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Abstract: Heterogeneous change detection (CD) is widely applied in various fields such as urban
planning, environmental monitoring, and disaster management. It enhances the accuracy and compre-
hensiveness of surface change monitoring by integrating multi-sensor remote sensing data. Scholars
have proposed many graph-based methods to address the issue of incomparable heterogeneous
images caused by imaging differences. However, these methods often overlook the influence of
changes in vertex status on the graph structure, which limits their ability to represent image structural
features. To tackle this problem, this paper presents an unsupervised heterogeneous CD method
based on enhanced graph structure representation (EGSR). This method enhances the representation
capacity of the graph structure for image structural features by measuring the unchanged proba-
bilities of vertices, thereby making it easier to detect changes in heterogeneous images. Firstly, we
construct the graph structure using image superpixels and measure the structural graph differences
of heterogeneous images in the same image domain. Then, we calculate the unchanged probability
of each vertex in the structural graph and reconstruct the graph structure using this probability.
To accurately represent the graph structure, we adopt an iterative framework for enhancing the
representation of the graph structure. Finally, at the end of the iteration, the final change map (CM) is
obtained by binary segmentation of the graph vertices based on their unchanged probabilities. The
effectiveness of this method is validated through experiments on four sets of heterogeneous image
datasets and two sets of homogeneous image datasets.

Keywords: remote sensing; unsupervised change detection; heterogeneous images; graph structure;
structure representation; graph enhancement

1. Introduction
1.1. Background

Remote sensing image change detection (CD) is an emerging technology attracting
attention across various domains including natural resource monitoring [1,2], disaster
warning [3,4], and urban planning [5,6]. It enables the detection and analysis of surface
changes on Earth through the comparative analysis of remote sensing images captured
within the same geographic region over time. As multi-spectral, hyperspectral, and syn-
thetic aperture radar (SAR) satellites alongside other advanced remote sensing platforms
continue to proliferate, the diversity of obtainable remote sensing datasets is rapidly ex-
panding [7,8]. This expansion is propelling the advancement of CD techniques. Depending
on the characteristics of the remote sensing data employed, CD approaches can be generally
categorized into either homogeneous or heterogeneous CD methods.
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Homogeneous CD primarily relies on data acquired from identical sensor platforms.
However, this approach is often impeded by low-quality and incomplete datasets resulting
from factors such as satellites’ technical limitations and environmental conditions. For
instance, optical satellite imagery can be impacted by cloud coverage and sunlight.

In contrast, heterogeneous CD integrates multi-source remote sensing datasets, such
as combining optical and SAR images, to identify land surface changes. Compared to
homogeneous CD, heterogeneous CD demonstrates several advantages: (1) It maximizes
the observational strengths of different sensors. For example, optical sensors provide
high-resolution surface details in clear skies whereas SARs’ function is unaffected by
illumination. (2) Land modifications originate from natural and human causes, exhibiting
complex spatio-temporal properties. In light of this complexity, leveraging heterogeneous
imagery proves to be an effective approach. (3) With frequent acquisition across wider
areas now, heterogeneous CD improves modification monitoring, frequency, and scope.

However, heterogeneous remote sensing datasets contain divergent spatial, spectral,
radiometric, and temporal properties, restricting the direct comparison of traditional homo-
geneous CD algorithms. Therefore, innovative CD approaches tailored to heterogeneous
imagery require development. Recently, scholars have increasingly investigated heteroge-
neous CD techniques, which are categorized based on detection mechanisms into image
spatial transformation, image feature space mapping, and similarity measurement.

Image spatial transformation methods establish pixel statistical models between het-
erogeneous images to translate pixels from one image space to another. This allows for
the statistical properties of data acquired by different sensors to become more uniform,
thereby providing a more reliable foundation for subsequent CD. Researchers can conduct
analyses of statistical relations between images and select unchanged pixels with the prior
knowledge or affinity matrices. Homogeneous pixel transformation models are then con-
structed to realize CD [9–14]. Additionally, deep learning approaches have been applied
to heterogeneous images, such as conditional adversarial networks (CAN) [15], cycle-
consistent generative adversarial networks (CycleGANs) [16,17], commonality autoen-
coders (CAs) [18], deep sparse residual models (DSRM) [19], deep translation-based change
detection networks (DTCDN) [20], hierarchical extreme learning machine (HELM) [21], and
code-aligned autoencoders (CAA) [22]. However, these methods necessitate introducing
labeled or pseudo-labeled data.

