field-level changes is
crucial to make informed decisions on the respective monetary, natural, or (bio-)chemical
resources [6]. Satellite remote sensing enables global-scale agricultural monitoring, making
it a pivotal tool in advancing the adoption of sustainable agricultural pathways [7].

When it comes to monitoring agriculture, the prevailing approach in both academic
studies and operational management is the use of optical indices [8]. Vegetation indices
based on optical remote sensing data from the visible to the infrared spectral domains
are widely adopted, as they provide an adequate estimation of canopy photosynthetic
activity [9]. One of the most commonly used indices is the Normalized Difference Veg-
etation Index (NDVI), introduced by Tucker [10]. There are numerous open-access and
commercial providers of optical indices [11,12]. With the launch of the latest Landsat
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Missions, Sentinel-2, and commercial satellites such as Planet’s Dove and SuperDove con-
stellations, such services are improving what is possible in agricultural monitoring by
increasing spatial and temporal resolutions.

However, operational use of optical vegetation indices is often jeopardized by atmo-
spheric conditions, such as cloud formation [13]. Under cloudy conditions, optical remote
sensing observations are unable to deliver a reliable and continuous vegetation signal over
fields of interest. Therefore, algorithms and products using solely optical vegetation indices
such as NDVI exclude potential users in cloud-prone areas [14]. In addition, optical indices
saturate over crops with a high vegetation density [15].

In contrast to optical observations, Synthetic Aperture Radar (SAR) observations re-
main unaffected by cloud coverage, as they operate in the microwave domain, capable
of penetrating through clouds. Consequently, SAR has emerged as a viable alternative to
optical observations for vegetation monitoring, particularly in cloudy conditions. The inter-
pretation of SAR data, however, is usually more challenging than optical data [16]. SAR
backscatter over agricultural canopies is driven by the dielectric constant, orientation, size,
and distribution of the crop constituents (e.g., stems, leaves, ears), and the roughness and
dielectric properties of the underlying soil [17,18]. In order to isolate the contribution
of vegetation from the total observed backscatter, radar vegetation indices are generally
used [19] that make use of polarimetric properties of SAR systems. For example, the Cross
Ratio (CR), which is the ratio of two individual polarizations, Vertically Emitted–Vertically
Received (VV) and Vertically Emitted–Horizontally Received (VH) polarizations, mainly
represents the interactions between the radar signal and the crop and reduces the effect
of environmental influences (e.g., precipitation events) [20,21] and viewing configuration,
while showing good agreements with NDVI [20,22]. After the deployment of the Sentinel-1
constellation, polarimetric SAR data have seen rising utilization in agricultural monitoring
due to their high spatial and temporal resolution and global coverage [18].

Data acquired by optical and microwave sensors can be linked to important biophysical
variables such as crop biomass [8,23]. Research has demonstrated that SAR observations
are sensitive to vegetation water content [21,24]. Additionally, it has been shown that
optical indices provide important insights in the spatial distribution of crop biomass [25,26].
Tracking the growth of crop biomass is essential as it is directly linked to crop yield [27,28]
and can be used to refine agricultural practices like variable rate applications of fertilizers,
pesticides, or irrigation [29].

For the adoption of remote sensing technologies in agriculture, a continuous reliable
monitoring service is key, and large gaps reduce the value of satellite information for
decision making [5]. The integration of Sentinel-1 and Sentinel-2 data offers a more compre-
hensive view of vegetation, combining the strengths of SAR technology and optical imagery.
Current fusion methods integrating the two signals are mostly in the domain of crop classi-
fication and land use mapping (e.g., [30]). Some are targeting gap-filling of NDVI [31–33].
Few are exploiting the opportunity to use both signals for biomass estimations, but this is
mostly performed for forests [34,35] or for specific crops and regions [36–38]. More generic
methods targeting fusion for monitoring of a wide range of crops are limited [39,40] and
have to be adapted for other regions.

The integration of signals is often reached through applying machine learning tech-
niques, but this comes at a cost. The resulting models are often specific to particular crops,
regions, and seasons, limiting their capacity to operate within a global framework. There
is a clear need for Analysis-Ready Data (ARD) in the context of applying remote sensing
techniques for agricultural applications [41]. This entails simplicity, global spatial and
temporal consistency, data devoid of cloud-induced disruptions, and data delivered in a
near-real-time fashion to support informed decision and action. Adopters of optical remote
sensing data can face severe challenges in turning them into agricultural applications due
to atmospheric conditions. The availability of ARD simplifies the process of applying
machine learning algorithms, conducting time-series analysis, and deriving meaningful
insights from remote sensing imagery for agricultural applications [42].
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To fill the gap, Planet’s Biomass Proxy offers a generic method for integrating Sentinel-1
and -2 data to create an ARD product indicative of above-ground crop biomass dynamics
at 10m spatial resolution. The Biomass Proxy is a cloud-free vegetation monitoring product
provided daily and in near real time for continuous operational management and risk miti-
gation. The Biomass Proxy links the consistent and continuous temporal signal of Sentinel-1
CR with the high spatial resolution and accuracy of Sentinel-2 NDVI observations. A novel
analytical fusion methodology based on static and dynamic combinations of temporal and
spatial signatures of NDVI and CR at field level is used to mitigate the impact on product
quality of low satellite revisit periods due to acquisition design or persistent cloud coverage
and respond in a timely manner to rapid changes and detect environmental and manage-
ment events. After describing the Biomass Proxy retrieval algorithm, the product’s main
features are presented and discussed using various use cases selected around the world.

2. Materials and Methods
2.1. Algorithm Description

The Biomass Proxy algorithm is a spatio-temporal fusion approach that uses the latest
optical and radar observations at the field level to provide a continuous vegetation signal;
see Figure 1. The inputs of the algorithm consist of Sentinel-1 images (backscatter coeffi-
cients in VH and VV polarizations), Sentinel-2 images (red and near-infrared spectral bands,
cloud masks), and field boundaries of a singular crop. The outputs of the algorithm are
daily maps of the Biomass Proxy at a 10 m spatial resolution. These maps are indicative crop
biomass dynamics based on all available microwave and optical observations. The main
steps of the algorithm used to produce the Biomass Proxy are described below and detailed
in the following sections:

1. Preprocessing input data and creation of time series
First, the algorithm preprocesses the optical and microwave data using multiple cloud
masking routines for the optical imagery and multi-temporal and spatial speckle
filtering for the microwave images at the field scale. Secondly, time series of NDVI
and CR are generated for individual fields.

