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Abstract: Coastal wetlands encompass diverse ecosystems such as tidal marshes, mangroves, and
seagrasses, which harbor substantial amounts of carbon (C) within their vegetation and soils. Despite
their relatively small global extent, these wetlands exhibit carbon sequestration rates on par with
those observed in terrestrial forests. The application of remote sensing technologies offers a promising
means of monitoring aboveground biomass (AGB) in wetland environments. However, the scarcity of
field data poses a significant challenge to the utilization of spaceborne data for accurate estimation of
AGB in coastal wetlands. To address this limitation, this study presents a novel multi-scale approach
that integrates field data, aerial imaging, and satellite platforms to generate high-quality biomass
maps across varying scales. At the fine scale level, the AVIRIS-NG hyperspectral data were employed
to develop a model for estimating AGB with an exceptional spatial resolution of 5 m. Subsequently, at
a broader scale, large-scale and multitemporal models were constructed using spaceborne Sentinel-1
and Sentinel-2 data collected in 2021. The Random Forest (RF) algorithm was utilized to train spring,
fall and multi-temporal models using 70% of the available reference data. Using the remaining
30% of untouched data for model validation, Root Mean Square Errors (RMSE) of 0.97, 0.98, and
1.61 Mg ha−1 was achieved for the spring, fall, and multi-temporal models, respectively. The highest
R-squared value of 0.65 was achieved for the multi-temporal model. Additionally, the analysis
highlighted the importance of various features in biomass estimation, indicating the contribution of
different bands and indices. By leveraging the wetland inventory classification map, a comprehensive
temporal analysis was conducted to examine the average and total AGB dynamics across various
wetland classes. This analysis elucidated the patterns and fluctuations in AGB over time, providing
valuable insights into the temporal dynamics of these wetland ecosystems.

Keywords: aboveground biomass; coastal wetlands; tidal marsh; AVIRIS-NG; multispectral; SAR;
hyperspectral

1. Introduction

Coastal wetlands include tidal marshes, mangroves, and seagrasses, all of which
contain significant amounts of carbon (C) in their soils and vegetation [1]. Despite their
smaller global coverage [2], these stores sequester atmospheric carbon at rates comparable
to those of terrestrial forests. Carbon can be sequestered by tidal marshes at an average
rate of 1–2 Mg C per hectare per year [3]. As a result of human activities, including coastal
development, agriculture, and sea-level rise caused by climate change and extreme weather
events, these wetlands are being converted to open water or other types of land cover at a
rate of 1–2% worldwide [4,5]. There are estimates that range from 21–760 million Mg CO2
equivalents per year that result from this land use change, which contributes to climate
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change [6]. The possibility of coastal wetlands mitigating climate change has received
considerable attention in recent years due to their large carbon stocks, high carbon seques-
tration rates, and the possibility that human activities, such as conversion and degradation,
could increase greenhouse gas (GHG) emissions [7,8]. Thus, several entities have expressed
a desire to manage coastal wetland blue carbon [9]. Coastal wetland restoration and conser-
vation projects can now receive carbon credits for reducing greenhouse gas emissions [10]
through voluntary carbon markets such as the Verified Carbon Standard (VCS). In addition
to facilitating the reduction of greenhouse gas emissions, this will provide an incentive to
restore and conserve coastal wetlands as well as finance such projects.

In spite of the requirement that five carbon pools (soils, above- and below-ground
biomass, dead wood, and litter) be reported, due to insufficient data on biomass, dead wood,
and litter, the initial coastal wetlands inventory only accounted for changes in soil carbon
stocks, which is the largest carbon pool for tidal marshes. As emergent marshes account
for over 80% of all tidal wetlands in the CONUS [11,12], estimating carbon emissions from
coastal lands may require an understanding of their biomass. The IPCC, 2003, reports that
higher spatial and temporal resolution data, as well as more disaggregated data, are needed
to include tidal marsh biomass in coastal wetlands GHG inventories, particularly at a Tier
2 level [13]. A biomass carbon stock can also assist in verifying emissions reductions for
projects participating in voluntary carbon markets [6]. These objectives can be achieved
through remote sensing-based maps of tidal marshes, encompassing their extents as well
as their carbon stocks [14]. With remote sensing data, it is possible to evaluate spatial and
temporal changes in biomass in vast regions using a repeatable and standardized method,
fulfilling a vital role in GHG inventories and monitoring carbon mitigation efforts [15].
For tidal marsh GHG inventories in the United States, the NOAA Office for Coastal
Management [16] uses the Coastal Change Analysis Program (C-CAP) dataset as the
primary spatial dataset. In 1996, 2001, 2006, and 2010, CONUS produced a dataset in four
to five-year intervals. Based on Landsat imagery, C-CAP provides 30 m resolution coastal
lands maps, along with wetland classifications. Forested, scrub-shrub, and emergent
marshes are all classified according to their salinity, and into estuarine and palustrine
wetlands. C-CAP maps were generated using Landsat data, which may provide additional
information on vegetation conditions.

With the availability of free, preprocessed satellite and aerial imagery covering na-
tional to global areas, recent advances in remote sensing technology have made it possible
to monitor the Earth’s surface on a large scale [17]. Landsat’s satellite image catalog is now
georeferenced and calibrated as a surface reflectance product that can be used for biomass
estimation in regions where data are limited [18]. European Space Agency (ESA) provides
10 m globally free access Synthetic Aperture Radar (SAR) and multispectral data through
Copernicus Sentinel-1 and Sentinel-2 program [19]. Sentinel data with higher spatiotem-
poral resolution, proved to be a great solution for wetland monitoring, especially in large
scale [20,21]. Using cloud computing platforms like Google Earth Engine (GEE), global
products such as global forest cover change maps and global surface water inundation
maps can be produced using a petabyte catalog of satellite images and geospatial datasets
and a massively parallel, distributed runtime engine [22,23]. Remote sensing has become
increasingly accessible due to these advances, providing a powerful tool for monitoring and
assessing surface changes [24–26]. Recent years have seen a number of attempts to estimate
the biomass of tidal marshes using remote sensing techniques in different regions, including
those in South Africa [27], Argentina [28], and throughout the United States [29–31]. Previ-
ous studies with empirical models are often calibrated to specific locations and years based
on the unique characteristics of local ecosystems, such as plant community composition,
water depth, and soil types, even though they have successfully estimated tidal marsh
biomass with an error rate below 20%. They noted that these models have significant
limitations in terms of scaling [32]. A variation in canopy architecture or leaf traits can limit
the ability of empirical models of biophysical features, such as biomass, to be applied to
other regions. As a result of these differences, vegetation indexes, and biomass levels can
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be different across plant communities due to discrepancies in optical properties [33–35]. A
tidal marsh rush, a sedge, or a grass’s vertical stem morphology can cause light to scatter
and absorb in the space between the plants, resulting in a lower canopy reflectance [36,37].
Distichlis spicata, for example, has horizontal leaves, which supports the strong correlation
between biomass and vegetation indexes such as NDVI [38]. Scaling empirical models to
other regions and plant communities can be challenging because of these differences in
optical properties.

Spectral data with moderate and coarse spatial resolution have been used for biomass
mapping before [39,40]. In wetland regions, the integration of SAR and optical data have
proven to be useful since radar data include information regarding the structure and water
content of the target [41]. Therefore, recent studies increased the accuracy of the wetland
biomass mapping through usage of multi-source earth observation data [42–47]. LiDAR and
hyperspectral sensors, also, have been used besides the spaceborne platforms for estimation
of wetland biomass with high details and accuracy [48,49]. Studies using airborne platforms,
such as UAV, provided biomass maps in wetlands with high accuracy and very high spatial
resolution [50,51]. Most of the airborne datasets are acquired during the field campaigns,
at the same time frame with the in-situ datasets. However, they are costly and lack the
spatial coverage and temporal resolution of the spaceborne platforms, such as Sentinel-1/2.
Leveraging the capability of both airborne and space-based observation, a multi-scale
and multi-platform approach was developed in this study in order to: demonstrate the
capabilities of remote sensing technologies, multi-source earth observation data, and
advancements in cloud computing platforms for monitoring biomass in coastal wetlands
on a large scale over the state of Louisiana; develop a scalable multi-level model to estimate
the AGB over a small and large scale based on both aerial and satellite data and machine
learning techniques, and perform a seasonality analysis to understand the intra-annual
pattern of the AGB and wetland phenology using a multi-temporal model.

Our study examines the development of remote sensing models regardless of dif-
ferences in vegetation structure and composition among estuaries. Through leveraging
a multi-scale and multi-platform approach, the performance of models is improved and
the uncertainties in estimates of AGB are assessed. This study examines the potential
benefits of using multi-source earth observation data to improve estimations of vegetation
cover and biomass by combining Sentinel-1 SAR backscatter with Sentinel-2 multispectral
data. Following the development of the multi-temporal model, we examine the model’s
capability of distinguishing regional and subregional differences between mean and total
AGB across regions and wetland types mapped in the study area.

2. Method
2.1. Study Area

The study area is the coastal wetlands located in the southern region of Louisiana.
This area encompasses the Watershed Boundary regions designated by the United States
Geological Survey (USGS) at Level-4 classification. Specifically, our research encompasses
the hydrologic units spanning the lower Mississippi River and the coastal areas of Louisiana.
By targeting these particular regions, we aim to provide a comprehensive analysis of the
ecological dynamics and hydrological processes within the coastal wetlands of this unique
and critical environment. This region contains the Mississippi River Delta (MRD) and
Western Louisiana Delta (WLD). During the 1940s, a river diversion was implemented
to control channel flow to Morgan City, reducing the risk of flooding. In 1973, the WLD
became subaerial as a result of a river diversion implemented in 1941. In addition to
receiving about 30% of the water discharge from the Mississippi River, the Atchafalaya
River outlet accounts for 10% of its flow [52]. WLD morphology is influenced by a constant
supply of sediment, floods caused by rivers, hurricanes, and cold fronts, and biological
processes like organic matter production. In coastal deltaic floodplains, like WLD, tidal
freshwater wetland species are grouped according to the elevations of the marsh, which
range from subtidal to supratidal in hydrogeomorphic zones. As a natural observatory for
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assessing hypotheses about coastal deltaic wetlands and their trajectory and sustainability
as an adaptation strategy to relative sea level rise, WLD has a number of geomorphic
characteristics. An overview of the study area region is illustrated in Figure 1. This area
includes the southern coastal wetlands of Louisiana, and the U.S. wetland inventory by
U.S. Fish and Wildlife Service is shown, along with Atchafalaya and Terrebonne basins and
field data sampling sites.
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2.2. Satellite Datasets

To improve the accuracy of AGB estimation, a diverse set of earth observation data
sources was employed. Spaceborne data, including Sentinel-1, -2, and SRTM were accessed
and processed within the GEE. As part of the Copernicus program of the ESA, Sentinel-2
is a high-resolution optical imaging mission with open-access data. It provides global
coverage of Earth’s surface at regular intervals by covering 290 km of swath and five days
at the equator. The satellite’s spatial resolution varies between different spectral bands,
with values of 10 m (visible and NIR), 20 m (red edge and SWIR), and 60 m (aerosols and
water vapor). The data is acquired with 12-bit radiometric resolution and processed by
the Level-2A processor, which corrects for atmospheric effects, such as Rayleigh scattering,
aerosol scattering, and absorption by water vapor and ozone [53]. Moreover, the processor
applies scene classification algorithms to identify land cover types and mask out unwanted
features such as clouds and shadows. In this study, Level-2A surface reflectance data are
utilized to enhance the regression results. Land cover types and wetlands exhibit spectral
responses that are independent of time and place, with minimal effects of the atmosphere
on surface reflectance.

In addition, Sentinel-1, which is also part of the Copernicus program and uses SAR
imaging to collect data, is another important source of data for this study. With a frequency
of 5.405 GHz, the satellite’s SAR sensor operates in both single and dual polarization modes
and can return to the equator 12 days at a time [54]. Ground Range Detected (GRD) data
acquired with a spatial resolution of 10 m are used in this study in a dual-band cross-
polarization mode (vertical transmit/horizontal receive), using the Interferometric Wide
Swath (IW) mode. Using the Sentinel-1 Toolbox, data have been calibrated radiometrically,
thermal noise has been removed, and terrain has been corrected. To reduce the speckle, a
temporal median filter has been applied to match with the timeframe of the Sentinel-2 data.
In addition, the study employed a 30 m SRTM digital elevation model (DEM) with slope
and aspect features extracted. The integration of these data should improve the accuracy
and reliability of the AGB estimation process. Land surface features can be identified using
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Sentinel-2 data, while vegetation structures can be characterized using Sentinel-1 data.
Figure 2 shows the different earth observation data used in this study, including vertically
transmitted and received backscatter of Sentinel-1, RGB true-color image of the median
composite of Sentinel-2, SRTM DEM data, and AVIRIS-NG footprint.
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2.3. Field and Aerial Dataset

In this study, the Delta-X mission, a NASA Earth Venture Suborbital-3 project spanning
five years, is examined in relation to the MRD in the United States. Deltas and associated
wetlands around the Mississippi River suffer from drowning due to sea-level rise and de-
creased sediment inputs in various regions of the delta. Therefore, Delta-X seeks to identify
which areas will prosper and which will decline further as the environment degrades. As
part of the Delta-X mission, airborne and in situ data are collected and analyzed, and mod-
els are integrated and validated. Ultimately, the goal is to predict deltaic land loss or gain
in the future [55]. Wetland ecosystem studies in the MRD and beyond will be transformed
by the Delta-X mission. In order to better understand the dynamics and functions of these
ecosystems, researchers can use advanced data acquisition and data analysis techniques. In
addition, the Delta-X mission provides information about how wetland ecosystems can
be preserved and managed in the face of environmental degradation, with implications
for preventing global climate change. Delta-X provides a comprehensive in-situ dataset of
samples collected from herbaceous wetlands in southeastern coastal Louisiana in 2021 that
provide total carbon, total nitrogen, and total phosphorus contents, along with biomass val-
ues. The field campaigns were carried out during two distinct periods: from 19 March 2021,
to 2 April 2021, corresponding to the spring season, and from 19 August 2021, to 27 August
2021, representing the fall season. These timeframes were chosen to capture the seasonal
variations in vegetation dynamics and aboveground biomass within the study area. Sam-
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ples were collected from aboveground biomass (AGB) and necromass (AGN) located in the
Atchafalaya and Terrebonne basins. Atchafalaya basin measurements were taken at three
sites, and Terrebonne basin measurements were taken at three more sites [56]. At every
herbaceous wetland location, a transect was set up perpendicular to the wetland boundary
to encompass various hydrogeomorphic zones, including supratidal and intertidal areas.
Within each hydrogeomorphic zone, two sampling stations were established at intervals of
30 m, aligned parallel to the wetland edge. Within these stations, vegetation structure was
assessed, and AGB was collected within duplicate plots measuring 0.25 square meters each.
These plots were positioned 5 m apart at each sampling station, enabling comprehensive
assessment and replication of measurements across the wetland site. For further analysis,
all AGB plant material within each plot was clipped at soil level, placed in plastic bags,
and transported to the laboratory. To represent the salinity gradient within both basins,
herbaceous wetland sites spanning freshwater, brackish, and saline environments were
selected. For the spring season, the number of AGB samples was 86 and for fall was 96.
AGB values were reported in gram per square meter (g m−2) and other nutrients were
reported in milligram per gram (mg g−1).

In the course of spring and autumn 2021, the National Aeronautics and Space Ad-
ministration’s (NASA) Airborne Visible Infrared Imaging Spectrometer-Next Generation
(AVIRIS-NG) gathered data from selected areas within the Atchafalaya and Terrebonne
basins situated in coastal Louisiana. The Delta-X campaign, a collaborative initiative com-
prising both airborne and field operations, was conducted in the MRD. AVIRIS-NG, a
high signal-to-noise ratio (SNR) pushbroom spectral mapping system, was specifically
engineered for advanced spectroscopy, succeeding the Classic Airborne Visible Infrared
Imaging Spectrometer (AVIRIS-C) [57]. The instrument encompasses the full solar-reflected
spectrum, ranging from 380 to 2510 nm, utilizing a single Focal Plane Array (FPA) at
approximately 5 nm spectral sampling. AVIRIS-NG’s sensor possesses a 1-milliradian in-
stantaneous field of view, thereby yielding altitude-dependent ground sampling distances
that span from sub-meter to 20 m scales. Its detector consists of a 640 × 480-pixel array,
from which standard products are derived via the sensor’s 600 cross-track spatial samples
and 425 spectral samples. Each data collection, referred to as a “flight line,” constitutes a
continuous strip of pushbroom information typically captured within 1 to 10 minutes. To
produce a comprehensive map of the targeted area, multiple aircraft overflights amass data
in these strips, encompassing the region of interest. Subsequent to each AVIRIS-NG flight
line, the data underwent atmospheric correction to generate Hemispherical-Directional sur-
face reflectance datasets [58]. Further adjustments were made to account for bidirectional
reflectance distribution function (BRDF) effects and sun-glint across land and water pixels,
respectively [59,60].

2.4. AGB Regression Models

In addressing the challenge of modeling AGB with limited ground data, this study
leveraged a combination of satellite and airborne datasets to enhance predictive accuracy.
Initially employing Sentinel-1 and -2 data, efforts were made to develop a regression
model; however, the outcomes proved suboptimal, due to the very limited number of
ground samples and insufficient spatial resolution of Sentinel platforms. Consequently, the
study turned to AVIRIS-NG data, notable for its superior spatial and spectral resolution,
to refine the modeling process within a small-scale context. Leveraging the enhanced
resolution of AVIRIS-NG, the dataset was sampled strategically to train comprehensive
models applicable to larger-scale assessments utilizing spaceborne data. By integrating
high-resolution AVIRIS-NG data to inform the modeling process at a localized level, and
subsequently extrapolating insights to broader spatial extents using spaceborne datasets,
this methodology endeavors to optimize predictive accuracy in AGB estimation. In order to
accurately estimate biomass, this study employed a comprehensive approach encompassing
multiple classification scenarios that incorporated diverse scales and temporal information.
The intricate flowchart of the research methodology, depicted in Figure 3, provides a visual
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representation of the sequential steps involved in the investigation. These steps encompass
data access, preprocessing procedures, feature extraction techniques, machine learning
algorithms, and rigorous model evaluation protocols.
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At the first level, to enhance the distribution and number of the samples for large-scale
modeling, AVIRIS-NG data were used. This hyperspectral data includes much higher
spectral information compared to Sentinel-2 multispectral data, in addition to much higher
spatial resolution of 5 m. There have been several studies using AVIRIS-NG besides
Sentinel spaceborne data to enhance the produced results [61–63]. RF is a robust classifier
and regression method for wetland classification and regression [64]. RF, an ensemble
learning method, works by constructing multiple decision trees during the training phase
and aggregating their results to arrive at the final decision [65]. The algorithm offers
robust regression capabilities for biomass estimation due to its inherent ability to handle
high-dimensional and noisy data, as well as its capacity to model complex relationships
between variables, which are commonly encountered in remote sensing datasets, such
as Sentinel-1 and Sentinel-2. The RF model’s ability to capture diverse data sources and
their intricate interactions allow for improved accuracy and reduced overfitting compared
to single decision tree methods. A preliminary model was developed using a RF model,
that was trained using the AVIRIS-NG Level-2 BRDF-adjusted Surface Reflectance data
with 70% of the ground-truth AGB samples. To train this model, cloud screened and
atmospherically corrected AVIRIS-NG images were sampled using the field data from
spring and fall seasons, with all the hyperspectral bands. This model then was assessed
with the remaining 30% of the reference data and achieved 293.83 g m−2 Mean Absolute
Error (MAE). AVIRIS-NG Level-3 derived AGB data were also made available by the Delta-
X team with slightly better quality, which was used to train the large-scale model in the next
level [66]. Pixel reflectance spectra, adjusted and aligned with AGB field measurements
of herbaceous vegetation from both spring and fall 2021 collections, served as the basis
for developing this RF model to estimate the AGB of at the small-scale [56]. Employing
visible-shortwave infrared reflectance values as independent variables, a RF regression
model was constructed for AGB estimation. Additional adjustments were made to the
input spectra and mosaic imagery, specifically within the 880–1000 nm and 1080–1200 nm
bands. These corrections interpolated reflectance where water vapor absorption generated
excessive noise, utilizing a conditional Gaussian interpolation algorithm trained on the
EMIT vegetation spectral library [67]. In order to apply the small-scale AGB model to
the AVIRIS-NG data, the spring and fall mosaics for both Atchafalaya and Terrebonne
Basins underwent classification to differentiate herbaceous vegetation from forests, floating
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aquatic vegetation, soil, water, clouds, and cloud shadows. Subsequently, the regression
model was implemented on the image mosaics corresponding to the classified herbaceous
wetland pixels. The final products were then transformed into megagrams per hectare
(Mg ha−1) units. This model was assessed using a leave-one-out cross-validation method
and achieved 257.30 g m−2 MAE. The resulting AVIRIS-NG Level-3 derived AGB maps only
cover a small region, with large data gaps due to clouds, noises, and other masked pixels.