Image feature space mapping methods map heterogeneous data into a shared feature
space to represent similar ground objects with approximate features. This is achieved
through methods such as deep learning and mapping network (DLM) [23], symmetric
convolutional coupling networks (SCCN) [24], approximate symmetrically deep neural
networks (ASDNN) [25], deep capsule networks (DCN) [26], deep pyramid feature learning
networks (DPFL) [27], two-stage joint feature learning (TSHFL) [28], and log-based transfor-
mation feature learning (LTFL) [29]. By mapping to a common feature space, this approach
helps enrich image feature expression and weaken differences between heterogeneous
images. However, for cases with complex noise interference like SAR images, misdetection
remains a problem to a certain degree. Therefore, there is still a need to further improve
algorithm robustness against noise.

Similarity measurement methods mainly detect changes by calculating differences
in comparable features between heterogeneous images. Such methods generally do not
require supervised guidance and have a high degree of automation. They can be mainly
divided into methods based on spectral features and structural features. (1) Spectral
feature-based methods detect changes by comparing pixel statistical characteristics without
laborious training. For instance, the multivariate statistical model (MSM) [30] applies
statistics to model multi-modal pixel values, evaluating similarity or change via statistical
feature comparisons. The Markov model for multimodal change detection (M3CD) [31]
establishes Markov models relating cross-modal pixel relationships to discern changed
areas. Meanwhile, the energy-based model (EBM) [32] quantifies similarity or change
through energy distributions or difference metrics. Nonetheless, these approaches un-
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derutilize spatial information and are susceptible to noise. Methods based on structural
features aim to construct structural information for heterogeneous images. The sorted
histogram (SH) [33] assesses pixel similarity by sorting image histograms and comparing
them. The graph-based fusion (GBF) [34] emphasizes changed areas by fusing graph
structural information and identifying the most dissimilar regions in the graph structure.
However, both SH and GBF neglect non-local similarities that are important for capturing
contextual information. To address this, the non-local patch-based graph (NLPG) [35]
and its improved version (INLPG) [36] construct a graph of structural consistency based
on non-local similarities between image patches, evaluating changes in heterogeneous
images through this graph. In addition, graph-based image regression and Markov random
field (GIR-MRF) [37], and sparse-constrained adaptive structure consistency (SCASC) [38]
analyze image structures through regression models considering the correlation of image
superpixels to determine changes. To further improve detection accuracy, iterative robust
graph and Markovian co-segmentation (IRG-McS) [39] optimize the graph structure and
measure the change level of images by comparing the graphs and mapped graphs. The
structural relationship graph convolutional autoencoder (SRGCAE) [40] extracts change
information by learning the differences in structural relationships of heterogeneous images
through graph autoencoders. While these methods offer promising results, their accuracy
is limited by their graph structure representation capabilities.

1.2. Motivation and Contribution

First, compared to supervised methods, unsupervised methods in heterogeneous CD
tasks offer distinct advantages. They operate independently of labeled training samples,
autonomously discovering potential change patterns within data. This approach signifi-
cantly reduces the cost associated with data annotation, proving more economically viable
for practical applications. Moreover, unsupervised methods exhibit flexibility by not being
bound by specific supervised labels, making them adaptable to a wide array of remote
sensing image change scenarios.

Second, despite substantial differences in the imaging characteristics of heterogeneous
images, there exist consistent structural features within unchanged regions [35,36]. En-
coding these features into respective structure graphs and subsequently measuring the
disparities between these graphs facilitates the detection of changes within heterogeneous
images. Graph-based methods, unlike those reliant on individual pixels or image patches,
offer noteworthy advantages in heterogeneous CD: (1) each vertex within the graph symbol-
izes an element in the image, enabling an understanding of spatial contextual relationships
and the effective capture of intricate change patterns; (2) structure graphs can circumvent
imaging differences in heterogeneous images by exploiting and comparing their consistent
structural features in unchanged regions, enhancing the precision and robustness of CD.

Third, precise representation of a structure graph proves pivotal in extracting struc-
tural features accurately from heterogeneous images. This precision aids in comprehen-
sively describing spatial relationships between vertices within a structure graph, thereby
elevating the accuracy of heterogeneous CD. However, prevalent methods fall short in
adequately considering the change information of vertices within structure graphs. This
limitation impedes the faithful representation of graph structures concerning the consis-
tency of structural features in heterogeneous images. To address this, IRG-McS [39] utilizes
hard-threshold segmentation for the change probabilities of vertices in optimizing graph
structures. However, this method’s efficacy remains constrained by the accuracy limitations
of the threshold segmentation, hindering a precise measurement of the impact of changed
vertices on the structure graph.