2. Scaling CR to the NDVI range
A pre-established scaling relationship between the microwave and optical vegetation
signals is used to translate the CR to the same scale as the NDVI.

3. Fusing time series into single vegetation signal
At a daily time step, the algorithm generates a field average vegetation signal using a
dynamic weighing strategy between the scaled CR and NDVI input signals.

4. Redistributing time series using spatial weights
The field average vegetation signal is then downscaled at 10m spatial resolution using
a dynamic weighting strategy based on the relative spatial variations of the optical
and radar input signals to generate the daily Biomass Proxy output maps.

Temporal and spatial fusion happens separately in order to make use of different
weighing strategies to leverage the different strengths of each signal in the two domains.
The Biomass Proxy algorithm is designed to combine the strong temporal reliability of the
radar signal with the high spatial resolution of optical data. The Biomass Proxy output
therefore primarily reflects Sentinel-1 time series, while the spatial distribution is mostly
reflected by Sentinel-2 patterns.
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Figure 1. Overview of the methodology used to derive the Biomass Proxy. The input data, existing of
microwave and optical data collected within field boundaries (marked by the red box), is run through
several processing steps (1–4) to create daily Biomass Proxy output maps.

2.2. Preprocessing Input Data and Creation of Time Series
2.2.1. Sentinel-1 Data

The Sentinel-1 mission [43] consisted of two satellites (Sentinel-1A and B) carrying
a C-band (5.405 GHz) SAR system, providing dual-polarization imagery, i.e., backscatter
coefficients in VV and VH polarizations, with a 10m spatial resolution over a 250 km swath.
Each satellite revisits areas every 12 days, and using both satellites, coverage extends to
1–4 days over Europe and 6 days over the United States. Sentinel-1B stopped working in
December 2021, but is soon to be replaced by Sentinel-1C, scheduled in 2024.

The radar signature of vegetated areas typically involves three elements: direct
backscatter from the canopy, canopy-attenuated soil backscatter, and multiple scattering
from vegetation–soil interactions [18,23,44]. For agricultural monitoring with Sentinel-1,
it is essential to isolate the vegetation signal. VH polarization backscatter is more sensi-
tive to volume scattering and vegetation, while VV polarization is responsive to surface
scattering (Attema and Ulaby, 1978; Ulaby et al., 1981; [20]). CR, the ratio between VH
and VV (Equation (1)), reduces the impact of factors like soil moisture and incidence angle,
enhancing the radar’s ability to detect vegetation. Additionally, since radar backscatter
is known to be impacted by speckle, a multi-temporal Lee sigma filter [45] and a median
filter [46] are applied on the CR. An example of CR time series extracted from these spatially
filtered CR images is presented in Figure 2.

CR =
VH
VV

(1)

The same location on earth can be viewed from different orbits. These relative or-
bits differ from one another in terms of incidence and azimuth angles. The backscatter
coefficient generally decreases with increasing incidence angle; however, the subsequent
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impact on the CR depends on topography and geometry as well as vegetation structure [47].
As these characteristics may differ for each field, we derive the orbit correction factors (see
Appendix A) over a fixed period of time (i.e., 2.5 years in the current version), and apply
the correction on each orbit for each field individually, based on the relative differences in
historical Sentinel-1 data characterizing the different orbits, to estimate the orbit-corrected
CRorbitcorrected(t) (Figure 2).

Figure 2. CR time series CR(t) with and without orbit corrections.

2.2.2. Sentinel 2 Data

The Sentinel-2 mission [48] comprises two satellites, Sentinel-2A (launched in 2015)
and Sentinel-2B (launched in 2017). These satellites are equipped with the Sentinel-2
Multi-Spectral Instrument, which captures surface reflectance data across 13 spectral bands
spanning the visible, near-infrared, and shortwave infrared ranges of the electromagnetic
spectrum. With both satellites in operation, Sentinel-2 achieves a five-day revisit period.

To extract vegetation signals, the Biomass Proxy algorithm uses NDVI (Equation (2))
derived from surface reflectance measurements in the red (RED, Band4) and near-infrared
(NIR, Band8) spectral domains at a 10 m spatial resolution. These domains are very sensitive
to the vegetation photosynthetic activity; the leaf chlorophyll strongly absorbs red light for
use in photosynthesis and the cell structure of the leaves, but on the other hand, it strongly
reflects near-infrared light [49].

NDVI =
NIR − RED
NIR + RED

=
Band8 − Band4
Band8 + Band4

(2)

Preprocessing of optical data involves cloud masking the Sentinel-2 images by com-
bining the Fmask [50], S2cloudless [51], and Sen2Cor [52] algorithms and snow and water
masking by combining Fmask and Sen2cor. From the masked data, we create time series
(Equation (3)) by extrapolating partially clouded images against the latest full coverage
cloud-free image and then by front-filling the time series (Figure 3). Hereafter, the resulting
time series is called s2veg(t). For deciding on the the most accurate representation of NDVI
in the time series, our strategy is based on both the recency and cloud-free coverage of the
image and follows a sigmoid decay function described by Equation (A2) in Appendix B.

s2veg(t) =

{
NDVIi if dwi(t) ≥ dwi−n(t)
NDVIn if dwi(t) < dwi−n(t)

(3)

where subscript i denotes the most recent image, and i − n refers to any image before that.
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Figure 3. Time series of NDVI data and preprocessed optical signal s2veg(t) for the data fusion.
The raw NDVI product and the cloud-filtered NDVI are also represented.

