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Abstract: A digital orthophoto is an image with geometric accuracy and no distortion. It is acquired
through a top view of the scene and finds widespread applications in map creation, planning, and
related fields. This paper classifies the algorithms for digital orthophoto generation into two groups:
explicit methods and implicit methods. Explicit methods rely on traditional geometric methods,
obtaining geometric structure presented with explicit parameters with Multi-View Stereo (MVS)
theories, as seen in our proposed Top view constrained Dense Matching (TDM). Implicit methods
rely on neural rendering, obtaining implicit neural representation of scenes through the training of
neural networks, as exemplified by Neural Radiance Fields (NeRFs). Both of them obtain digital
orthophotos via rendering from a top-view perspective. In addition, this paper conducts an in-depth
comparative study between explicit and implicit methods. The experiments demonstrate that both
algorithms meet the measurement accuracy requirements and exhibit a similar level of quality in
terms of generated results. Importantly, the explicit method shows a significant advantage in terms of
efficiency, with a time consumption reduction of two orders of magnitude under our latest Compute
Unified Device Architecture (CUDA) version TDM algorithm. Although explicit and implicit methods
differ significantly in their representation forms, they share commonalities in the implementation
across algorithmic stages. These findings highlight the potential advantages of explicit methods
in orthophoto generation while also providing beneficial references and practical guidance for fast
digital orthophoto generation using implicit methods.

Keywords: digital orthophoto; neural radiance fields; unmanned aerial vehicles

1. Introduction

A digital orthophoto is a remote sensing image that has undergone geometric cor-
rection, possessing both map geometric accuracy and image characteristics. It accurately
portrays the terrain and landforms of a scene and can be utilized for measuring real dis-
tances. It plays a crucial role in various fields, such as land surveying, urban planning,
resource management, and emergency response. It aids in monitoring urban development
and changes, tracking alterations in land cover and land use. Additionally, in times of
natural disasters, time is of the essence. The fast generation of digital orthophotos enables
rescue personnel to quickly understand the situation in disaster-stricken areas, enhancing
efficiency in responding to emergencies.

The core of digital orthophoto generation lies in obtaining the elevation and texture
information of objects within the spatial scene. In order to obtain the elevation and texture
of the spatial objects’s surface, as shown in Figure 1, the traditional method of generating
digital orthophoto mainly draws inspiration from the concept of MVS. It involves repro-
jecting three-dimensional objects onto different images using the camera’s intrinsic and
extrinsic parameters. By extracting two image patches centered around the reprojection
point, this method then infers the likelihood of the object being at the current elevation
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based on a quantitative assessment of the similarity between these scenes. Consequently, it
reconstructs the necessary spatial structural information of the scene, and the final results
are obtained through top-view projection. We define such algorithms that utilize traditional
geometry-based approaches to acquire explicit three-dimensional spatial structures and
subsequently generate digital orthophotos as explicit methods. The generation process of
many types of commercial software, such as Pix4D (version 2.0.104), is carried out using
explicit methods. For example, Liu et al. [1] proposed a post-processing method based
on Pix4D for digital orthophoto generation. Some works [2–4] are optimized for linear
structures in structured scenes.

As a rapidly advancing emerging neural rendering method, NeRF [5] has gained
significant attention and shown great potential in recent years. NeRF-related methods
inherently offer arbitrary viewpoints, theoretically making them applicable for digital
orthophoto generation. They can be used in any scene as long as sparse reconstruction
is completed. Therefore, we specifically focused on the feasibility of NeRF in digital
orthophoto generation. As shown in Figure 1, NeRF initiates the rendering process by
sampling a series of points along targeted rays (represented by the black dots), then
estimates the volume density and radiance at specific viewpoints (represented by the circles
with an orange outline) for these sample points with neural networks F(Θ); finally, it
applies volume rendering to produce the pixel values. As a specific viewpoint of the scene,
the digital orthophoto can be rendered using NeRF by employing a set of parallel rays that
are orthogonal to the ground. In this paper, we define the digital orthophoto generation
methods based on neural rendering, which do not rely on traditional three-dimensional
reconstruction, as implicit methods.