On the next level, the resulting AVIRIS-NG Level-3 derived AGB data was used to
train the large-scale model. Sentinel-2 surface reflectance data was accessed within the
GEE from timeframes matching field campaigns. All Sentinel-2 images with less than 20%
cloud coverage during spring and fall timeframes were masked using the QA60 cloud
mask available in the metadata of Sentinel-2 data. In addition, a secondary aerosol mask
was applied to the images using a threshold on the aerosol band. Finally, a cloud-free
seasonal composite was created using a median filter. From the Sentinel-2 seasonal median
composite image, RGB, NIR, Red-edge, and SWIR bands were used for AGB estimation. In
addition to spectral bands, spectral indices, including NDWI, NDVI, GNDVI, RVI, NDBI,
NBR, BI, SAVI, EVI, NDSI, and RENDVI were extracted using spectral bands (Table 1).
These indices were chosen based on previous studies on wetlands.

Table 1. Features extracted from Sentinel-1 and -2.

Feature Formula

Sentinel-2

Normalized Difference Water Index NDWI = (G−NIR)
(G+NIR)

Normalized Difference Vegetation Index NDVI = (NIR−R)
(NIR+R)

Green Normalized Difference Vegetation Index GNDVI = (NIR−G)
(NIR+G)

Ratio Vegetation Index RVI = RE2
R

Normalized Difference Built-Up Index NDBI = (SWIR1−N)
(SWIR1+N)

Normalized Burn Ratio NBR = (NIR−S2)
(NIR+S2)

Bare Soil Index BI = (SWIR1+R)−(N+B)
(SWIR1+R)+(NIR+B)

Soil-Adjusted Vegetation Index (L = 0.5) SAVI = (1.0+L)×(NIR−R)
NIR+R+L

Enhanced Vegetation Index (g = 2.5, C1 = 6, C2 = 7.5) EVI = g×(NIR−R)
NIR+(C1×R)−(C2×B)+L

Normalized Difference Snow Index NDSI = (G−SWIR1)
(G+SWIR1)

Red Edge Normalized Difference Vegetation Index ENDVI = (RE2−RE1)
(RE2+RE1)

Sentinel-1
Span or Total Scattering Power |SVV |2 + |SVH |2

Ratio |SVV |2

|SVH |2

Sentinel-1 GRD data was also accessed from GEE for the study area region. Backscat-
tering coefficients in VV and VH polarizations were used, in addition to span and ratio
indices extracted from the SAR data (Table 1). Finally, SRTM elevation data were added
with the slope and aspect topographic features to create the data cube for the regression.
The stacked data was sampled using the AVIRIS-NG Level-3 derived AGB using a random
sampling method. Since the small-scale model was masked, only AGB values for wetlands
and associated vegetations are used in sampling stage for large-scale model. Three different
regression scenarios were implemented for the large-scale model. A separate RF model
was trained in GEE for spring, fall, and multi-temporal AGB estimation. Seasonal models
(i.e., spring and fall) were developed using samples from only one season. The multi-
temporal model was developed using sample data from both seasons. a trial-and-error
approach led to the selection of 500 trees as the optimal number for the data at hand, strik-
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ing a balance between model complexity and predictive performance while minimizing the
risk of overfitting. To apply the models on the composite median images for spring, fall,
and monthly maps, a low NDVI threshold was applied on the images so that unwanted
areas, including upland land cover classes and water inundated areas are masked. This is
due to the fact that Sentinel-1 and SRTM do not provide data for water inundated regions
and also in this way the effect of erosion and sedimentation is minimized. Of sampled data,
70% was used for training the model, and the remaining 30% was used for cross-validation
of the model. RMSE and R-square were calculated based on the comparison of the predicted
values from the models and observed values from AVIRIS-NG Level-3 derived AGB for the
training and testing sampled data to assess the performance of the models. RMSE measures
the average magnitude of the differences between the observed and predicted values and
provides an indication of the model’s accuracy. R-squared, on the other hand, assesses the
proportion of the variance in the observed data that is explained by the model, representing
its goodness of fit.

3. Results
3.1. Model Assessment

The estimated AGB was evaluated using the 30% untouched test data, separately for
the spring, fall, and multi-temporal models. Figure 4 illustrates this assessment through
a scatter plot, demonstrating the strong agreement and integrity between the observed
and predicted AGB values. Additionally, a fitted line with 95% intervals is depicted in the
figure, indicating confidence in the predictions. To further quantify the performance of
the regression models, two metrics were employed: RMSE and R-squared. Table 2 shows
the evaluation metrics of the models. For the spring model, the RMSE was determined
to be 0.97 Mg ha−1, indicating a relatively small average deviation between the predicted
and observed AGB values. The corresponding R-squared value was 0.45, suggesting that
the model explains 45% of the variance in the observed data. Similarly, for the fall model,
the RMSE was 0.98 Mg ha−1, with an R-squared value of 0.36. As for the multi-temporal
model, the RMSE was 1.6 Mg ha−1, while the R-squared value was 0.65. Interpreting the
RMSE values, lower values indicate higher accuracy and better agreement between the
predicted and observed AGB values. The R-squared values indicate the extent to which
the model captures the variability in the observed data, with values closer to 1 indicating
a stronger relationship. Therefore, the evaluation results suggest that the multi-temporal
model performed relatively better, with higher R-squared and slightly higher RMSE values
compared to the spring and fall models. The out-of-the-bag (OOB) error is a valuable metric
used in ensemble learning methods such as RF. It quantifies the prediction accuracy of the
model by measuring the error rate on the instances that were not used during the training
process. The OOB error serves as an internal validation measure, providing an estimate of
the model’s performance without the need for additional validation data.

Table 2. Number of samples and evaluation metrics for the produced maps.

Spring Fall Multi-Temporal

Training Samples 2610 2619 1269
Test Samples 1105 1082 921

OOB Error (Mg ha−1) 0.97 1.01 1.73
Training RMSE (Mg ha−1) 0.55 0.57 0.99

Training R-squared 0.85 0.85 0.91
Test RMSE (Mg ha−1) 0.97 0.98 1.61

Test R-squared 0.45 0.36 0.65
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In the context of AGB regression in tidal marshes, the RF algorithm provides valuable
insights into the relative importance of various features contributing to the estimation
of AGB. A key advantage of this ensemble learning method is its ability to rank features
based on their contribution to the model’s predictive performance, known as feature
importance. Feature importance in RF can be assessed using metrics such as Gini impurity
or Mean Decrease in Impurity (MDI), which quantify the extent to which a specific feature
contributes to the overall reduction in prediction error across all trees in the model. This
information enables researchers to identify the most influential variables driving AGB
dynamics in tidal marshes, determining the key biophysical, climatic, and hydrological
factors that govern these ecosystems. Figure 5 depicts the importance of different features
in AGB regression from Sentinel-1, -2, and SRTM.

In the context of feature importance analysis, it is observed that among the various
features examined, the SWIR 1 and SWIR 2 bands (specifically, bands B11 and B12) obtained
from Sentinel-2 data exhibit the highest level of significance. The SWIR spectral bands are
crucial for wetland biomass estimation due to their sensitivity to vegetation. Less suscepti-
ble to atmospheric interference, SWIR bands excel in differentiating biomass components
and mitigating shadow effects. Previous studies consistently affirm the effectiveness of
SWIR in enhancing accuracy, underscoring its pivotal role in remote sensing applications
for wetland ecological monitoring [68]. Notably, within the Sentinel-2 bands, the Red
Edge 1 and RGB bands also demonstrate notable importance. Interestingly, the NDSI
surprisingly demonstrates outstanding performance among the spectral indices, whereas
NDVI exhibits an average level of importance. Although originally named as snow index,
NDSI outperforms NDVI due to its utilization of the SWIR band. Unlike NDVI, which
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relies on NIR, NDSI’s incorporation of SWIR enhances its capability to distinguish between
features like wetlands and water inundated areas, resulting in superior performance in
wetland environments. With regard to SAR features, the feature “Span” displays the highest
capability in AGB regression. The importance of different features displays a correlation in
diverse seasonal and multi-temporal models.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 5. The importance of different features from the RF models. 

In the context of feature importance analysis, it is observed that among the various 
features examined, the SWIR 1 and SWIR 2 bands (specifically, bands B11 and B12) ob-
tained from Sentinel-2 data exhibit the highest level of significance. The SWIR spectral 
bands are crucial for wetland biomass estimation due to their sensitivity to vegetation. 
Less susceptible to atmospheric interference, SWIR bands excel in differentiating biomass 
components and mitigating shadow effects. Previous studies consistently affirm the effec-
tiveness of SWIR in enhancing accuracy, underscoring its pivotal role in remote sensing 
applications for wetland ecological monitoring [68]. Notably, within the Sentinel-2 bands, 
the Red Edge 1 and RGB bands also demonstrate notable importance. Interestingly, the 
NDSI surprisingly demonstrates outstanding performance among the spectral indices, 
whereas NDVI exhibits an average level of importance. Although originally named as 
snow index, NDSI outperforms NDVI due to its utilization of the SWIR band. Unlike 
NDVI, which relies on NIR, NDSI’s incorporation of SWIR enhances its capability to dis-
tinguish between features like wetlands and water inundated areas, resulting in superior 
performance in wetland environments. With regard to SAR features, the feature “Span” 
displays the highest capability in AGB regression. The importance of different features 
displays a correlation in diverse seasonal and multi-temporal models. 

3.2. Seasonal Models 
In this study, AGB maps were produced on a large scale for spring and fall seasons, 

as the growing and sinking seasons. Figure 6 shows the results for the spring season. The 
spring period represents a vital stage in the vegetation growing season, as it corresponds 
to the onset of plant growth and development, driven by factors such as increasing tem-
peratures, longer daylight hours, and nutrient availability. Coinciding with the peak of 
the spring river flood season, this period experiences elevated water levels, which can re-
sult in the widespread inundation of riparian and floodplain ecosystems. These flooding 
events contribute to the distribution of nutrients, sediment, and organic matter, thereby 
supporting the growth and proliferation of vegetation within these habitats. Conse-
quently, AGB during the spring period is subjected to significant changes, as the interplay 
between hydrological dynamics and vegetation growth shapes the overall structure and 
composition of ecosystems. Monitoring and quantifying AGB during this critical phase is 
essential for understanding ecosystem dynamics, evaluating the impacts of 

Figure 5. The importance of different features from the RF models.

3.2. Seasonal Models

In this study, AGB maps were produced on a large scale for spring and fall seasons,
as the growing and sinking seasons. Figure 6 shows the results for the spring season. The
spring period represents a vital stage in the vegetation growing season, as it corresponds to
the onset of plant growth and development, driven by factors such as increasing temper-
atures, longer daylight hours, and nutrient availability. Coinciding with the peak of the
spring river flood season, this period experiences elevated water levels, which can result in
the widespread inundation of riparian and floodplain ecosystems. These flooding events
contribute to the distribution of nutrients, sediment, and organic matter, thereby supporting
the growth and proliferation of vegetation within these habitats. Consequently, AGB during
the spring period is subjected to significant changes, as the interplay between hydrological
dynamics and vegetation growth shapes the overall structure and composition of ecosystems.
Monitoring and quantifying AGB during this critical phase is essential for understanding
ecosystem dynamics, evaluating the impacts of environmental changes, and informing effec-
tive management and conservation strategies for these valuable natural resources.

In many ecosystems, August is considered the period of peak biomass, as it typ-
ically corresponds to the culmination of the growing season. AGB results for the fall
season are illustrated in Figure 7. During this time, the vegetation already benefits from
warmer temperatures, longer daylight hours, and nutrient availability throughout the
growth period. As a result, plants reach their maximum biomass and structural complexity,
providing essential habitat and resources for dependent species. Concurrently, August
is often characterized by a period of low river discharge as the spring flood season has
subsided and water levels have returned to normal or below-average levels. This reduction
in river discharge can contribute to the stabilization of soil and sediment, promoting further
vegetation growth and consolidation of the accumulated biomass. The combination of
these factors results in the high AGB values observed during this time of the year. Gaining
insight into and measuring biomass during the period of maximum vegetation growth in
August is of utmost importance. This endeavor is critical in evaluating the well-being of



Remote Sens. 2024, 16, 831 12 of 20

ecosystems, assessing the consequences of environmental fluctuations, and guiding the
development of efficient strategies for ecosystem management and conservation. Accurate
monitoring of AGB during this critical phase can also provide valuable insights into the
carbon stock potential of these ecosystems, as well as their capacity to support biodiversity
and contribute to overall ecosystem functioning.
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3.3. Multi-Temporal Model

The phenology of AGB in tidal wetlands plays a pivotal role in understanding the tem-
poral dynamics of these ecosystems, as well as their capacity for carbon stock throughout
the year. Tidal wetlands, encompassing marshes, mangroves, and seagrass meadows, are
highly productive ecosystems that contribute significantly to global carbon storage. AGB
phenology in these habitats is governed by complex interactions between hydrological,
climatic, and biotic factors, which shape the growth, senescence, and decomposition of
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plant biomass across different seasons. The monthly results of the AGB derived from
multi-temporal model are shown in Figure 8.
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Carbon stock in tidal wetlands relies heavily on the accumulation and preservation of
organic matter, primarily derived from the AGB of vegetation. March marks the beginning
of the growing season, as the low trend of AGB in January and February start the beginning
of the uptrend. During the growing season, as plants photosynthesize and accumulate
biomass, they assimilate atmospheric carbon dioxide, converting it into organic carbon.
There is a sharp contrast between the AGB values in April and March, showing the growth
of the AGB in summer. This trend continues until August, when the AGB map reaches
the highest values and saturation. As plant material dies and decomposes, a portion
of this carbon is incorporated into the soil, leading to long-term storage. The rate and
magnitude of carbon stock in tidal wetlands can vary significantly throughout the year due
to fluctuations in AGB phenology, reflecting changes in growth rates, plant productivity,
and decomposition processes. Starting from September and after the peak biomass in the
fall season, the down trend of AGB begins and continues into the winter. Furthermore, the
produced monthly maps derived from the multi-temporal model in March and August
confirm the previous results from the spring and fall seasons. This shows the consistency
and novelty of the multi-temporal model, as the results have integrity with seasonal spring
and fall models.

By closely examining the phenology of AGB in tidal wetlands and its association with
carbon stock dynamics, researchers can gain valuable insights into the factors that influence
the carbon storage capacity of these ecosystems. This understanding is crucial for informing
management and conservation strategies aimed at preserving and enhancing the carbon
stock potential of tidal wetlands, as well as their role in mitigating climate change and
supporting biodiversity. Figure 9 presents an illustration of the mean AGB across various
wetland classifications during each month, measured in megagrams per hectare (Mg ha−1).
Freshwater forested shrub wetlands exhibited the highest average AGB, and their values
exhibited a significant increase during the growing season, peaking at maximum levels
between May and August, followed by a gradual decline. The estimated biomass for
freshwater forested shrub wetlands accounted for a substantial portion of this region,
reaching a maximum of 1,092,480 megagrams. Notably, freshwater emergent wetlands



Remote Sens. 2024, 16, 831 15 of 20

followed a similar temporal pattern to the forested shrub wetlands, with peak averages
observed in June and a subsequent decrease beginning in August. Conversely, estuarine and
marine wetlands demonstrated the lowest average biomass, exhibiting the most substantial
fluctuations in AGB throughout the year. Furthermore, both freshwater forested shrub
wetlands and estuarine and marine wetlands contributed a smaller proportion to the overall
AGB, measuring 400,746 and 489,972 Mg, respectively.
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4. Discussion

A comprehensive multi-level remote sensing model of aboveground tidal marsh
biomass was developed for the MRD region and southern Louisiana that can be applied to
a variety of saline, brackish, and freshwater marshes, and wetlands. The researchers used
the collected regional dataset of the AGB of tidal wetlands from the MRD to accomplish this
goal. Our objective was to determine whether a repeatable remote sensing methodology
could be used to estimate AGB in the tidal marsh that was consistent, transferable, free, or
low-cost, and applicable to different estuarine conditions. To estimate the biomass of tidal
marshes, researchers used multi-platform data to develop a robust and scalable remote
sensing model.

AGB is a crucial metric in understanding the health and productivity of ecosystems, as
it quantifies the living organic material found above the soil surface, primarily consisting
of plant structures such as stems, leaves, and branches. The study’s key findings lay in
its innovative multi-scale approach, effectively translating field measurements to local
and regional scales using both airborne and spaceborne platforms. Leveraging the advan-
tageous attributes of spaceborne data, the study successfully bridged the gap between
small-scale models derived from airborne data and large-scale estimations. Furthermore,
the utilization of multi-temporal data proved instrumental in capturing the intra-annual
variation of coastal wetland biomass, enabling the creation of monthly maps that provide
a comprehensive depiction of the biomass dynamics over time. These key findings em-
phasize the feasibility of a multi-sourced, multi-scaled approach in achieving a holistic
understanding of coastal wetland biomass and its temporal variations, addressing a crucial
gap in the field.
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The production of accurate and reliable AGB maps and analyses holds paramount
importance for various aspects of ecosystem management, strategy planning, decision
making, environmental conservation, and a range of potential applications. AGB maps
provide crucial information about the spatial distribution and temporal dynamics of vege-
tation biomass, enabling informed decision-making processes related to land use, resource
management, and conservation efforts. These maps serve as valuable tools for monitor-
ing ecosystem health, assessing carbon stocks, evaluating the impacts of environmental
changes, and predicting future vegetation growth patterns. Moreover, the availability of
high-quality AGB data facilitates the development of effective management strategies for
sustainable land use, biodiversity conservation, and climate change mitigation initiatives.
Therefore, the generation and analysis of AGB maps play a pivotal role in advancing
scientific understanding and promoting evidence-based management practices across
various disciplines.

Compared to previous research conducted within this region, the findings of this
study demonstrated marked advancements in resolution, coverage, and accuracy. In a
comprehensive prior investigation spanning the United States, the examination involved
the application of Sentinel-1 C-band SAR, Landsat, and the National Agriculture Imagery
Program (NAIP) for wetland AGB estimation [69]. The study resulted in the production
of an AGB map for the Mississippi Delta, exhibiting a spatial resolution of 30 m and an
RMSE of 479 g/m2. By integrating multi-source Sentinel-1 and Sentinel-2 data, this research
heightened the resolution of the wetland AGB map to 10 m, enhancing the level of detail
presented. The achieved RMSE values of 293.83 g/m2 at a smaller scale and 160.97 g/m2 in
the larger scale model substantially bolstered the accuracy of the AGB maps, offering more
dependable outcomes. Additionally, another study utilizing AVIRIS-NG and UAVSAR
managed to produce AGB maps with an RMSE of 109.24 g/m2, albeit for a restricted area
(one of six field sites; [43]). Despite the relatively superior accuracy attained in this present
study, limitations persist due to the absence of large-scale maps and the elevated costs
associated with data acquisition, constraining the wider application of AGB maps.

Estimating AGB in tidal marshes presents unique challenges, primarily due to the
dynamic nature of these ecosystems and the complex interactions among their biotic
and abiotic components. Field data collection poses a significant challenge in accurately
quantifying AGB, requiring repeated measurements to capture the temporal changes
in AGB accurately. The availability of longitudinal data is crucial for a comprehensive
understanding of AGB dynamics and for developing robust models that can account for the
variability in biomass accumulation and decomposition processes over time. Additionally,
the development of larger-scale AGB estimation models necessitate a greater volume of
field data, encompassing diverse tidal marsh ecosystems, to enhance the model’s reliability
and generalizability. Therefore, a comprehensive and extensive collection of field data is
essential for improving the accuracy and applicability of AGB estimation in tidal marshes.
In addition to optical and SAR data, the utilization of other spatial data, such as biophysical
parameters, can provide valuable insights into the complex relationships between AGB
and environmental factors. Incorporating these additional data sources, including climate
data, topographic variables, and soil properties, can enhance the accuracy and precision
of AGB estimation models. Moreover, the emergence of deep learning techniques offers
promising avenues for developing more sophisticated and comprehensive models for AGB
estimation. Deep learning models have the capability to capture intricate patterns and
relationships in large and complex datasets, enabling the integration of diverse data sources
and the extraction of high-level features that may improve AGB estimation accuracy [70].
By harnessing the potential of these advanced techniques and incorporating additional
spatial data, future research endeavors can advance our understanding of AGB dynamics
in tidal marshes and contribute to more effective management and conservation strategies
in these ecologically significant ecosystems.
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5. Conclusions

In this study, a comprehensive and innovative multi-scale approach was introduced to
combine field data with aerial and satellite imagery for the estimation of AGB in coastal
wetlands. By leveraging the synergistic use of radar and optical data from Sentinel-1 and
-2, AGB maps with a spatial resolution of 10 m were generated for the Louisiana coastal
wetlands. The utilization of the multi-scale and multi-temporal approach and RF machine
learning technique enabled the development of distinct models for the spring, fall, and
multi-temporal, facilitating the precise measurement of the onset of the growing season and
the peak biomass period. Additionally, the multi-temporal model allowed for continuous
monitoring of the phenology of coastal wetlands throughout the year, elucidating the
temporal patterns of AGB. Rigorous evaluation of each individual model using a holdout
dataset, comprising 30% of the data untouched during training, yielded compelling results.
Notably, the spring model achieved a RMSE of 0.97 Mg ha−1, the fall model attained an
RMSE of 0.98 Mg ha−1, and the multi-temporal model yielded an RMSE of 1.61 Mg ha−1.
Investigating the outputs of the RF models revealed the significance of various features,
including short-wave infrared bands, RGB bands, vegetation indices, and polarimetric
features, in AGB estimation. The produced AGB maps hold immense value for decision-
makers at various levels, ranging from local to federal governments, in their efforts to
protect and restore coastal wetlands and mitigate potential damage. Furthermore, these
maps serve as invaluable tools for environmental management and strategy planning.
Future research can effectively address the constraint posed by the scarcity of ground
reference data through the application of cutting-edge deep learning methodologies and
innovative data expansion techniques.
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