2.3. Scaling CR to the NDVI Range

In order to fuse optical and radar vegetation signals in both time and space, we need
both signals at comparable scales. We scale the radar signal to align with NDVI, since
NDVI is a widely recognized and established optical vegetation index. The scaling function
(Figure 4) is based on time series of CR and NDVI collected over more than a million fields
spread all over the globe. The scaling function can be described as a combination of a
power function, a linear center part, and an asymptotic tail (Equation (4)). The asymptotic
shape was added for multiple reasons. Firstly, each CR value should be translatable,
ensuring that a feasible translation exists for every CR value. Given that the upper limit of
NDVI reaches one, the scaled values should not surpass this threshold. Secondly, stability
within each domain is crucial for the algorithm. Relying solely on the power relation could
lead to considerable fluctuations in radar values, an outcome we strive to circumvent.
Lastly, the asymptotic shape of the process guarantees that an augmentation in the CR will
consistently yield an increase in the scaled value, as opposed to capping the scaled value
at one. The Pearson correlation coefficient r for the scaled CR (CRscaled) is 0.62, and the
Mean Absolute Error (MAE) is 0.16, suggesting the feasibility of scaling. However, it
is noteworthy that the signals exhibit disparities, emphasizing that they should not be
employed interchangeably (see Section 3).

Figure 4. Global scaling function used to scale CR to the NDVI domain of variation. The boxes
extend from 25th to 75th percentiles with a line at the median. The whiskers represent the 5th and
95th percentiles.
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CRscaled =


a · e(b·CR+c) + d if CR < CRlinear

m · CR + z if CRlinear ≤ CR < CRasymptotic

1 − 1−k
en((m·CR+z)−k) if CR >= CRasymptotic

(4)

where CRscaled is the result of scaling CR to an NDVI scale and a, b, c, d, m, z, n, k are empiri-
cal parameters derived by regressions using optical and radar observations over more than
a million fields (See Appendix C). The result of applying scaling to the orbit-corrected CR
time series (CRso) is shown in Figure 5.

Figure 5. Time series of scaled CR corrected for orbit effects CRso(t), weighed average s1veg(t), and
the Radar Harvest Detection Index (RHDI).

A custom weighed average considering up to 6 observations within the previous
24 days is applied to smooth the time series and is given by Equation (5). The resulting
time series is called s1veg(t) and is designed to eliminate noise in the CR signal without
losing responsiveness to agricultural events.

s1veg(t) =
1

W(t)

−1

∑
i=−N

wi(t) · CRso(ti) (5)

where W(t), the normalization factor, is defined as follows (Equation (6)):

W(t) =
−1

∑
i=−N

wi(t) (6)

where wi is the weight attributed to each CR value in a set of N scaled and orbit-corrected
CR values {CRso(t−n), CRso(t−i) . . . , CRso(t−1)}, where n ≤ 6 and t − t−n < 24 days.
In this context, subscript i denotes the nth image before t such that t−1 is the first image
before time t. Then CRso(t−1) denotes the value of the scaled and orbit-corrected CR value
of that image.

The weights are based on a Gaussian strategy (Equation (7)) proposed by Kita-
gawa et al. [53]. This strategy places emphasis on the most recent observation, positioning
it as the central focus of the weighted averaging process.

g(t − ti) =
1√

2πσ2
· e−

−(t−ti)
2

2σ2 (7)

To further remove noise, we introduce a custom low-pass filter (Equation (8)) designed
specifically to eliminate noise without introducing any significant delay. This filter is
designed to operate solely on historical data, aligning with our objective of achieving
near-real-time functionality.

bi = (
1

|CRso(ti+1)−CRso(ti)
ti+1−ti

− CRso(ti)−CRso(ti−1)
ti−ti−1

|+ K
) (8)
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Reducing delay is especially important after abrupt events such as harvest. To reduce
delay after a harvest event, we introduce the Radar Harvest Detection Index (RHDI) (see
Figure 5), which is greater than one when a harvest is likely occurring or has just occurred or
equal to one otherwise. A high RHDIi increases the weight on the most recent observations,
ensuring a timely response in the weighed average s1veg(t). This custom-built index is
based on a number of indicators, including absolute value, slope, deflection, short-term
averages, and long-term averages; see Appendix D. Combining the above-mentioned
Gaussian strategy, low-pass filter, and radar harvest detection index (see Equation (9))
yields the weights used in Equation (5).

wi(t) =
bi

B(t)
· g(t − ti)

G(t)
· RHDIi

RHDI(t)
(9)

where the normalization factors G(t), B(t) and RHDI(t) follow (Equations (10)–(12)):

G(t) =
−1

∑
i=−N

g(t − ti) (10)

B(t) =
−1

∑
i=−N

bi (11)

RHDI(t) =
−1

∑
i=−N

RHDIi (12)

2.4. Fusing Time Series into Single Vegetation Signal

After the pre-processing and scaling processes, the NDVI and CR time series are fused
using a combination of both static and dynamic weights. The static weights are equal for all
fields globally and indicate the percentage of NDVI and scaled CR time series contributing
to the fused temporal field average signal, respectively. Static weights offer the opportunity
to adjust the individual contributions of each signal to shape the final vegetation signal.

Dynamic weights make sure that the most recent information is always leading.
They are based on recency of the observation and the fraction of pixels covering the field.
The latter can be less than one in case of cloud coverage or when the field is on a swath
edge. The dynamic weights offer a consistent way to treat differences in overpass frequency
over the globe for Sentinel-1 and Sentinel-2 satellites.

The static and dynamic weights together are used to calculate the relative contribution
factors contris1(t) and contris2(t) of the spectral signals s1veg(t) and s2veg(t), respectively,
to the Biomass Proxy (Equations (13)–(15)).

BiomassProxy(t) =
1
D

T

∑
i=1

(s1veg(t) · contris1, T(t) + s2veg(t) · contris2, T(t)) (13)

contris1, T(t) =
sws1 · c fs1(t)

sws1 · c fs1(t) + sws2 · c fs2(t)
(14)

contris2, T(t) =
sws2 · c fs2(t)

sws1 · c fs1(t) + sws2 · c fs2(t)
(15)

where contris1, T(t) and contris2, T(t) represent the contributions of both signals to the
fusion process in the temporal domain (i.e., T), D the window of a small backward average
(D = 5) to smooth the results of fusing the two signals, sws1 and sws2 the static weights
of Sentinel-1 and Sentinel-2, and c fs1(t) and c fs2(t) the dynamic contributing factors (see
Equations (16) and (17)).

c fs1(t) = 1 − c fs2(t) (16)
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c fs2(t) =
1

1
T ∑T

i=0
dws1(t−i)
dws2(t−i) + 1

(17)

where dws1 and dws2 are the dynamic weights for Sentinel-1 and Sentinel-2, respectively.
The dynamic weights account for fluctuations in availability of input signals, due to
prolonged cloud cover, or to low radar revisit frequency (see Appendix B for more details).
While Biomass Proxy time series are largely based on CR, in the case of very low Sentinel-1
availability, the contribution of Sentinel-2 time series slightly increases. This is to ensure
operational stability in low-radar-availability regions.

2.5. Redistributing Time Series Using Spatial Weights

To derive the Biomass Proxy maps for each day, the time series of field average fused
product are downscaled to create Biomass Proxy pixel BiomassProxy(x, y, t) values at 10 m
resolution, the native resolution of Sentinel-2 (Equation (18)). Here, x, y, t represent the
longitude and latitude of the field and acquisition date, respectively.

BiomassProxy(x, y, t) = ratio(x, y, t) ∗ BiomassProxy(t) (18)

The redistribution weights used in the downscaling process (ratio(x, y, t) in Equation (19))
are made out of a combination of NDVI and scaled CR observations in the spatial domain.

ratio(x, y, t) = ratios1, i(x, y) ∗ contris1, S(t) + ratios2, m(x, y) ∗ contris2, S(t) (19)

where ratios1, i(x, y) and ratios2, m(x, y) represent the ratios between pixel values and the
field average value of the respective image (in the case of NDVI, Equation (21)) or composite
of images (in the case of CR, Equation (20)). Subscript m denotes the last full coverage
cloud-free NDVI image. Images with any cloudy pixels are disregarded to prevent having
any spatial artefacts from cloud-masking in the Biomass Proxy output maps.

ratios1, i(x, y) =
1
N

N

∑
i=1

( CRscaled, i(x, y)
CRscaled, i

)
(20)

ratios2, m(x, y) =
NDVIm(x, y)

NDVIm
(21)

With respect to Sentinel-1 images, we noticed (similarly to e.g., [54]) that the observed
pattern is influenced by the incidence angle, whose effect was not spatially removed by the
orbit correction. We therefore make a composite of the inner distributions of the latest six
past images in the last 24 days (N ≤ 6). Here, CRscaled(x, y) represents Sentinel-1 images
that have been preprocessed and scaled with the scaling function described in Equation (4).

The contributions of the spectral signals in the spatial domain, contris1, S(t) and
contris2, S(t) in Equation (19), follow the same fusion process as the temporal contribu-
tions (i.e., Equations (14) to (17)) and include static and dynamic weights. While Sentinel-2
NDVI is the main contributor to the spatial pattern through a high static weight, in cases of
prolonged cloud cover, the dynamic weights make sure that the contribution of Sentinel-1
increases. In cloudy regions, a full coverage NDVI image may be weeks to months old
and the radar component is used to fill the gaps despite a coarser spatial resolution after
speckle filtering.

The dates of the most recent observations of Sentinel-1 and Sentinel-2 used in creat-
ing the daily Biomass Proxy maps are provided in the product metadata. Additionally,
an overview of parameters currently used to process the Biomass Proxy can be found in
Appendix E.
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2.6. Selected Use Cases

Since the launch of Sentinel-1 by the European Space Agency (ESA), SAR data have
been increasingly used to monitor agricultural systems. Yet, radar applications mainly seem
to remain in the realm of research, which could be explained by the relative complexity
associated with the processing and interpretation of radar images compared to optical
data [18,55]. Radar signals are under-leveraged, and can provide, next to their temporal
reliability, key information of vegetation that is different from optical information. We will
use several use cases to present and illustrate from a qualitative perspective the distinctive
and novel insights provided by the fusion-based Biomass Proxy, which complement and
extend beyond purely optical signals. The locations of the different use cases are given in
Figure 6.

example 1: To demonstrate the continuity of the Biomass Proxy under cloud cover, we
selected two neighboring wheat fields in France, one of which was affected
by prolonged cloud cover. We also demonstrate intermediate algorithm
parameters and the dynamics of the algorithm.

example 2: While the Biomass Proxy and NDVI can be similar, this example highlights
observed differences between the Biomass Proxy and NDVI. We selected a
field in Canada with barley and canola to show differences observed during
flowering and senescence.

example 3: To illustrate variations and observed differences in signal ranges, we selected
a field in the Netherlands cultivating onions and yellow mustard.

example 4: We illustrate the complementary value of Biomass Proxy and NDVI for
sugarcane fields in Guatemala, in which we illustrate how the two indices
respond differently to the build-up of sucrose.

example 5: To demonstrate the global processing capabilities of the Biomass Proxy, we
selected corn and wheat fields in different locations around the globe: France,
the United States, and The Netherlands.

Figure 6. Location of fields used in examples in this study.

3. Results
3.1. Example 1: Biomass Proxy under Cloud Cover

The presence of clouds prevents reliable crop monitoring using optical remote sensing.
The challenge of monitoring crops over cloudy regions is effectively addressed by the
Biomass Proxy, whose time series primarily relies on SAR data. In this example, we
demonstrate the ability of the Biomass Proxy to monitor crop growth in space and time in a
continuous manner.

In Figure 7, we demonstrate the time series of the Biomass Proxy and intermediate
algorithm parameters for two neighboring fields in France. Whereas the field represented in
Figure 7a shows optical data updates in the order of weeks, a neighboring field (Figure 7b)
was hindered by cloud cover throughout May, June, and July. The impact of clouds on
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the number of optical scenes available for the fusion process is clearly illustrated by the
respective time series of the optical vegetation signal s2veg(t) over the growing season of
2021. Due to the temporal fusion with s1veg(t), the impact of cloud coverage on the Biomass
Proxy was reduced and the algorithm was able to provide a continuous vegetation signal.

(a)

(b)

Figure 7. Biomass Proxy, S1veg and S2veg time series over two neighboring wheat fields in France,
under clear (a) and cloudy (b) sky conditions during the May–June–July period.

This continuity is also provided in spatial maps for a 40 ha corn field (Figure 8).
The daily Biomass Proxy images are a best estimate of the state of biomass in the field
based on previous CR and NDVI distributions of Sentinel-1 and 2 images, which are
also represented.

Figure 8. Biomass Proxy maps for a 40 ha maize field in France. The ratios between NDVI and
CR pixel values and field averages of the respective images, ratios1,i(x, y) and ratios2,m(x, y), are
also represented.

Biomass Proxy maps throughout the crop season over the same field are shown in
Figure 9. To visualize the relative contributions of the spectral information, scaled CR
composites and NDVI composites over the crop season are also shown in Figure 9b,c,
respectively. It can be noticed that the field average Biomass Proxy primarily reflects the
scaled CR average, while the spatial distribution is more dominated by NDVI patterns.
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Nonetheless, when no Sentinel-2 images are available for a long period of time, the CR
composites gain in weight in the fusion process and help fill the gap.

(a)

(b)

(c)

Figure 9. Maps of Biomass Proxy (a), 10-day scaled CR composites (b) and 10-day NDVI composites
(c) over the full season of a 40 ha maize field in France.

3.2. Example 2: Biomass Proxy as an Indicator of Phenological Aspects

NDVI mainly represents the photosynthetic activity of leaves, which does not always
correlate with the actual fresh biomass of the plant, especially during the senescence period.
In this example, we illustrate the ability of the Biomass Proxy to describe relative changes
in crop fresh biomass and differences we observed with NDVI time series. Time series of
Biomass Proxy and NDVI observed over a field located in Saskatchewan, Canada cultivated
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with barley in 2020 and canola in 2021 clearly describe a strong decrease in NDVI during the
senescence period, while the Biomass Proxy is slightly lessened before harvest (Figure 10).

(a)

(b) (c)

Figure 10. Biomass Proxy, cloud-free NDVI observations, s1veg and s2veg time series for barley and
canola (a) demonstrating different features associated with color changes, particularly evident for
barley during senescence (b) and for canola during flowering (c).

In the case of barley, the decline in NDVI is explained by a change in color during the
ripening stage. As the barley grains mature and reach full development, they undergo a
color change from green to yellow-green, golden, and a light brown hue. NDVI responds
naturally to a color change, which corresponds with an increasing amount of red light
being reflected. NDVI observed over this field decreases and loses about 80% of its initial
value in the process. During the ripening and senescence phases, barley fresh biomass does
diminish before harvest, but at a much slower rate than the density of green leaves [56].
Barley plants redirect nutrients from vegetative parts (leaves, stems) to the developing
grains. As a result, the plant begins to dry out, and the reduction in plant water content
leads to a decrease in the overall plant weight. Barley can lose around 20% of its initial
weight in the process [56]. Being sensitive to plant water content, the Biomass Proxy shows
a similar decrease. It provides slightly different but complementary information than NDVI,
which may be useful for crop management.

For canola crops, a color change occurs during flowering, temporarily transitioning
the canopy upper layer to a yellow hue. As canola matures and the leaves start to dry and
change color from green to yellow (and eventually brown during senescence), there is a
shift in the spectral reflectance properties, leading to a strong decrease in NDVI. As for
barley crops, the fresh biomass of canola plant and the associated observed Biomass Proxy
decrease during the senescence period, but at a much slower rate than NDVI (Figure 10).
Based on field data, Malhi et al. [57] observed a similar slow decrease in canola biomass
three months after seeding, further confirming the close correlation between the Biomass
Proxy and fresh biomass.

3.3. Example 3: Differences between Biomass Proxy and NDVI Absolute Values

The scaling relationship (Section 2.3) demonstrated that NDVI and Biomass Proxy
time series are correlated, but it also highlighted the presence of variability. We have seen
in previous examples that observed differences between Biomass Proxy and NDVI may be
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related to phenological stages, but there are also differences in the absolute value ranges.
This example illustrates such distinctions for a field located in Flevoland, The Netherlands,
which cultivated onions as the main crop in summer 2020, followed by yellow mustard
as a winter cover crop. In fact, the Biomass Proxy of onions was much higher than that of
yellow mustard throughout the crop season (Figure 11). The opposite effect is observed for
NDVI, which reaches higher values for yellow mustard than onions.

(a)

(b) (c)

Figure 11. Biomass Proxy, cloud-free NDVI observations, s1veg and s2veg time series for onion and
yellow mustard (a) in an 8 ha field in Flevoland, demonstrating that radar and optical data are
sensitive to different biophysical properties. Onions (b), with higher water content, are associated
with high Biomass Proxy values (picture taken 28 August 2020), while yellow mustard (c), with its
denser canopy, is associated with higher NDVI values.

Observed differences in the remote sensing indices may be partly due to differences in
the canopy structure of the onions and yellow mustard (Figure 11). Onions have relatively
narrow leaves and form a relatively open canopy, while the yellow mustard plants consist
of large broad leaves that fully cover the underlying soil and are associated with greater
canopy light interception and therefore higher NDVI values than onions. In contrast,
the Biomass Proxy is higher for onions than for yellow mustard and observed differences
may be associated with a variety of factors, such as plant structure and water content.

Conjointly, yields were much higher for onions (57 t/ha) than for yellow mustard
(5 t/ha). It should be noted that onion biomass and water content are mainly concentrated
in the bulb. Since the bulbs started to surface at the end of July and were almost completely
above soil in August (see Figure 11b), this could possibly be an explanation for the observed
higher values.

An alternative rationale for the difference could stem from the distinct scattering
mechanisms of radar regarding to vegetation structure. For instance, in broadleaf crops
like yellow mustard, radar attenuation happens primarily through direct surface scattering.
Conversely, in crops like onions with their vertically elongated leaves, radar is predom-
inantly affected by volume scattering [58]. Another possible source of uncertainty for
differences observed is radar–soil interaction; however, we did not identify any consistent
response of soil influence in the final product signal in the various use cases we investigated.
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This example clearly showed that the Biomass Proxy provides additional information
to NDVI observations. However, the interpretation of the differences between Biomass
Proxy and NDVI may be complex and crop-dependent. Further research is needed to fully
characterize differences between NDVI and the Biomass Proxy for various crops.

3.4. Example 4: Biomass Proxy and NDVI Time Series and Their Complementary Value

The fact that temporal profiles of NDVI and Biomass Proxy may differ and represent
various aspects of crops is a feature that may be useful to refine crop classification and
facilitate in-season crop monitoring. In this example, we demonstrate the complementary
value between NDVI and Biomass Proxy signals to monitor sucrose content. Observations
over multiple sugarcane seasons and fields in Guatemala are used to illustrate the opposite
response of Biomass Proxy and NDVI products to changes in sucrose content (Figure 12).
Such differences can be leveraged to better assess sucrose yield.

Around 200 days pre-harvest, both NDVI and Biomass Proxy time series of sugar-
cane with low or high levels of sucrose, respectively, start diverging, making possible to
discriminate between low and high yields. One would expect that time series correlating
with higher yields would exhibit an upward trajectory, a phenomenon indeed observable
in the NDVI time series. However, an interesting pattern emerges in the Biomass Proxy
time series, wherein contrary behavior is observed.

High-performance seasons exhibit lower Biomass Proxy values pre-harvest compared
to low-performance seasons. This phenomenon was first discovered in Mozambique by den
Besten et al. in [27] and further investigated in [59]. The authors found that the CR responds
to the development of sucrose accumulation, which changes the internal distribution of
sucrose and vegetation water in the stalk. The observed backscatter decreases when sucrose
accumulated in the sugarcane stalk and water content decreased. We find similar results
for the Biomass Proxy in Guatemala.

The divergence between NDVI and the Biomass Proxy aids in differentiating high-
yield (high NDVI, low Biomass Proxy) from low-yield seasons (low NDVI, high Biomass
Proxy) relatively early on in sugarcane fields, which can possibly be leveraged in predicting
sucrose yield. This example illustrated that complementary use of NDVI and the Biomass
Proxy has potential to be utilized in field performance assessment.

3.5. Example 5: Biomass Proxy Time Series in Various Geographic Regions

Previous use cases focused on the analysis of individual fields, highlighting specific
features of the Biomass Proxy. Here, we want to demonstrate Planet capability to pro-
vide consistent products globally and the benefit for large-scale agricultural applications.
Figure 13 shows time series of 1000 maize fields and 1000 wheat fields located in specific
regions in the Netherlands (NL), France (FR), and the United States (US) to characterize
differences in cropping seasons.

Maize typically grows from April–May to September–October in Europe and can be
harvested late in November in France [60]. Biomass Proxy time series of fields located in
NL and FR show an increase around mid-June. This increase corresponds to the expected
peak of growth two months after planting [20], a period with significant stem elongation
and leaf growth. Then, as it reaches flowering, the amount of water in the crop remains
relatively stable [21], as does the height [61], until the plant matures and starts drying.
Figure 13 clearly illustrates the difference in growing season timing between the different
countries, especially early harvest dates in the US, compared to NL and FR.

A similar analysis has been conducted for wheat fields located in the same regions
(Figure 13b). There are clear differences between Europe and US time series in terms of
signal amplitude and variability, especially after harvest, and crop season length. Typically,
spring wheat is planted in mid-February to mid-June in Europe and April–May in the
US, and it is harvested in July in France and in August in Illinois, US. However, due to
high precipitation in July 2021, harvest started mid-August in Brittany, France and the
Netherlands. Unlike US fields, where Biomass Proxy time series fell rapidly after harvest,
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we observed that the Biomass Proxy of fields located in FR and NL slowly decreases after
harvest due to stubble, straw, and crop residue that remains in the field, depending on the
use of tilling or plowing practices used after harvest.

(a)

(b)

(c) (d)

(e)

Figure 12. Biomass Proxy, cloud-free NDVI observations, S1veg and S2veg time series for a good-
performing (a) and a bad-performing (b) sugarcane field, illustrating the complementary use of these
signals in field performance assessment. In addition, high- and low-performance field seasons are
given and represented by the green and red lines for Biomass Proxy (c) and NDVI (d), respectively,
reflecting yields above the 75th percentile and below the 25th percentile. For illustrative purposes,
a typical sugarcane field (e) is also given.
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The observed differences clearly describe different farming practices that exist between
Europe and the US. In Europe for instance, crop seasons are more often alternated with
winter cover crops [62], and crop residue is left on the surface after harvest, while farmers in
Illinois, US, do not generally plant cover crops due to time or cost constraints [63] and leave
their fields bare between consecutive seasons. Consequently, the slopes of the Biomass
Proxy time series after mid-August are more representative of post-harvest practices than
crop senescence.

This example highlighted that the global processing capabilities of the Biomass Proxy
provide the potential to analyze regional differences in crop practices. The Biomass Proxy
can be used to derive insights ranging from the intra-field scale to the national scale.

(a)

(b)

Figure 13. Biomass Proxy time series for 1000 fields of maize (a) and 1000 fields of wheat (b) spread
over three regions, demonstrating the scalability of the algorithm and the consistency of the results.
The thick lines represent the average of the time series of the region.

4. Discussion

The Biomass Proxy fuses the temporal continuity of Sentinel-1 SAR with the spatial
resolution of Sentinel-2 optical imagery. Biomass Proxy time series greatly benefit from the
ability of SAR to penetrate clouds. This alleviates the challenge of monitoring crops under
cloudy conditions (see Section 3.1), especially for crops with short phenological cycles (e.g.,
canola; see Section 3.2), and significantly improves event detection, such as harvests (see
Section 3.2). Biomass Proxy time series can differ from NDVI during distinct phenological
phases, which may aid in characterizing phenological aspects. Differences between the
Biomass Proxy and NDVI (see Sections 3.2 and 3.3) may also offer opportunities for early
crop classification and can also help to assess field performance (see Section 3.4). All
these opportunities can be seized in any location where Sentinel-1 and Sentinel-2 data
are available. The Biomass Proxy is produced uniformly across the globe and comparing
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crops for various regions can even provide insights into regional cropping patterns (see
Section 3.5)

While the study has provided valuable insights into potential use cases, it is important
to raise some discussion about the current open questions and potential limitations of the
methodology. Even though the use of SAR observably enhanced the vegetation dynamics
in cloudy conditions, the high spatial resolution of the Biomass Proxy still mostly relies on
optical data because SAR spatial data, despite filtering, are impacted by speckle interference.
Therefore, cloud-free optical observations are needed to accurately capture dynamics at the
intra-field scale (see Section 3.1). To increase the temporal coverage of radar and optical
observations, further work will include extending the Biomass Proxy framework to other
optical sources (e.g., PlanetScope, Landsat) and future high-resolution SAR imagery (e.g.,
Sentinel-1C and -1D [64], NISAR [65], ROSE-L [66]).

Fusing the strengths of SAR and optical imagery may offer many opportunities and
such a fusion process was made possible by the use of a scaling relationship (see Section 2.3)
between CR and NDVI. We found CR and NDVI to act similar in the crop vegetative phase;
however, significant differences between NDVI and CR were observed during the plant
senescence of specific crops (see Section 3.2) and might affect the performance of the scal-
ing function when bringing together temporal and spatial domains (see Sections 3.2–3.4).
Therefore, further research is needed to evaluate the benefit of using different optical
vegetation indices which might be more directly linked to what is observed by the radar
vegetation signal. These may include Short Wave InfraRed (SWIR) bands, as they may be
suitable given their sensitivity to plant water content [67,68].

While the product has shown potentially valuable traits, naturally, a much wider
validation effort is required to assess the consistencies of these characteristics at a global
scale. While our demonstration studies (see Sections 3.1–3.5) various crops in various
regions and climates, we have only begun to explore the extensive possibilities in crop
analysis. Numerous potential applications for diverse crops, spanning field performance,
crop management strategies, environmental events, pests, diseases, irrigation, and beyond,
could exist. A comprehensive research effort is imperative to uncover the full spectrum
of opportunities for the product, especially when used in conjunction with other indices,
within the domain of agricultural monitoring.

Future work will also have to investigate the relations between the Biomass Proxy and
the crop fresh biomass and yield. A preliminary study showed high correlations (r2 around
0.9) between Biomass Proxy and fresh biomass of maize through the growing season [69].
However, the link between the Biomass Proxy and absolute values of crop biomass will
have to be derived on a per-crop basis and will require a dedicated effort.

5. Conclusions

Released in May 2023, Planet’s Biomass Proxy product offers a timely, accessible,
and analysis-ready product indicative of above-ground crop biomass dynamics at 10 m spa-
tial resolution. Based on Earth observations from Sentinel-1 and Sentinel-2 constellations,
the Biomass Proxy is a cloud-free vegetation monitoring product for agriculture manage-
ment at scales varying from the intra-field scale to the national scale. In this paper, we
described the processing algorithm and illustrated the main attributes of the Biomass Proxy
product. The algorithm combines the strong temporal reliability of the radar signal with
the high spatial resolution of optical data in a simple analytical fusion process. The Biomass
Proxy does not fundamentally represent a cloud-free NDVI product, but rather a radar-
based vegetation index that is more correlated to the plant water content and fresh biomass
than the density of green leaves. In fact, the complementary value between the radar and
optical data raises opportunities for agricultural applications, such as crop classification,
field performance assessment, phenological stage monitoring, and yield forecasting. We
have demonstrated that Biomass Proxy can be a valuable tool for crop management, par-
ticularly in cloudy regions where other remote sensing solutions are scarce or at coarse
resolution. Sensitive to the plant water content, the Biomass Proxy is expected to support
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crop management, mitigate the effects of climate variability on agriculture, and provide
accurate information on plant growth status and environmental stresses.
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Appendix A. Sentinel-1 Orbit Correction

The relative orbit delineates the trajectory followed by each Sentinel-1 satellite as it
traverses a specific region. Images captured along the same relative orbit share identical
incidence angles and azimuth. As incidence angle and azimuth may impact the observed
backscatter, we apply orbit correction per field (Equation (A1)) over past Sentinel-1 observa-
tions. Figures A1–A3 demonstrate the process of orbit correction for an example field with
only two relative orbits. We take the separate orbits of the Sentinel-1 CR (Figure A1) and
calculate the distance of the rolling mean (centered, 25 days) of the orbit to the rolling mean
of all orbits and apply a linear regression over that difference (Figure A2). The derived
regression parameters are implemented on the separate orbits (Figure A3).

CRorbitcorrected,orbit x(t) = (1 − Aorbit x) · CRorbit x(t) + Borbit x (A1)

where x is the number of the relative orbit and Ax and Bx regression coefficients corre-
sponding to the linear regression between the CR of orbit x and the difference with the
mean of orbits (Figure A2).

https://collections.sentinel-hub.com/crop-biomass/
https://collections.sentinel-hub.com/crop-biomass/
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Figure A1. The Sentinel-1 CR for two different relative orbits.

Figure A2. Linear regression of the distance to the mean of the orbits of Figure A1, with, in this case,
Pearson r = −0.51 and r = 0.76 for orbits 1 and 2, respectively.

Figure A3. The Sentinel-1 CR after the orbit correction.
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Appendix B. Dynamic Weight

The dynamic weight function has been developed to facilitate decision-making pro-
cesses by evaluating the reliability and accuracy of an image in portraying the current
situation in the field. This assessment is based on two primary factors: the age of the image
and its coverage. As an image ages, the certainty of its ability to accurately represent the
present diminishes, and reduced spatial coverage further amplifies uncertainty. This is to
be reflected in an S-shaped function. The dynamic weight function assigns high values
to recent images (within a week) and subsequently diminishes rapidly. To illustrate how
this can be interpreted, consider the following example. An image with 50% coverage of
the present is deemed more credible than a fully covered image from two weeks prior.
The function asymptotically approaches a low but stable contribution.

dw(t) = coveragei

(
1 − v

1 − 1
1+eδ

(
1

1 + e−β(t−ti)+δ
− 1

1 + eδ

))
(A2)

with t the current date and ti the date of the last observation, β and δ decay exponents, and
v the vertical range to decay. The values are given in Table A1.

Table A1. Decay function constants.

Constant Value Unit

v 0.9 -
β 0.5 -
δ 5 days

Figure A4. Dynamic weight illustration.
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Appendix C. Scaling Parameters

CRscaled is the result of scaling CR to an NDVI scale and a, b, c, d, m, z, n, k are empirical
parameters derived by regressions over more than a million fields. They are given in
Table A2. These are mathematical parameters to ensure the form of the scaling function.

The empirical parameters (from Equation (4)) of the power function and linear function
a, b, c, d, m, z were estimated by using non-linear Orthogonal Distance Regression [70] on
time series of CR and s2veg worldwide, where dws2 (see Appendix B) is above 0.85 and with
a uniform sample size for each bin of 0.05 NDVI. The asymptotic function with parameters
n, k was added by design.

Table A2. Regression parameters used in Equation (4).

Parameter Value

a 0.99 × 10−11

b 3.96 × 10−01

c 27.4
d 1.78 × 10−02

m 1.91 × 10−01

z 1.845
n 2.50
k 5.00 × 10−01

Appendix D. Radar Harvest Detection Index

The radar harvest detection index is designed to put emphasis on the most recent
observation in case of a harvest occurring or right after. Older images are not representative
anymore in the situation of an harvest. It was not designed to obtain an exact date of harvest;
there may not even be an observation on the harvest date. The determination of parameters
was achieved through a systematic exploration employing trial and error methodologies.
It contains many empirical factors but has shown, however, to be remarkably effective in
detecting harvest events.

The design combines many factors, as the harvest can occur in different forms in the
time series. A weighed average of the combination of these indicators is what we call the
radar harvest detection index and is given by Equation (A3).

RHDIi =


Yi

1 + H1 · CRso(ti)
if Yi > H2

1 if Yi ≤ H2

Yi =
K9
P

8

∑
x=1

(Fx ∗ Kx) + K10

Yi ≤ K9

P =
8

∑
x=1

Kx

(A3)

The factors Fx contributing to the weighted average are given through Equations (A4)–(A11)

F1 =
C1

CRso(ti) + C2
− C3 (A4)

F2 =
GAi(σ2) + C4
CRso(ti) + C4

− C5 (A5)

F3 =
CRso(ti−1)− CRso(ti)

C6(ti − ti−1 + C7)
(A6)
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F4 =
GAi(σ1)− CRso(ti−1)

TAi(σ1) ∗ C8
(A7)

F5 =
GAi(σ2)− CRso(ti)

C9
(A8)

F6 =
UAi − CRso(ti)

C10
− CRso(ti)− C11 (A9)

F7 =


GA(σ2)− CRso(ti) + C12

CRso(ti)− CRso(ti−1) + C12
if

{
GA(σ2)− CRso(ti) > 0
CRso(ti)− CRso(ti−1) ≥ 0

0 else

(A10)

F8 =


√

(GA(σ2)−CRso(ti))(CRso(ti−1)−CRso(ti)+C13)
C13 if

{
GA(σ2)− CRso(ti) > 0
CRso(ti)− CRso(ti−1) < 0

0 else

(A11)

The weighing factors are based on averages and Gaussian averages (Equations (A12)
and (A13)) of the scaled and corrected Cross Ratio values CRso in a set of values defined by
Si = {CRso(ti−2) . . . CRso(ti−n)}, where n is such that ti−1 − ti−n ≤ 60 days. The subscript
i denotes the image for which the RHDIi is calculated.

GAi(σ) =
1

Gi(σ)

|Si |

∑
n=2

g(ti−1 − ti−n, σ)CRso(ti−n)

TAi(σ) =
1

Gi(σ)

|Si |

∑
n=2

g(ti−1 − ti−n, σ)ti−n

UAi =
1

|Si| − 2

|Si |

∑
n=2

CRso(ti−n)

(A12)

g(ti−1 − ti−n, σ) =
1√

2πσ2
· e−

−(ti−1−ti−n)
2

2σ2

Gi(σ) =
|LSi |

∑
n=2

g(ti−1 − ti−n)

(A13)

The constants used in the calculation of RHDI are listed in Table A3.

Table A3. Constants used in calculation of the RHDI.

Parameter Value

H1 3
H2 5.5
K1 2
K2 1
K3 1
K4 1
K5 2
K6 6
K7 1
K8 1
K9 8

K10 1
C1 3
C2 0.7
C3 3
C4 0.25
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Table A3. Cont.

Parameter Value

C5 1
C6 0.075
C7 3
C8 0.05
C9 0.3

C10 0.3
C11 0.2
C12 0.2
C13 0.2
σ1 3
σ2 12

Appendix E. Version Configurations

In the latest version, we chose a high temporal static weight for Sentinel 1 CR and
a low static weight for Sentinel 2 NDVI; we like to keep the sensitivity to the physical
properties of the plant that the CR responds to. We decided to keep a relatively small
contribution of NDVI and not have an index entirely based on S1, to be more resilient in
the event of low availability or missing radar observations. In cases of low availability of
radar observations, all observations help to have a better insight into vegetation growth.

In space, we chose to attribute a high weight to Sentinel 2 NDVI. We have prescribed
a larger weight for NDVI, which has higher spatial resolution compared to filtered CR.
Even though there is a large difference in the static weights, this does not mean that NDVI
always completely dominates the spatial pattern of the Biomass Proxy.

Table A4. Run configuration in latest version.

Domain Parameter Value Unit

time D 5 days
time sws1 0.75 -
time sws2 0.25 -
time T 30 days
time σ 7 days
space sws1 0.10 -
space sws2 0.90 -
space D 1 -
space N 6 observations
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