In this paper, we propose an enhanced graph structure representation (EGSR) for
unsupervised heterogeneous CD. Initially, we construct a structure graph by utilizing
superpixels extracted from heterogeneous images as vertices. This method involves com-
paring the Laplacian matrices of structure graphs derived from various heterogeneous
images to quantify their structural dissimilarities, thereby addressing imaging variations
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among heterogeneous images. Concurrently, we analyze how changes in vertices impact
the representation of the graph structure. Unlike traditional methods employing hard-
threshold segmentation on vertices, EGSR computes the unchanged probabilities of vertices
based on structural differences within heterogeneous images. This strategy facilitates a
more refined establishment of connections between vertices. To augment the representation
of graph structures further, we introduce an iterative framework that refines vertices’ con-
nections based on the unchanged probabilities of vertices, enhancing the precision of CD.
Ultimately, we perform binary segmentation based on structural dissimilarities to generate
a change map (CM). The primary contributions of this work include:

(1) Proposing an unsupervised heterogeneous CD method that measures disparities
between heterogeneous images via structural mapping, without necessitating labeled
or pseudo-labeled samples. This will enhance the algorithm’s automation, reduce the
cost of the algorithm, and improve its adaptability to different change scenarios.

(2) Introducing a new method to measure structural differences based on the Laplacian
matrix, focusing on quantifying connectivity differences between graph vertices for
enhanced precision in capturing structural changes in heterogeneous images.

(3) Enhancing the graph’s representation by considering the unchanged probabilities of
vertices and employing an iterative computation framework. The enhanced graph
structure is particularly beneficial for improving the capability of CD. The results from
four heterogeneous image datasets and two homogeneous image datasets validate
the efficacy of the proposed method.

The rest of the paper is organized as follows: Section 2 introduces the proposed method
in detail. Section 3 displays the experiments and results. Section 4 discusses the proposed
method. Section 5 provides the conclusion and future work.

2. Proposed and Methods

A set of co-registered heterogeneous remote sensing images,
.
X ∈ RM×N×BX and

.
Y ∈ RM×N×BY , are provided. Where M, N, and BX(BY), respectively, represent the length,
width, and number of bands of images

.
X
( .

Y
)

. The pixels of these images are denoted

as x(m, n, b) and y(m, n, b), respectively. As images
.
X and

.
Y belong to different imaging

modalities, their spectral features cannot be directly compared. However, in unchanged
regions, consistent structure features are demonstrated by images

.
X and

.
Y. By encoding

the structural features of images
.
X and

.
Y into structure graphs, the spatial relationships

between images can be better comprehended. Consequently, in this paper, a structural
graph is developed to represent the structure features of images

.
X and

.
Y. Measurements

of the structural differences between images
.
X and

.
Y are then facilitated to extract change

information from the heterogeneous images.
Structural graphs depict the connection relationships between image vertices and

their neighbors, reflecting structural features. Changes in image regions induce connection
changes between neighboring vertices. To construct structural graphs, each superpixel is
treated as an independent vertex representing diverse regions composed of color, texture,
etc. The vertices’ relationships reveal patterns and layout of the images. The structural
graphs GX and GY of images

.
X and

.
Y are compared in order to quantify the changes

between them. Figure 1 illustrates structural comparison of changed and unchanged areas,
exemplifying consistency between

.
Xi −

.
Xj and

.
Yi −

.
Yj connections in unchanged areas and

implying unchanged structural features. However, some
.
Xi −

.
Xj and

.
Yi −

.
Yj connections

vary in changed areas, agreeing with real changes.
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between vertices in the graph represent stronger connection relationships. 

Comparing structural features of heterogeneous images centers around two key as-
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goal, the main content of the proposed EGSR outlined in this paper, as depicted in Figure 
2, includes four steps: (1) superpixel co-segmentation of heterogeneous images; (2) struc-
tural graph construction and change intensity (CI) measurement; (3) graph structure rep-
resentation enhancement; (4) CM generation. 

 
Figure 2. Architecture of proposed EGSR. Forward mapping and backward mapping are employed 
to measure structural differences in images Y   and X   for heterogeneous images, respectively. 
The green and blue guiding lines, respectively, represent the construction and structural represen-
tation enhancement processes of graph GX  and graph GY . 

2.1. Superpixel Co-Segmentation of Heterogeneous Images 
This paper uses superpixels as the basic units for image processing. Superpixels are 

generated through clustering pixels into uniformly segmented regions, which better 

Figure 1. Illustration of the structure of heterogeneous images, where the thicker connecting lines
between vertices in the graph represent stronger connection relationships.

Comparing structural features of heterogeneous images centers around two key as-
pects: constructing structural features and measuring structural differences. To fulfill
this goal, the main content of the proposed EGSR outlined in this paper, as depicted in
Figure 2, includes four steps: (1) superpixel co-segmentation of heterogeneous images;
(2) structural graph construction and change intensity (CI) measurement; (3) graph structure
representation enhancement; (4) CM generation.
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Figure 2. Architecture of proposed EGSR. Forward mapping and backward mapping are employed
to measure structural differences in images

.
Y and

.
X for heterogeneous images, respectively. The

green and blue guiding lines, respectively, represent the construction and structural representation
enhancement processes of graph GX and graph GY.
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2.1. Superpixel Co-Segmentation of Heterogeneous Images

This paper uses superpixels as the basic units for image processing. Superpixels
are generated through clustering pixels into uniformly segmented regions, which better
preserves structural information compared to traditional image patches or individual
pixels. By representing the images as superpixels, discontinuities and noise caused by
independent pixel/patch processing can be avoided. Additionally, superpixels help reduce
the amount of data processing since fewer superpixel units contain more image information
than numerous individual pixels, significantly improving computational efficiency.

In this paper, we use the simple liner iterative clustering (SLIC) [41] algorithm for
image superpixel segmentation. The SLIC algorithm segments the image into superpixels
based on local color similarity and spatial continuity, exhibiting excellent performance
in processing complex scenes while precisely preserving superpixel boundaries. To en-
sure that images

.
X and

.
Y have identical superpixel boundaries for building comparable

structural features, we first overlay images
.
X and

.
Y. Then, the SLIC algorithm is applied

to perform superpixel segmentation on the overlaid images, obtaining a superpixel map
S = {Si|i = 1, 2, . . . , NS}. Subsequently, the superpixel map S = {Si|i = 1, 2, . . . , NS} is
mapped back to the individual images

.
X and

.
Y to derive their respective superpixel sets

.
X =

{ .
Xi

∣∣∣i = 1, 2, . . . , NS

}
and

.
Y =

{ .
Yi

∣∣∣i = 1, 2, . . . , NS

}
, which contain NS superpixels.

To represent the spectral and texture characteristics of each superpixel, its internal mean,
median, and variance are extracted as features. This produces the superpixel feature
matrices X ∈ RNS×3BX and Y ∈ RNS×3BY .

2.2. Structural Graph Construction and CI Measurement

(1) Structural graph construction. Since structural graphs can effectively express image
structural feature, we constructed undirected graphs to extract these features. Taking the
construction of the structural graph GX in image

.
X as an example, we define GX = {VX, EX}

as follows:
VX =

{ .
Xi

∣∣∣i = 1, 2, . . . , NS

}
EX =

{( .
Xi,

.
Xj

)∣∣∣i = 1, 2, . . . , NS, j ∈ ΩXi , j ̸= i
} (1)

where VX and EX, respectively, represent the vertices and edges of graph GX, and ΩXi

denotes the index set of neighbors
.
Xj connected to the vertex

.
Xi.

To describe vertices interconnections in graph GX more conveniently, we introduce
the adjacency matrix AX ∈ RNS×NS :

AX
i,j =

1,
( .

Xi,
.
Xj

)
∈ EX

0,
( .

Xi,
.
Xj

)
/∈ EX

(2)

To better understand the connectivity strength of each vertex, we introduce the de-
gree matrix DX for the graph GX. The degree matrix DX plays a crucial role in analyzing
the degree distribution of the graph (i.e., the frequency of vertex occurrences), reveal-
ing the degree of vertex aggregation and importance. It is a diagonal matrix, where
DX

i,i = ∑NS
j AX

i,j ∈ RNS×NS . In a similar manner, structural graph GY of image
.
Y can

be constructed.
The number of neighbors Ki for each vertex

.
Xi is important, as it impacts the ability

of the graph to capture structural information. If Ki is too small, the graph may become
overly sensitive to noise in the image. Conversely, if Ki is too large, irrelevant neighbors
may be introduced, both of which reduce structural expressiveness. Similar to [38], we
determine Ki for each vertex

.
Xi through the following steps: 1⃝ We define the maximum

and minimum possible neighbor counts as kmax = ⌊kratio × NS⌋ and kmin = ⌊kmax/10⌋,
where kratio is the neighbor ratio and ⌊·⌋ represents floor division. Then, we calculate



Remote Sens. 2024, 16, 721 7 of 19

the feature distance distX
i,j =

∥∥Xi − Xj
∥∥2

2 between vertex
.
Xi and its neighbors, finding the

nearest kmax neighbors of
.
Xi. 2⃝ We calculate the number of edges DX

i,i associated with each

vertex
.
Xi. 3⃝ The number of neighbors Ki is set as min

{
kmax, max

{
DX

i,i, kmin

}}
.

(2) CI Measurement. As previously discussed, analyzing the structural differences
in heterogeneous graphs allows us to quantify the CI between heterogeneous images.
Consistency in the connectivity of vertices between graphs GX and GY indicates no change
between images

.
X and

.
Y. Consequently, measuring the disparities in vertices connectivity

within GX and GY is sufficient to compute the CI between images
.
X and

.
Y. To illustrate,

considering backward change measurement, the backward CI di f X can be calculated
as follows:

di f X
i =

NS

∑
j=1

∥∥∥((DX
i,j − AX

i,j

)
−

(
DY

i,j − AY
i,j

))
Xj

∥∥∥2

2
(3)

As both LX = DX − AX and LY = DY − AY represent the Laplacian matrices of graphs
GX and GY, the above equation can be simplified as follows:

di f X
i =

NS

∑
j=1

∥∥∥(LX
i,j − LY

i,j

)
Xj

∥∥∥2

2
(4)

Since graph data are susceptible to the influence of uneven vertex distribution, it is
necessary to normalize the Laplacian matrix [42]. The normalization calculation of the

Laplacian matrix is as follows:
~
L = I − D−1/2AD−1/2. Here,

~
L represents the normalized

Laplacian matrix, and I is the identity matrix. The normalization of the Laplacian matrix
has three main advantages: 1⃝ Achieving scaling balance through normalization is crucial,
given the potential significant variation in vertex degrees within the original Laplacian
matrix. This variation can lead to a disproportionate impact from vertices with higher
degrees during analysis. 2⃝ Normalization not only reduces numerical errors but also
enhances computational stability and accuracy, contributing to improved overall numerical
stability. 3⃝ By adapting to different degree distribution characteristics, such as uniform
and power-law distributions, normalization enables the algorithm to perform effectively
across various scenarios. Therefore, Equation (4) can be rewritten as follows:

di f X
i =

NS

∑
j=1

∥∥∥∥(~
L

X

i,j −
~
L

Y

i,j

)
Xj

∥∥∥∥2

2
(5)

where,
~
L

X
and

~
L

Y
are the normalized Laplacian matrices of LX and LY, respectively.

Similarly, we can calculate the forward CI di f Y:

di f Y
i =

NS

∑
j=1

∥∥∥∥(~
L

X

i,j −
~
L

Y

i,j

)
Yj

∥∥∥∥2

2
(6)

2.3. Graph Structure Representation Enhancement

In Equation (5), it is crucial to consider the change status of vertices in the graph
for accurately calculating structural differences. Changed vertices can confound infor-
mation with differences in structural features, leading to a reduction in precision for CI
measurement. To address this, we introduce an iterative strategy aimed at enhancing the
representational capacity of the graph structure and mitigating the impact of changed
vertices on the stability of the graph structure.

Taking graph GX as an example, the initial backward CI di f X can be obtained by
Equation (5). The probability puc

Xi
of vertex

.
Xi remaining unchanged can be inferred through

di f X. Subsequently, the adjacency matrix AX will be updated according to the probability
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puc
Xi

value to enhance its structural representation capability. In this paper, the fuzzy c-means
(FCM) [43] is introduced to calculate the unchanged probability puc

Xi
. As the uncertainty

of vertices states can be effectively addressed by FCM utilizing its fuzzy modeling, it can
provide a delicate estimation for unchanged probability puc

Xi
. Specifically, the objective

function optimized by FCM is defined as follows:

min
C
∑

j=1

NS
∑

i=1
um

i,j

∥∥di f X
i − Cj

∥∥2

s.t.
C
∑

j=1
ui,j = 1, ∀i, j; 0 <

NS
∑

i=1
ui,j < NS, ∀j

(7)

where m is fuzzy factor, typically set to 2 in studies, and represents the degree of classifica-
tion fuzziness [43]. The membership matrix U =

{
ui,j|i = 1, . . . , NS, j = 1, . . . , C

}
indicates

the probability of i-th sample belonging to j-th cluster category. The number of clusters C
dictates how samples are grouped, with Cj denoting the j-th cluster center. In this study, C
is set to 2 to divide di f X into two classes: the unchanged class C1 and changed class C2.

The Lagrange multiplier method is applied to optimize the objective function and up-
date membership degrees through the iterative recalculation of cluster centers. