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Abstract: Simultaneous localization and mapping (SLAM) is the technological basis of environmental
sensing, and it has been widely applied to autonomous navigation. In combination with deep learning
methods, dynamic SLAM algorithms have emerged to provide a certain stability and accuracy in
dynamic scenes. However, the robustness and accuracy of existing dynamic SLAM algorithms are
relatively low in dynamic scenes, and their performance is affected by potential dynamic objects
and fast-moving dynamic objects. To solve the positioning interference caused by these dynamic
objects, this study proposes a geometric constraint algorithm that utilizes a bidirectional scoring
strategy for the estimation of a transformation matrix. First, a geometric constraint function is defined
according to the Euclidean distance between corresponding feature points and the average distance
of the corresponding edges. This function serves as the basis for determining abnormal scores for
feature points. By utilizing these abnormal score values, the system can identify and eliminate
highly dynamic feature points. Then, a transformation matrix estimation based on the filtered feature
points is adopted to remove more outliers, and a function for evaluating the similarity of key points
in two images is optimized during this process. Experiments were performed based on the TUM
dynamic target dataset and Bonn RGB-D dynamic dataset, and the results showed that the added
dynamic detection method effectively improved the performance compared to state of the art in
highly dynamic scenarios.

Keywords: simultaneous localization and mapping (SLAM); geometrical constraint; bidirectional
scoring strategy; transformation matrix estimation; dynamic detection

1. Introduction

With the rapid development of machine learning and computer science, autonomous
navigation technology has been widely applied in technological and industrial fields, such
as autonomous driving. Simultaneous localization and mapping (SLAM) [1] technology can
realize autonomous navigation in unknown environments. Although the existing visual
SLAM is still applied to realistic scenarios of some problems, previous studies often treated
the external environment as a static assumption, thus ignoring the influence of dynamic
objects in real environments on the accuracy of the SLAM algorithm, which eventually
leads to inaccurate positioning information and serious deviations in the construction of an
environmental map. To enhance the robustness and stability of SLAM in dynamic envi-
ronments, scholars have eliminated the impact of dynamic objects on algorithms’ accuracy
from two major perspectives. One method is the use of multi-view geometry [2] or other
geometric constraint methods to detect outliers or dynamic regions with large residuals,
while the other method is the introduction of deep learning into dynamic SLAM [3] and
the use semantic information to segment some prior moving objects for elimination.

A dynamic detection scheme based on geometric constraints [4,5] has the advantages
of high algorithmic efficiency and not requiring prior information on the target. Yu et al.
proposed DS-SLAM [6] based on the ORB-SLAM2 [7] framework to distinguish static

Remote Sens. 2024, 16, 723. https://doi.org/10.3390/rs16040723 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16040723
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7319-1635
https://doi.org/10.3390/rs16040723
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16040723?type=check_update&version=1


Remote Sens. 2024, 16, 723 2 of 17

and dynamic features by using a geometric constraint method because the basic matrix
calculated for the polar constraint was susceptible to external points, which then affected
the system’s accuracy. Yao et al. divided dynamic and static areas by combining the
distance error at the edge of an image [8] and used only the feature points extracted from
the static area to estimate the camera pose, but the system’s stability was poor, and it was
not sensitive to less dynamic moving targets. Zhang et al. employed the Random sample
consensus algorithm (RANSAC) [9] along with feature-point-matching results to calculate
an initial transformation matrix [10] between adjacent frames. Subsequently, this matrix
was utilized for static weight assessment and static line feature extraction. Finally, the static
line features were employed to accomplish the task of visual odometry. This method not
only mitigated the impacts of dynamic objects on SLAM, but it also addressed the issue of
tracking failure arising from the absence of point features in the environment. However,
geometric constraint-based dynamic detection schemes exhibit an inherent limitation.
The assumption of a predefined static area in the environment is a default setting, but it
may not always hold true in real-world scenarios. For instance, in densely populated areas,
dynamic targets often occupy larger spatial extents, thus deviating from the default setting
of a static area.

On the other hand, in the application of visual SLAM in dynamic scenes, with the
rise in neural networks, semantic segmentation has gradually been introduced into the
semantic system of SLAM, and most network architectures include SegNet [11], Mask
R-CNN [12], and the YOLO [13] series. Yu et al. proposed a DS-SLAM scheme that
combined a visual SLAM algorithm with SegNet to delete semantic information in dynamic
scenes, thus filtering out the dynamic parts of the scenes. This method improves the
accuracy of pose estimation, but the types of objects identified by the semantic segmentation
network in this scheme were limited, which also greatly limited its scope of application in
practical scenarios. Bescos et al. proposed a dynamic and robust SLAM algorithm called
DynaSLAM [14], which integrated a deep learning method and a multi-view geometry
method to detect dynamic feature points in a scene. In RGB-D mode [15], the combination
of a Mask R-CNN network and a multi-view geometric model was employed for moving
object detection. However, a notable limitation of the system arose when applied to indoor
environments with complex dynamic factors. Specifically, the Mask R-CNN network
proved to be less effective in accurately segmenting less dynamic targets.