Figure 1. We categorize digital orthophoto generation methods into two types: explicit methods
and implicit methods. The typical workflow of explicit methods involves obtaining the geometric
structure with explicit parameters like mesh. The implicit methods are based on neural rendering,
approximating the geometric structure with implicit neural networks. Both of them generate digital
orthophoto through orthogonal projection.

In this paper, we will compare the algorithmic processes and performance of explicit
and implicit methods in digital orthophoto generation. Within the explicit methods, we
selected the TDM algorithm [6], known for its exceptional speed performance. To unleash
its potential, we conducted CUDA version porting and optimization modifications, sig-
nificantly enhancing the generation efficiency. For implicit methods, we implemented
orthographic view rendering based on NeRF and selected the speed-optimized Instant
NGP [7] as a representative experiment. The experimental results reveal that the explicit
method demonstrates notably high efficiency in generation speed. Both explicit and im-
plicit methods yield acceptable levels of measurement accuracy and exhibit comparable
rendering quality.
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2. Related Work
2.1. DigitalOrthophoto Generation Methods

In digital photogrammetry, a mature workflow of digital orthophoto generation is
presented in [8]. A general digital orthophoto generation approach often relies on 3D
reconstruction. Schonberger et al. [9] proposed a complete structure-from-motion (SfM)
pipeline. Shen et al. [10] proposed a patch-based dense reconstruction method, allowing
for the integration with the SfM pipeline to achieve an entire 3D reconstruction process.
Some works [11,12] used smartphone sensors to generate the 3D models. After the 3D
reconstruction is completed, it can be orthogonally projected onto a horizontal plane to
obtain the digital orthophoto. A digital orthophoto generation method with the assistance
of Pix4D is proposed in [1]; they also propose post-processing methods based on Pix4D for
digital orthophoto generation. Many efforts are being made to accelerate digital orthophoto
generation, but these works are usually focused on specific scenarios. Some works have
optimized digital orthophoto generation in structured scenes. For instance, Wang et al. [4]
extracted and matched lines from the original images and then transformed these matched
lines into the 3D model, reducing the computational cost of pixel-by-pixel matching in dense
reconstruction. Li et al. [13] used deep learning methods to obtain a topological graph in
the scenes, enhancing the accuracy at the edges of buildings. Lin et al. [2] arranged ground
control points at the edges of buildings to ensure the accuracy of these edges. Some studies
have made improvements for more specialized scenes. For instance, Lin et al. [14] focused
on agricultural surveying scenarios, utilizing the spectral characteristics of vegetation to
determine its location, thereby achieving fast digital orthophoto generation in agricultural
mapping contexts. Zhao et al. [15] assumed the target scene to be a plane, employing
simultaneous localization and mapping (SLAM) for real-time camera pose estimation and
projecting the original images onto the imaging plane of the digital orthophoto. These
methods speed up the digital orthophoto generation by sacrificing the generality of the
algorithms. Some methods [16,17] utilize Digital Elevation Model (DEM) to accelerate the
digital orthophoto generation, but this approach is constrained by the acquisition speed of
the DEM.

Zhao et al. [6] were the first to propose a process for digital orthophoto generation
directly using sparse point clouds. This approach eliminates the redundant computations
that occur in the dense reconstruction phase of the standard 3D reconstruction-based digital
orthophoto generation methods, significantly increasing the speed of generation.

2.2. NeRF with Sparse Parametric Encodings

In recent years, methods for novel view image synthesis on neural rendering have
rapidly evolved. Mildenhall et al. [5] introduced NeRF, which represents a scene as a
continuous neural radiance field. NeRF optimizes a fully connected deep network as an
implicit function to approximate the volume density and view-dependent emitted radiance
from 5D coordinates (x, y, z, θ, ϕ), with σ representing the volume density at a spatial point.
To render an image from a specific novel viewpoint, NeRF initially (1) generates camera
rays traversing the scene and samples a set of 3D points along these rays, (2) inputs the
sampled points and viewing directions into the neural network to obtain a collection of
densities RGB values, and (3) employs differentiable volume rendering to synthesize a
2D image.

Many recent works have incorporated sparse parametric encoding into NeRF for
enhancement, generally aiming to pre-construct a series of auxiliary data structures with
encoded features within the scene. We summarize these NeRFs with sparse parametric
encoding into four stages in Figure 2: (1) scene representation, (2) radiance prediction,
(3) differentiable renderer, and (4) loss function. For the first stage in Figure 2a, nu-
merous sparse parametric encoding techniques have been proposed, such as dense and
multi-resolution grids [7,18,19], plannar factorization [20–22], point clouds [23], and other
formats [24,25]. The central concept behind these methods is to decouple local features of
the scene from the MLP, thereby enabling the use of more flexible network architectures.
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They are typically represented by a grid, as shown in Figure 2a, resulting in the local
encoding feature lookup table shown in the orange part. For the second stage in Figure 2b,
a coarse–fine strategy is often used to sample along rays, and a cascaded MLP is typically
used to predict volume density and view-dependent emitted radiance. Several studies
have attempted to enhance rendering quality by improving sampling methods [22,26,27];
some have employed occupancy grids to achieve sampling acceleration [28]; others have
focused on adjusting the MLP structure to facilitate easier network training [29]. For the
third stage in Figure 2c, the figure exemplifies the most commonly used volume rendering,
but other differentiable rendering methods are also employed [30], with Nvdiffrast [31]
providing efficient implementations of various differentiable renderers. For the fourth
stage in Figure 2d, the figure presents the most commonly used mean squared error loss
between rendered and ground truth images, with some works introducing additional
supervision, such as methods incorporating depth supervision [32,33]. With different
scene representations, various loss functions are incorporated to constrain the network.
Neural radiance fields can achieve photorealistic rendering quality and lighting effects,
but it often takes hours to optimize the network parameters, and the training process is
computationally expensive.

(a) (b) (c) (d)

Figure 2. A schematic representation of NeRF with sparse parametric encoding. The process is
divided into four stages: (a) scene representation, primarily defining auxiliary data structures for
a scene’s sparse parametric encoding; (b) radiance prediction, where queried encoded features
(orange arrows) and embedded sampling points are represented as feature embeddings and the
radiance at these points is obtained through the function F(Θ); (c) differentiable rendering, rendering
meaningful pixel RGB values based on the radiance of sampling points; (d) loss computation,
calculating the loss based on the rendering results, followed by backpropagation (green arrows) to
optimize network parameters.

Both explicit and implicit methods require the initial step of SfM to obtain sparse
point clouds and camera poses. The former predicts depth using multi-view geometry
theories and describes the geometric structure of the scene using explicit parameters such
as mesh, voxel, raster, etc. In contrast, implicit methods gradually fit to the real scene
through implicit neural representation during the training process. Finally, both methods
render digital orthophoto images from an orthographic viewpoint.

3. Method

An explicit digital orthophoto generation method typically involves the SfM and MVS
processes. The TDM method facilitates the fast generation of digital orthophotos directly
from sparse point clouds. Unlike MVS, the computation process of TDM is specifically
tailored toward the final output of digital orthophotos. Factors unrelated to digital or-
thophotos are not involved in the computation, facilitating faster generation of digital
orthophotos. So we selected the TDM algorithm as the representative explicit method for
fast digital orthophoto generation and Instant NGP as the representative implicit method.

An implicit digital orthophoto generation method typically involves optimizing a
group of parameters with posed images. This optimization process often takes several
hours or even dozens of hours. Instant NGP [7] represents a speed-optimized neural
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radiance field, achieving the shortest optimization time among current radiance field
methodologies. Hence, we select Instant NGP as the representative implicit method for fast
digital orthophoto generation.

Both methods rely on the sparse reconstruction results from SfM. To generate digital
orthophotos, both methods require prior information of accurate ground normal vectors.
By using the Differential Global Positioning System (DGPS) information as a prior for
sparse reconstruction, we can obtain accurate ground normal vectors while also recovering
the correct scale of the scene.

3.1. Explicit Method—TDM

The TDM algorithm, when generating digital orthophotos, essentially processes infor-
mation for each pixel, equivalent to raster data processing. To achieve the final rendering,
the key lies in accurately estimating the elevation values and corresponding textures for
each raster. The following will introduce the algorithm flow of our CUDA-adapted and
optimized version of the TDM algorithm in this paper.

Raster Attribute Initialization: by specifying the spatial resolution Rs, the raster image
G to be generated is obtained with dimensions W × H, where each raster represents a pixel
in the final digital orthophoto image. Each raster unit possesses five attributes: (1) raster
color Co = (Ri

g, Gi
g, Bi

g); (2) raster elevation Zg; (3) raster normal vector −→n = (nx, ny, nz).
(4) Confidence score of raster elevation Sg. (5) The camera group to which the raster belongs
Cg. As shown in Figure 3, the algorithm traverses through all three-dimensional point
clouds and performs orthographic projection to obtain the raster unit gi corresponding to a
certain three-dimensional point (Xi, Yi, Zi)

T . Subsequently, the elevation Zg of that raster
is initialized.

Figure 3. The figure illustrates the process of raster elevation initialization. In the initial stage, there
are some points in three-dimensional space. Following the initialization process, rectangular raster
units are obtained. The height of the vertical column represents the elevation values of each cell.

Then, we will search for the corresponding camera group Cg for each raster containing
an elevation value. This camera group retains the best-angle cameras in all eight directions
that can see this raster, facilitating the subsequent process of finding and determining the
views. As shown in Figure 4, the space is first evenly divided into eight regions. Then, the
camera with the highest view score Sv in each of the eight directions that can see the raster
gi is retained.
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Figure 4. The figure illustrates the process of initializing the camera group. Based on the projection
relationship of the pinhole camera, the projection pg of the raster’s world center point Pg on the
image plane is obtained. The original space is evenly divided into eight regions, and the camera with
the highest Sv in each region is found to be the camera group for this raster.

We denote the principal point coordinates of the image as (px, py)
T , and the world

coordinates Pg of the raster gi, after being projected by the camera, as pg. The optimal view
score Sv is then calculated as

Sv =
1

(u − px)
2 + (v − py)

2 + ε
(1)

Finally, the eight cameras with the highest scores in each direction are selected as a
camera group for the raster. The camera with the highest score is considered as the optimal
view camera Cb for the raster unit.

Elevation Propagation: Given rasters with known elevation are considered as seed
units gs, and the propagation starts iteratively from these seed units. Each iteration propa-
gates the elevation information Z from the seed raster unit to all raster units within a patch.
Subsequently, the adjustment of Zg occurs via the random initialization of the normal
vector −→n , as shown in Figure 5. We project the i-th raster of the raster support plane Sk

onto a corresponding image I j in the camera group Cg
i, and the corresponding pixel color

is denoted as (Rjki, Gjki, Bjki). The average color of the nine raster units projected onto the
image I j in the raster support plane Sk is denoted as (Rjk, Gjk, Bjk). Define a color vector
Vjk to represent the color information of Sk:

Vjk = (Rjk1 − Rjk, Gjk1 − Gjk, Bjk1 − Bjk, ..., Rjk9 − Rjk, Gjk9 − Gjk, Bjk9 − Bjk)
T

(2)

The number of cameras in the camera group of the i-th raster unit is denoted as
Ni

C, and the number of color vectors that Sk possesses is Nk
C. Therefore, the equation

Nk
C =

9
∑

i=1
Ni

C can be derived. The color vector corresponding to the optimal view camera

Cbs of the seed raster is taken as the reference vector. To measure the consistency of Nk
C

color vectors, the average cosine distance between the reference vector and other vectors is
defined as the matching score Mk

s for Sk:

Mk
s =

∑
j=1...Nk

C ,j ̸=s,j/∈Φko

Vjk T
Vsk

∥Vjk∥∥Vsk∥

Nk
C − Nko

(3)

where Vjk T
Vsk

∥Vjk∥∥Vsk∥ represents the cosine distance, Vsk is the reference vector, Φk
o is the set

of occluded images, and Nk
o is the number of images in Φk

o.
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Furthermore, we can evaluate the reasonableness of depth information through color
consistency. Once the computed Mk

s exceeds the confidence threshold η, the current depth
information is considered reasonable. Then, we update the Zg, Sg and −→n of all raster units
within the patch. During an iteration, there will be multiple random initializations of −→n . If
the matching score remains below η, elevation information will not be propagated.

Figure 5. The figure demonstrates the elevation propagation process. The red rectangular raster
represents the seed unit. The seed unit with a known elevation and the surrounding eight raster units
with unknown elevation form a raster support plane. The raster support plane calculates a matching
score based on color consistency. If the score meets the threshold, the elevations of other raster units
will be initialized based on the normal vector of the seed raster unit.

Multi-resolution Interpolation-based Elevation Filling: The original algorithm grad-
ually reduces η after each iteration until the elevation propagation is complete. This will
result in subsequently obtaining a lower confidence score for Zg and wasting a consider-
able amount of time. To efficiently reduce iteration time, we propose a multi-resolution
interpolation-based elevation filling algorithm to acquire elevations of raster units with low
confidence scores. When the initial value of η is η0, it gradually decreases with the increase
in iteration count until it equals ηe. At this stage, we utilize the proposed algorithm to
assign values to raster units gi without elevations, as shown in Figure 6.

(a) (b) (c)

Figure 6. The figures illustrate the multi-resolution interpolation-based elevation filling process.
(a) The raster image obtained after elevation propagation contains raster units with unknown eleva-
tions. (b) The process of generating the multi-resolution interpolation raster images. (c) The resulting
raster image after elevation filling using the multi-resolution interpolation raster images.

After the elevation propagation, the initial seed gi
s for this filling algorithm is derived

from raster units gi within the raster image G, where the confidence measure Sg exceeds
η0. The spatial resolution Ri

sp of the filling raster image Gi
p for the i-th layer of this

multi-resolution raster is as follows:

Ri
sp =

min[(Xmax − Xmin), (Ymax − Ymin)]

2i (4)
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where Xmax and Ymax are the maximum values of the X- and Y-coordinates in this area.
Likewise, Xmin and Ymin are the minimum values. When multiple gi

s fall into the same
raster unit gi of Gi

p, we set the average of these points as the elevation value for that raster
unit. If no points fall within a specific raster unit, we will retrieve the elevation value
corresponding to the raster position from multi-resolution interpolation raster image Gi−1

p

and set it as the elevation value for gi. If Ri
sp < Rs, the process is repeated, continuously

constructing Gi
p as described above. Eventually, there are some raster units that have

not been assigned elevation values in G. We will then search for the elevation values
corresponding to the raster positions in the highest resolution interpolation raster image
G f

p and assign them accordingly.
Texture Mapping: In each image, certain objects might be occluded by other objects,

leading to erroneous texture mappings. Occlusion detection is necessary in such cases.
Subsequently, texture mapping is performed based on gi and the corresponding

projection relationship with the optimal view camera Cb, obtaining color information
Co = (Ri

g, Gi
g, Bi

g) for the raster unit. Finally, the generation of the final digital orthophoto
is completed.

3.2. Implicit Method—Instant NGP

We will use the most representative Instant NGP [7] as an example to illustrate the
process of digital orthophoto generation using implicit methods. As a neural radiance
field utilizing sparse parametric encodings, Instant NGP introduces multi-resolution hash
encoding to address the O(N3) parameter complexity associated with dense voxel grids;
Figure 7 illustrates this multiresolution hash encoding process in 2D.

Figure 7. Illustration of the multiresolution hash encoding in 2D. For a given coordinate x, the method
queries the encoded features on the surrounding voxels’ vertices (blue and orange circles) with the
hashing result (numbers in the circles) and performs interpolation on the encoded features in θl across
L levels. For a given direction d, the embedding function e(d) is applied to generate auxiliary inputs ξ.
Subsequently, the encoded features at each level and auxiliary inputs will be concatenated as the final
MLP embedding input y ∈ RLF+E to obtain the radiance (c, σ). Its optimizable parameters consist of
L hash tables θl and tiny MLP m(y; Φ).

In practice, Instant NGP divides the scene into voxel grids with L levels of resolution.
For each level of the resolution grids, a compact spatial hash table θl of a fixed size T is used
to store the F-dimensional feature vectors on that resolution level’s grid. When querying
the feature vector of a spatial coordinate x in Instant NGP, the process first identifies grid
corners spatially close to x on each resolution layer. Then, the feature vectors of adjacent
grid corners are looked up in θl . Next, linear interpolation is performed to obtain the feature
vector of the spatial coordinate x at that resolution level. This process is executed across
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all L resolution levels. Subsequently, these feature vectors from different resolution layers
are concatenated with auxiliary inputs ξ ∈ RE, forming the final MLP embedding input
y ∈ RLF+E. Finally, Instant NGP uses a Tiny MLP m(y; Φ) to obtain the radiance (c, σ) for
the spatial coordinate x. This process also aligns with the generalized description of neural
radiance fields based on sparse parametric encoding, as shown in Figure 2. Instant NGP can
achieve a balance between performance, storage, and efficiency by selecting appropriate
hash table sizes T.

As mentioned in Section 1, digital orthophotos can be rendered with neural approaches.
In contrast to the typical pinhole camera imaging model, digital orthophotos are rendered
using a set of parallel light rays perpendicular to the ground, as shown in Figure 1. To
ensure that Instant NGP achieves a rendering quality comparable to explicit methods in
scalable scenes, we adopted the largest scale model recommended in the paper.

4. Experiments and Analysis

The data utilized in this study were acquired from the Unmanned Aerial Vehicle (UAV)
following a serpentine flight path pattern. A CW-25 Long Endurance Hybrid Gasoline &
Battery VTOL drone was used in this data collection. It has a long service life, is fast, has a
large payload, and is structurally stable and reliable. It is equipped with the RIY-DG4Pros
five-lens camera, providing 42 million pixels and a resolution of 7952 × 5304 pixels. We
established the drone ground station GCS1000. The UAV is equipped with the Novatel617D
dual-antenna satellite positioning differential board card on board. Subsequently, through
DGPS, the UAV can accurately capture changes in the ground station’s position, speed, and
heading in real time.

We selected the TDM algorithm as the representative explicit method for digital
orthophoto generation. Similarly, we used Instant NGP as the representative implicit
method for digital orthophoto generation. The commercial software Pix4D is widely used
and performs exceptionally well in digital orthophoto generation. Therefore, we have
chosen its generated results as the benchmark for measuring accuracy. Pix4D, being an
explicit method, requires the full process of traditional 3D reconstruction during digital
orthophoto generation. Hence, for the time comparison test, we selected the TDM algorithm,
which eliminates redundant computations during the dense reconstruction.

As described in this section, we initially conducted digital orthophoto generation tests
on three common scenes: buildings, roads, and rivers. The objective was to demonstrate the
image generation quality and algorithm robustness of both explicit and implicit methods
across various scenes. Subsequently, to assess the accuracy of the two methods, comparisons
were made with the commercial software Pix4D regarding measurement precision. Finally,
to evaluate the efficiency of both methods, we measured the time required for generating
scenes of different sizes.

4.1. Test on Various Scenes

Figure 8 shows a set of original village photo data used for testing, including nu-
merous scenes of slanted roofs of houses, trees, and other objects. We performed sparse
reconstruction in conjunction with the camera’s DGPS information, enabling the recovery
of accurate scale information and spatial relationships. The resultant 3D sparse point cloud,
as shown in Figure 9, and camera poses served as prior information for subsequent explicit
and implicit methods in digital orthophoto generation. The resulting digital orthophotos
after the final processing through the explicit and implicit methods are shown in Figure 10.
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Figure 8. The original images of some village scenes captured by unmanned aerial vehicles.

Figure 9. The point cloud of the village scenery obtained after sparse reconstruction.

As shown in Figure 11, we conducted digital orthophoto generation tests for various
scenes using both explicit and implicit methods. Figure 11a,b show that TDM may lead to
inaccuracies in areas experiencing sudden height variations, for example, the roof edges of
houses, while Instant NGP can accurately depict sudden height variations. Figure 11c,d
show that moving objects within the scene may induce ghostly artifacts in the results of
Instant NGP but have a minimal impact on TDM. Figure 11e,f show that the clarity of
the outputs of Instant NGP does not match that of TDM. The imaging quality of implicit
methods is predominantly influenced by the model scale, whereas TDM is directly dictated
by the clarity of the original image.
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(a) Explicit method (TDM) (b) Implicit method (Instant NGP)
Figure 10. The figure illustrates the digital orthophoto generation results from two methods within
the same village scene. (a) depicts the output derived from the explicit method. (b) depicts the output
obtained from the implicit method.

To quantitatively analyze the quality of the digital orthophoto generated using the two
methods, we employed two no-reference image quality assessment techniques, Brisque [34]
and NIQE [35]. The results in Table 1 show that, in the majority of scenarios, the quality gen-
erated by the explicit method (TDM) surpasses that of the implicit method (Instant NGP).

(a)

(b)
Figure 11. Cont.
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(c)

(d)

(e)

(f)

Figure 11. The figure shows digital orthophoto of scenes “houses”, “bridges”, and “rivers” generated
using two different methods. Images (a,c,e) were generated using the explicit method (TDM), while
images (b,d,f) are generated using the implicit method (Instant NGP).

Combining qualitative and quantitative analysis, it can be concluded that the TDM
algorithm exhibits superior imaging clarity but demonstrates inaccuracies in areas expe-
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riencing sudden height variations. Conversely, Instant NGP is capable of capturing the
majority of the scene’s structure accurately, yet its imaging clarity is constrained by the scale
of the model and may produce ghostly artifacts. Both methods are capable of generating
usable digital orthophoto.

Table 1. Quality assessment of images generated using two methods in different scenes and compar-
isons with the real image. The ↓ means lower is better.

Scenes
Method|Metric

Houses Bridges River

Brisque↓ NIQE↓ Brisque↓ NIQE↓ Brisque↓ NIQE↓

TDM (cuda) 12.96 2.77 7.88 2.33 12.90 5.01

Instant NGP 50.93 5.47 60.26 7.43 23.66 3.99

Real Images 6.72 1.67 5.91 1.72 7.74 1.74

4.2. Evaluation of Accuracy

An important characteristic of digital orthophotos is map geometric accuracy, so the
accuracy of distance measurements is crucial. To validate the measurement accuracy of
different digital orthophoto generation methods, we selected a specific area within the
city for subsequent testing scenes. We utilized explicit methods (TDM), implicit methods
(Instant NGP), and commercial software (Pix4D) to generate digital orthophoto, followed
by comparing length measurements, as shown in Figure 12. The box plot displays the differ-
ences in distance measurements in digital orthophotos, as can be seen from Figure 13. The
median of the box plot generated from Pix4D-to-TDM is 0.0376 m, while the other median
from Pix4D-to-Instant NGP is 0.0442 m, both around 0.04 m. In comparison with Pix4D,
this study concludes that both the explicit method (TDM) and the implicit method (Instant
NGP) for digital orthophoto generation meet the requirements for mapping purposes.

(a)

Figure 12. Cont.
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(b)

(c)
Figure 12. Digital orthophotos generated by TDM, Instant NGP and Pix4D.The segments with
consistent colors and corresponding values represent identical distances measured across the three
results. (a) Distance measurement of the explicit method (TDM), (b) Distance measurement of the
implicit method (Instant NGP), (c) distance measurement of Pix4D.

Figure 13. The box plot shows the differences in distance measurements between the explicit method
(TDM) and the implicit method (Instant NGP) compared to Pix4D in the same scene, as depicted
in Figure 12.
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Furthermore, because the brightness of the color difference map can represent the de-
gree of difference between digital orthophoto generated by different algorithms at the same
location, in order to further measure the accuracy for digital orthophoto generation, this
paper establishes the color difference maps between those methods. As shown in Figure 14,
the color difference map shows that explicit methods (TDM) and implicit methods (Instant
NGP) produced the same measurability and visibility of the generated digital orthophoto
as those generated by the commercial software (Pix4D). In general, the accuracy of the two
methods is acceptable according to the comparison with commercial software (Pix4D).

(a)

(b)
Figure 14. Color difference map between each of the two results. (a) Color difference map between
Pix4D and TDM. (b) Color difference map between Pix4D and Instant NGP.

4.3. Evaluation of Efficiency

To verify the generation efficiency between explicit and implicit methods, in this
section, we conducted tests on the generation time of digital orthophotos in five different
size scenes. These two types of methods were run on a personal computer with an Intel (R)
Core (TM) i7-12700 CPU @ 4.90 GHz and an NVIDIA GeForce RTX 3090.

Table 2 illustrates the time consumption for digital orthophoto generation using
TDM and Instant NGP at different scene sizes. For TDM, the time measurement ranges
from obtaining sparse reconstruction results to the generation of digital orthophotos. For
Instant NGP, it starts from acquiring sparse reconstruction results, proceeds through model
training, and culminates in rendering digital orthophoto. Across five different scene
sizes, the TDM algorithm exhibits superior speed performance compared to Instant NGP,
with its runtime reduced by two orders of magnitude. Therefore, the explicit method
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currently holds a significant advantage over the implicit method in terms of efficiency in
digital orthophoto generation.

Table 2. Efficiency comparison of three methods of various scene sizes.

Scene Size (m)
@Images

Method

TDM Instant NGP

150 × 150 @ 78 36 s 10,243 s

200 × 200 @ 130 60 s 16,931 s

250 × 250 @ 256 88 s 33,210 s

300 × 250 @ 281 103 s 36,454 s

300 × 300 @ 333 129 s 43,576 s

5. Conclusions

In this paper, we categorized the methods for digital orthophoto generation into
explicit and implicit methods, exploring the potential of using NeRF for implicit digi-
tal orthophoto generation. We selected the most representative fast algorithms from the
two categories: the TDM algorithm and Instant NGP. Additionally, we adapted and opti-
mized TDM algorithm to a CUDA version, significantly enhancing the efficiency of digital
orthophoto generation.

In both explicit and implicit methods, an initial step involves sparse reconstruction
to obtain camera poses, point clouds, and other prior information. The former employs
an elevation propagation process that explicitly integrates the local color consistency of
images with multi-view geometry theories to acquire scene elevation information and
corresponding textures. Conversely, in NeRF, the loss function is designed as the color
difference between rendered and real images. Throughout the training process, the neural
network gradually fits into the real scene, implicitly capturing the surfaces and textures of
scene objects and synthesizing novel view images through differentiable rendering. Finally,
both methods complete the entire process to generate digital orthophoto.

We conducted tests on explicit and implicit methods for digital orthophoto generation
in various scenes, measuring the generation efficiency and result quality. We employed
the commercial software Pix4D as a standard for assessing measurement accuracy and
reliability, evaluating both methods. The results indicate that currently, explicit methods
exhibit higher efficiency and lower computational resource requirements in generation
compared to implicit methods, achieving results with respective advantages and disadvan-
tages. Moreover, both methods meet the requirements for measurement accuracy. In our
future work, we aim to further explore the development of implicit methods for digital
orthophoto generation, accelerating the generation speed and enhancing the clarity of
implicit methods by adding more constraints suitable for digital orthophoto generation.
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