Hence, we propose a semantic SLAM algorithm based on geometric constraints to ad-
dress the limitations identified in the aforementioned geometric and semantic approaches.
Firstly, we designed feature matching constraints aimed at eliminating numerous mis-
matches between feature point pairs. By leveraging the relationship between the closest
and second-closest Hamming distances of the feature point pairs, a matching quality score
was computed and utilized to impose constraints on the feature point matching. Secondly,
a bidirectional scoring strategy was introduced to eliminate the most dynamic feature points.
A geometric constraint function was defined based on the Euclidean distance between cor-
responding feature points and the average distance of the corresponding edges. Abnormal
scores were determined by using this constraint function, enabling the identification and
elimination of highly dynamic feature points. Finally, the estimation of a transformation
matrix was applied to the filtered feature points for the further removal of outliers. In this
step, intrinsic constraints between samples guided selective sampling. Dynamic feature
points were initially filtered out through coarse filtering. Subsequently, an evaluation func-
tion for the similarity of key points in two images was improved and optimized to achieve
the accurate matching of key point pairs. This three-step process collectively enhanced the
feature matching accuracy and robustness in handling dynamic scenes.

2. Overall Structure

This study proposes a system that is built upon the semantic SLAM framework,
as shown in Figure 1. Two threads proceed in parallel: The first uses a Mask R-CNN network
segmentation model to segment an indoor scene, while in the second, the improved system
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adds a dynamic feature point filtering module to filter out the feature points (marked in a
red rectangular box).

Figure 1. The overall framework of the proposed dynamic SLAM system. The dynamic feature point
filtering module (marked in a red rectangular box) consists of two components: bidirectional scoring
strategy and transformation matrix estimation. In forthcoming work, detailed explanations for the
specific processes of these two algorithms will be presented (Figure 2 illustrates the bidirectional
scoring strategy, and Figure 5 demonstrates the process of transformation matrix estimation).

Figure 2. Flowchart of bidirectional scoring strategy.

In the first thread, we initially employ Mask R-CNN to detect dynamic objects in
each input frame, performing pixel-wise segmentation on dynamic objects with prior
information (e.g., humans). However, the semantic segmentation model exposes some
issues in dynamic detection: movable dynamic objects such as chairs cannot be semantically
segmented due to the lack of prior information in the neural network model, and the legs
or hands of humans cannot be segmented due to model accuracy limitations. These
unfiltered dynamic feature points may introduce additional noise and instability, affecting
the robustness and accuracy of navigation. Therefore, based on the segmentation results
from Mask R-CNN, we propose a geometric dynamic feature filtering algorithm to further
filter out objects without prior information and human limbs that are not segmented. In the
second thread, ORB feature points are extracted from the current image frame, and feature
point pair matching is accelerated by using the Bag-of-Words model [16] based on the
BRIEF descriptor between the matching point pairs. Initially, we establish a bidirectional
scoring strategy for filtering out highly dynamic feature points. This strategy utilizes
the geometric discrepancy of corresponding edges between adjacent frames, assigning
abnormal scores to the two feature points on these edges. Subsequently, we utilize a
transformation matrix estimation based on the filtered feature points to remove additional
outliers. During this process, a function for evaluating the similarity between key points
in two images is optimized. This module effectively segments both dynamic objects with
no prior information and potential dynamic objects identified by the CNN. Ultimately,
the filtered static feature points are used for pose estimation.
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2.1. Bidirectional Scoring Strategy for the Filtering of Dynamic Feature Points

Figure 2 shows a conceptual diagram of bidirectional scoring strategy for the filtering
of dynamic feature points. The part inside the blue rectangular box is the accuracy constraint
for matching points. In the stage of image feature point matching, we identified matching
point pairs when the maximum Hamming distance was significantly larger than the second-
closest Hamming distance; then, they were classified as reliable matches. The portion
inside the green rectangular box represents our bidirectional scoring strategy. After passing
through the accuracy constraint for image feature points, the feature point pairs had a
relatively accurate matching relationship, but dynamic feature points were also retained.
To further filter out the dynamic feature points in a scene, this study introduced a geometric
constraint model of the image feature points, as shown in Figure 3. The query image I1
and the target image I2 are two adjacent frames, and the sampling time interval between
them is very short; therefore, the camera projection distortion caused by the camera’s pose
transformation is very small. The triangle vertices in the figure represent the extracted
ORB feature points, with three pairs forming two triangles △p1 p2 p3 and △q1q2q3 on I1 and
I2; the vertices p1, p2, and p3 are the three feature points on I1, and they match the three
feature points q1, q2, and q3 on I2, respectively. Furthermore, each side, d, of the triangle is
the Euclidean distance [17] between the feature points.

Figure 3. Schematic diagram of bidirectional scoring for the geometric constraint model. The blue
lines depict the matching of points between adjacent frames, which consist of a query image and a
target image. The dashed line represents a disruption in the point correspondence due to the presence
of dynamic objects. Specifically, the initial match between p1 and q1 has been altered to p1 and q′1.

In the context of dynamic SLAM, the decision to employ an exponential function for
characterizing geometric constraint scoring functions stems from the distinctive properties
inherent in the exponential function. The exponential function serves the crucial purpose of
mapping the disparities in geometric constraint scores onto a non-negative range. Through
exponentiation, this design ensures that scores corresponding to minor differences in
geometric constraints converge towards 1, while scores associated with more significant
differences experience rapid growth. This mapping relationship proves invaluable for
accentuating subtle differences in geometric constraint scores, thus enhancing the sensitivity
and facilitating the differentiation between static and dynamic feature points.

Apart from the exponential function, other functions can also be used to characterize
geometric constraint scoring functions, but they all have certain limitations. For instance,
linear functions may lack sensitivity in representing minor geometric constraint differences
due to their linear variations. Logarithmic functions may prove to be overly responsive,
particularly in the presence of minor geometric differences. Sigmoid functions may exhibit
saturation under certain circumstances, resulting in inadequate sensitivity in extreme cases.

The selection of the exponential function is guided by its unique ability to distinctly
express score differences, providing a nuanced representation of changes in geometric rela-
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tionships. In the dynamic SLAM domain, where sensitivity to subtle geometric differences
is pivotal, the exponential function emerges as a commonly employed and effective choice.

When there is no dynamic target in the image frame, the difference between the
corresponding edges of the triangle should be in a small interval; to better describe this
relationship, a geometric constraint score function qg(i, j) is defined as follows:

qg(i, j) = exp

(⌊
d
(

pi, pj
)
− d
(
qi, qj

)
A(i, j)

⌋)
(1)

where d(m, n) represents the Euclidean distance between the feature points m and n,
and A(i, j) represents the average distance between the two corresponding edges, which
can be expressed as follows:

A(i, j) =
d
(

pi, pj
)
+ d
(
qi, qj

)
2

(2)

If a dynamic target appears in the scene, assuming that the point q1 is on the dynamic
target, then q1 on the target image moves to the new position q′1, thus constituting the new
triangle △q′1q2q3, and the Euclidean distances between the two vertices of the triangle are
d′q1, d′q2, and d′q3. Because the position of the q1 point changes, the value of the geometric
constraint score function calculated with the geometric constraint score function qg(i, j) will
be abnormally large, so we need to eliminate the dynamic feature points, but the geometric
constraint score involves two pairs of feature points, and real dynamic feature points are
usually difficult to determine. In light of this, this study proposes a bidirectional feature
point scoring strategy for identifying the real dynamic feature points in a scene. The main
idea is to define the abnormal score of a characteristic point. When an exception appears
on a side, one point each will be added to the abnormal scores of the two characteristic
points on that side. In this way, there will be a significant gap between the real dynamic
features and the static feature points. Moreover, it is easy to know that the anomalous
score of a feature point represents how many feature points are needed to judge a point as
an abnormal dynamic point. The geometric expression of an anomalous score of feature
points is

qab(i) =
M

∑
j=0

s(i, j) (3)

where qab(i) is the anomalous score of the ith characteristic point, and s(i, j) represents the
increment in the abnormal score, as follows:

s(i, j) =
{

1, qg(i, j) > β × AS
0, else

(4)

where β is the mean score scale factor of the geometric constraint, which controls its
strictness. Regarding the range of the average score scale factor β, it is typically set between
0.1 and 0.5, striking a balance between sensitivity to dynamic changes and stability in static
scenes. During the tuning process, the final value for β was determined to be 0.2. This
specific choice ensured that the geometric constraint scoring exhibited a robust response to
dynamic targets in dynamic scenes while maintaining relative stability in static scenes. AS
denotes the mean geometric score between the pairs of points in an image:

AS =
1
n

n

∑
i,j=1

wi,j
s qg(i, j) (5)

where n is the number of matching image feature points, qg(i, j) denotes the geometric
scores of two matching feature points i and j, and ws is the geometric error weight factor
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between the matching feature points, which reduces the influence of a large geometric
constraint on the calculation of the mean score.

As shown in Figure 4a, we extracted 500 ORB feature points from a dynamic image.
The distribution of their abnormal scores is shown in Figure 4b, where the x-axis represents
the total number of feature points, the y-axis describes the anomalous score value for a
specific feature point, and the red line represents the segmentation threshold, which means
that when an abnormal score of a feature point is greater than the threshold, it is judged as
a dynamic feature point. We set the adaptive dynamic segmentation threshold [18] to γM,
where M is the total number of extracted feature points, and γ is set to 80% in Figure 4.

(a)

(b)

Figure 4. Schematic representation of dynamic feature filtering. (a) Feature point extraction from a
dynamic scene. (b) Distribution of anomalous scores of feature points, the green points represent
normal feature points, while the red points denote abnormal feature points.

2.2. Transformation Matrix Estimation

The pose transformation relationship between image frames can be represented by
a fundamental matrix. In this study, we propose an algorithm that incorporates intrinsic
constraints between samples to guide selective sampling with the aim of obtaining an
improved fundamental matrix. Firstly, dynamic feature points in a scene were filtered
out through coarse filtering. Then, the function for the evaluation of the similarity of key
points in two images was improved, and it was optimized to achieve accurate matching
of the key point pairs. Figure 5 illustrates a conceptual diagram of the transformation
matrix estimation.

If there exists a correct pair of matching points (Pi, Qi) and (Pj, Qj), d(Pi, Pj) is the
distance from Pi to Pj, d(Qi, Qj) is the distance from Qi to Qj, and the two distances are
similar. We found the relationship between Pi and all associated points Pj in the first image
and the relationship between Qi and all associated points Qj, then used their similarity to
evaluate the correspondence of the two points; thus, the following evaluation functions
are proposed:

ω(i) = ∑
r(i, j)

1 + D(i, j)
(6)
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where the average distance between Pi and Qi with each pair of associated points is

D(i, j) =
[
d
(

Pi, Pj
)
+ d
(
Qi, Qj

)]
/2 (7)

r(i, j) = exp
(
−uij

)
(8)

uij =
∣∣d(Pi, Pj

)
− d
(
Qi, Qj

)∣∣/D(i, j) (9)

where uij is the difference in similarity between Pi and Qi for each pair of associated points.

Figure 5. Schematic diagram of transformation matrix estimation.

The following is the procedure for estimating the transformation matrix:

1. All values of wi are calculated.
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2. The mean w of all wi is found.
3. wi is judged: If wi > 0.8w, Pi and Qi are correct similarities, and they are retained;

otherwise, they are deleted.
4. The filtered point pair with the correct similarity is taken as the initial iterative feature

point pair for the RANSAC algorithm.
5. The point pair with the correct similarity is used as a candidate matching feature set.

Four groups are randomly selected to establish equations and calculate the unknowns
in the transformation matrix M for the estimation of the transformation matrix.

6. The distances between other feature points and the candidate matching points are
calculated by using the transformation model, and the threshold r is set. When the
distance is less than this threshold, the feature point is determined to be an inlier;
otherwise, it is an outlier.

7. The inliers are used to re-estimate the transformation matrix for N iterations.

3. Experiments and Analysis
3.1. Experimental Environment and Datasets

To evaluate the efficacy of the proposed algorithm in our SLAM system, we performed
comprehensive evaluations by using the TUM RGB-D dataset and the dynamic Bonn RGB-D
dataset. The upgraded version of our system underwent rigorous testing and comparative
analysis against benchmark systems such as ORB-SLAM3 [19] and DynaSLAM to gauge its
performance improvements. All experiments were conducted on a high-performance com-
puting setup comprising an Intel(R) Core(TM) i9-10900X CPU, RTX3070 GPU, and 64 GB
of memory and operating in the Ubuntu 18.04 environment. This robust setup ensured
reliable and consistent experimental conditions, allowing for a thorough assessment of our
algorithm’s capabilities and advancements in real-time SLAM applications.

The TUM RGB-D dataset is a widely used computer vision dataset that is mainly
used for visual SLAM research, and it includes a series of RGB and depth images of
indoor scenes, as well as corresponding camera motion trajectories. We used the Dynamic
Objects category in the TUM RGB-D dataset, which contains dynamic objects recorded
with an Asus Xtion sensor. The dataset that we tested had a total of eight sequences:
the sitting_static, sitting_xyz, sitting_halfsphere, sitting_rpy, walking_static, walking_xyz,
walking_halfsphere, and walking_rpy image sequences. These sequences were of two types,
as shown in Figure 6: sitting sequences and walking sequences. In the sitting sequences,
two people sat at a table, chatted, spoke, and made some gestures. In the walking sequences,
two people stood up, walked through an office, and finally sat back down in their original
positions. Each type also included four types of sensor movements: static—the sensor was
manually fixed; xyz—the sensor moved in three directions (xyz); rpy—the sensor rotated
along the main axis; halfsphere—the sensor moved on a hemisphere with a diameter of
approximately 1 m.

Figure 6. TUM RGB-D dataset. Sitting sequence and walking sequence.

The dynamic Bonn RGB-D dataset—provided by the University of Bonn (BONN)—is
an open-source indoor RGB-D dataset that was captured using ASUS Xtion PRO LIVE.
The dataset offers real-motion trajectories obtained through dynamic calibration, and it fol-
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lows the same format and evaluation methodology as those of the TUM dataset. It emulates
various complex scenarios in real life, demonstrating strong representativeness for authen-
tic environments. The dataset includes multiple types of complex real-world motions, such
as crowd movement, individual person tracking, simultaneous parallel motions, balloon
motion, and object transport motion, among others. We selected three representative se-
quences for testing, as illustrated in Figure 7: rgbd_bonn_balloon, rgbd_bonn_crowd3,
and rgbd_bonn_person_tracking2.

Figure 7. Dynamic Bonn RGB-D dataset. From left to right, the frames correspond to the following
image sequences: rgbd_bonn_balloon, rgbd_bonn_crowd3, and rgbd_bonn_person_tracking2.

To evaluate our improved system in comparison with other SLAM methodologies, we
utilized the absolute pose error (APE) and relative pose error (RPE) to measure the accuracy
of the camera trajectories. These served as foundational metrics and were complemented
by an array of statistical analyses involving the root-mean-squared error (RMSE), sum of
squared errors (SSEs), mean, and median. The deployment of these diverse metrics enabled
a comprehensive and in-depth evaluation of our system’s tracking accuracy and robustness.
By comparing these metrics with those of other SLAM methods, we discerned nuanced
performance variations and drew more insightful conclusions regarding the advantages
and limitations of our enhanced system.

3.2. Feature Point Matching Based on the Bidirectional Scoring Strategy

To comprehensively validate the efficacy of our geometric constraint algorithm for
image feature point matching, we selected the freiburg3_walking_static sequence from
our dataset as an experimental input. This sequence was deliberately chosen to assess
the algorithm’s performance under dynamic scenarios where objects rapidly transition.
Specifically, our investigation focused on examining the filtering impacts of two crucial
components of the algorithm: the matching distance accuracy constraint module and the
bidirectional scoring strategy. By scrutinizing their effects on feature points in scenarios
characterized by swift dynamic changes, our study aimed to provide robust evidence and
insights into the algorithm’s ability to handle such dynamic scenes. Through this analysis,
we sought to highlight the algorithm’s strengths and limitations under challenging dynamic
conditions, enhancing the understanding of its practical utility and performance in real-
world scenarios.

Figure 8 shows the filtering results of the algorithm for ORB feature matching when
using the test data. In the experimental process, two images of a person quickly standing
up in the same scene were selected, as shown in Figure 8a. The experiments were divided
into two groups; the first group is shown in Figure 8b, and the traditional ORB feature
matching method was used to perform an image registration experiment on two images.
For the second group, as shown in Figure 8c, the distance accuracy constraint on feature
point pairs was utilized to filter out the mismatching of the first group of matched results.
From the filtering results, it can be seen that our algorithm was able to effectively reduce
the misjudgment of similar feature points, thereby obtaining more accurate matching
point pairs.

The matching accuracy constraint module significantly reduced the number of ORB
feature mismatches in the scene. However, feature points within the dynamic target area
could still be extracted. To address this, we further employed a bidirectional scoring
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strategy to filter out feature points with abnormal scores located in the dynamic area.
Figure 9 visually demonstrates the effectiveness of the bidirectional scoring strategy in
eliminating feature matching point pairs across most regions of the human body, in addition
to the matching accuracy constraints that were already applied.

(a)

(b)

(c)

Figure 8. Feature matching results based on the distance accuracy constraint. (a) Original image for
feature matching. (b) ORB feature matching. (c) Filtering out feature mismatches.

(a)

(b)

Figure 9. Feature matching results based on the bidirectional scoring strategy. (a) Filtering out feature
mismatches. (b) Dynamic feature filtering.
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3.3. Feature Point Filtering Based on the Estimation of a Transformation Matrix

Although the aforementioned geometric constraints help eliminate feature points on
dynamic objects, some feature points can still be extracted from certain dynamic regions
(human hands, feet, etc.). Therefore, we used a novel method of transformation matrix esti-
mation to filter out more outliers. In this experimental evaluation, the freiburg3_sitting_xyz
(fr_s_xyz) and freiburg3_walking_xyz (fr_w_xyz) sequences were tested, and the results
were compared with those of ORB-SLAM3 and DynaSLAM. The purpose of this compari-
son was to validate the effectiveness of the transformation matrix estimation in suppressing
dynamic feature points.

For the adaptive threshold method that targeted feature points with anomalous
scores (described in Section 2.1), we conducted an experiment comparing the precision
(based on the fr_w_xyz sequence) to determine the optimal threshold value (γ). APE
metrics—specifically, the mean and RMSE—were selected as indicators of the trajectory
accuracy. The mean provided an intuitive understanding of the overall performance, while
RMSE emphasized higher sensitivity to significant errors, offering a comprehensive evalu-
ation of the SLAM system’s trajectory estimation accuracy in the combined experiments.
As shown in Table 1, we varied γ from 60% to 90% and conducted the trajectory accuracy
comparison experiments at 10% intervals. It was evident that when γ was set to 80%, both
the mean and RMSE reached their minimum values, indicating that the highest accuracy in
the SLAM trajectory estimation was at this threshold.

Table 1. Trajectory accuracy comparison with varying γ in an adaptive threshold experiment.

γ Mean RMSE

60% 0.0652 0.0693
70% 0.0447 0.0481
80% 0.0281 0.0235
90% 0.0637 0.0693

Figure 10a shows the feature point extraction effect of ORB-SLAM3 in dynamic scenes,
Figure 10b shows the feature point filtering effect of DynaSLAM in dynamic regions,
and Figure 10c shows the feature point filtering results of the transformation matrix es-
timation in dynamic regions; green dots represent the positions of ORB feature points.
In Figure 10a, it can be seen that ORB-SLAM3 did not perform any processing on dynamic
objects, and the feature points of the dynamic area were preserved.

In Figure 10b, it can be seen that DynaSLAM’s scene segmentation model using Mask
R-CNN detected and removed feature points that fell on dynamic objects while retaining
other feature points that fell on static objects. However, one can see in the left image that
the leg feature points of the person sitting on the right were not filtered out. In addition,
one can see in the image on the right that the feature points on potential dynamic objects,
such as chairs, were not completely filtered out. As shown in Figure 11, Mask R-CNN did
not accurately segment the legs and hands of the person in the sitting sequence because the
semantic segmentation model had poor segmentation accuracy for less dynamic objects
(the right person’s leg hardly moved). Mask R-CNN did not fully segment the chairs in the
walking sequence on the right because it lacked prior information about potential dynamic
objects, such as chairs, when training the network model.

In Figure 10c, it can be clearly seen that the majority of the feature points on the legs
of the person in the left image and the feature points on the chairs in the right image were
filtered out, with only a few feature points remaining in the contour of the dynamic target.
This indicated that the transformation matrix estimation was able to effectively compensate
for the shortcomings of semantic segmentation with Mask R-CNN, thereby improving the
suppression of dynamic feature points.
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(a)

(b)

(c)

Figure 10. Elimination of dynamic feature points in images by the three systems; the images on the
left came from the sitting sequence, while the images on the right came from the walking sequence.
(a) ORB-SLAM3. (b) DynaSLAM. (c) Transformation matrix estimation.

In our study, we devised an experiment to quantify the average number of feature
point matches and the trajectory accuracy (RMSE) across eight dynamic sequences from
the TUM dataset while comparing three SLAM systems. The primary focus was on high-
lighting the enhancements offered by our proposed approach concerning the removal
of abnormal feature points and the accuracy of trajectory reconstruction in comparison
with DynaSLAM. Table 2 illustrates that, in contrast to ORB-SLAM3, both DynaSLAM
and the proposed method excelled in eliminating a significant proportion of the dynamic
feature points within the scenes. Particularly, in comparison with DynaSLAM, which
incorporated dynamic detection capabilities, the proposed method demonstrated superior
efficacy in eliminating more matching feature points associated with potential dynamic
targets, leading to a noticeable improvement in the RMSE. In the experiments based on the
freiburg3_walking_halfsphere (fr_w_halfsphere) sequence, due to the rapid rotation of the
camera, the dynamic targets in the scene are mostly the upper bodies of two individuals,
and the neural network model of DynaSLAM was capable of semantically segmenting
these targets. Therefore, the proposed method extracted nearly the same number of feature
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points as that of DynaSLAM in the scene, and the improvement in trajectory accuracy was
also limited. In the experiments based on the fr_w_xyz sequence, the proposed method
removed numerous matching feature points, including some from static scenes, such as
computer-generated features. This was because the rapid motion of dynamic objects in
this sequence, along with the fast shaking of the camera, may have led to the failure to
extract static feature points, and motion blur, defocused effects, disparity, and feature
occlusion were the main contributing factors. Additionally, the camera underwent parallel
motion, causing the feature points in the image frames to move on a nearly flat plane with
minimal depth variations. This situation may have introduced errors into the algorithm’s
motion estimation, leading to the removal of some static feature points. However, our
trajectory accuracy still showed some improvements. Therefore, the observed phenomenon
of removing static feature points in Figure 10c is common in dynamic environments, but it
does not compromise the effectiveness of our method in enhancing the performance of
SLAM while maintaining the representation integrity of static environments.

(a)

(b)

Figure 11. DynaSLAM’s utilization of Mask R-CNN for the semantic segmentation of dynamic objects
in sequence images. The images on the left came from the sitting sequence, while the images on
the right came from the walking sequence. (a) Original images of dynamic scenes. (b) Semantic
segmentation of images using Mask R-CNN.

Table 2. Comparison of feature point matches and trajectory accuracy in dynamic sequences.

Comparative Experiments ORB-SLAM3 DynaSLAM Proposed Improvement on DynaSLAM

Feature Matching and APE Matches RMSE Matches RMSE Matches RMSE RMSE

freiburg3_sitting_halfsphere 462 0.0430 198 0.0245 146 0.0240 2.91%
freiburg3_sitting_rpy 396 0.9839 176 0.9460 122 0.2591 72.60%

freiburg3_sitting_static 411 0.5759 171 0.2147 133 0.1270 40.87%
freiburg3_sitting_xyz 389 0.0270 185 0.0210 145 0.0175 16.77%

freiburg3_walking_halfsphere 367 0.7125 163 0.0230 159 0.0225 2.19%
freiburg3_walking_rpy 335 0.7551 153 0.1319 110 0.1125 14.69%

freiburg3_walking_static 459 2.7401 203 0.1710 172 0.1331 22.63%
freiburg3_walking_xyz 312 1.7032 189 0.0255 132 0.0235 7.68%
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3.4. Three-Dimensional Pose Tracking Accuracy

Figure 12 shows the APE of ORB-SLAM3, DynaSLAM, and the proposed system on
the highly dynamic sequence fr3_w_static. The gray line represents the ground truth of the
camera, while the colored line represents the camera trajectory estimated with the SLAM
algorithm. In highly dynamic environments, there is a significant difference between the
motion trajectory estimated by the ORB-SLAM3 system and the ground truth, and even
erroneous trajectories may occur in certain areas. On the contrary, DynaSLAM and the
proposed system had a large overlap in their estimations of the motion trajectories and real
trajectories, and the proposed system was closer to the real trajectories. This indicated that
the method in this article was more capable of handling highly dynamic scenarios.

(a) (b) (c)

Figure 12. The APE of ORB-SLAM3, DynaSLAM, and the proposed system on the highly dynamic
sequence fr3_w_static. (a) ORB-SLAM3. (b) DynaSLAM. (c) Proposed system.

Figure 13 shows how the APE on the highly dynamic sequence fr3_w_static changed
over time, and colored curves are used to represent errors, such as the RMSE, mean,
and median. It can be clearly seen that our method had higher accuracy at almost all
times. Our method also had better robustness than that of traditional methods when facing
different environments.

(a) (b) (c)

Figure 13. The APE over time for ORB-SLAM3, DynaSLAM, and the proposed system on the
highly dynamic sequence fr3_w_static. (a) ORB-SLAM3, due to a significantly large rmse, the blue
lines representing the error exceed the boundaries of the error comparison chart. (b) DynaSLAM.
(c) Proposed system.

As shown in Table 3, in highly dynamic walking sequences, both DynaSLAM and
the proposed system showed significant improvements in terms of the absolute pose error
(APE) compared to ORB-SLAM3. The APE reduction in each sequence was maintained
at over 70%. However, in the less dynamic sequence fr3_s_xyz, the improvement in the
error was relatively small in comparison with that in other sequences. This was because the
dynamic interference in this sequence was not strong, and ORB-SLAM3 itself was designed
to perform well in less dynamic environments. As a result, there was limited room for
improvement in this specific scenario.
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Table 3. Improvements in the 3D trajectory accuracy of the proposed system in comparison with
ORB-SLAM3 and DynaSLAM based on the TUM RGB-D dataset.

Comparative Experiments Improvement on ORB-SLAM3 Improvement on DynaSLAM

APE Mean Median RMSE See Mean Median RMSE See

freiburg3_sitting_halfsphere 47.43% 44.94% 43.07% 64.64% 3.59% 2.28% 2.91% 0.34%
freiburg3_sitting_rpy 73.69% 72.76% 73.66% 92.97% 72.63% 72.92% 72.60% 64.42%

freiburg3_sitting_static 77.97% 78.33% 77.95% 97.22% 40.91% 42.02% 40.87% 69.23%
freiburg3_sitting_xyz 37.00% 39.83% 35.26% 50.46% 16.89% 21.26% 16.77% 32.46%

freiburg3_walking_halfsphere 97.14% 97.52% 96.84% 99.97% 2.87% 1.82% 2.19% 2.03%
freiburg3_walking_rpy 84.64% 85.21% 85.10% 99.36% 15.31% 16.52% 14.69% 27.90%

freiburg3_walking_static 95.14% 95.14% 95.14% 99.86% 22.19% 21.85% 22.63% 58.92%
freiburg3_walking_xyz 98.71% 98.78% 98.62% 99.99% 10.63% 12.03% 7.68% 22.65%

To assess the generalization and adaptability of our algorithm, we conducted 3D pose-
tracking accuracy experiments on the dynamic Bonn RGB-D dataset. We selected three rep-
resentative sequences for evaluation: rgbd_bonn_balloon (b_balloon), rgbd_bonn_crowd3
(b_crowd), and rgbd_bonn_person_tracking2 (b_p_tracking). Since the Bonn dataset re-
quires modifications to the parameter file format used in the TUM dataset and not all
parameters are consistent, we could not guarantee accurate correspondences of ground
truth trajectories at each time step. Therefore, we adopted the relative pose error (RPE)
to evaluate the trajectory tracking accuracy. The RPE is a comparison of poses with the
previous time step, and lower requirements for temporal synchronization are imposed.

As shown in Table 4, the experimental results for the three sequences in the dataset
demonstrated significant improvements in accuracy for the four RPE metrics. Based on
the experiments with the b_balloon sequence, our proposed method achieved an accuracy
improvement that was comparable to that of DynaSLAM and ORB-SLAM3. This similarity
in the accuracy improvement was attributed to DynaSLAM’s neural network segmentation
model, which lacked prior information about balloons, leading to the inaccurate segmenta-
tion of balloons in the scene, as illustrated in Figure 14. The fast-moving balloons in the
image frames significantly impacted DynaSLAM’s feature matching and pose estimation,
resulting in only a marginal improvement in trajectory accuracy over ORB-SLAM3. Our
method effectively addressed the interference caused by the dynamic target of the balloon.
In the b_p_tracking sequence, where individuals moved rapidly and the texture on their
clothing was not particularly distinct, ORB-SLAM3 tended to extract fewer feature points on
people when they moved quickly. As a result, the rapid movement of people had a minimal
impact on the pose estimation with ORB-SLAM3. Additionally, due to the fast movements
of both people and the camera, DynaSLAM experienced tracking loss at a certain point in
the scene, leading to lower mean and median values than those of ORB-SLAM3.

Table 4. Improvement in the 3D trajectory accuracy of the proposed system in comparison with
ORB-SLAM3 and DynaSLAM based on the dynamic Bonn RGB-D dataset.

Comparative Experiments Improvement on ORB-SLAM3 Improvement on DynaSLAM

RPE Mean Median RMSE See Mean Median RMSE See

rgbd_bonn_balloon 68.37% 82.37% 54.98% 24.01% 62.28% 61.03% 49.86% 27.07%
rgbd_bonn_crowd3 63.57% 68.81% 52.98% 3.95% 39.89% 43.82% 31.10% 3.52%

rgbd_bonn_person_tracking2 37.23% 31.52% 30.26% 22.58% 37.61% 50.10% 23.73% 4.05%
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Figure 14. DynaSLAM’s utilization of Mask R-CNN for the semantic segmentation of dynamic objects
in b_balloon.

4. Conclusions

This study proposed a bidirectional scoring strategy-based transformation matrix
estimation to address the impact of dynamic objects in indoor environments. Firstly, a bidi-
rectional scoring strategy for feature points was adopted based on matching constraints
to remove dynamic points with abnormal scores. Then, a matrix estimation based on the
filtered feature points was utilized to remove more outliers. In this process, the internal
constraints between samples were leveraged to select the optimal sampling. The compre-
hensive experimental results demonstrated that the proposed system surpassed the state-
of-the-art methods, resulting in enhanced camera pose tracking and improved positioning
accuracy. However, our system still exhibits several limitations. Firstly, the real-time perfor-
mance of the system requires further improvement. Secondly, continuous optimization of
the semantic segmentation network is imperative to enhance the system’s effectiveness in
mitigating the impacts of dynamic objects.
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Abbreviations
The following abbreviations are used in this manuscript:

SLAM Simultaneous localization and mapping
TUM Technical University of Munich
RGB-D Red–green–blue-depth
ORB Oriented FAST and rotated BRIEF
ORB-SLAM2 Oriented FAST and rotated BRIEF SLAM II
ORB-SLAM3 Oriented FAST and rotated BRIEF SLAM III
RANSAC Random sample consensus
SegNet Semantic segmentation network
Mask R-CNN Mask region-based convolutional neural network
YOLO You only look once

https://cvg.cit.tum.de/data/datasets/rgbd-dataset/
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DS-SLAM Dynamic semantic SLAM
DynaSLAM Dynamic SLAM
CNN Convolutional neural network
APE Absolute pose error
RMSE Root-mean-squared error
SSEs Sum of squared errors
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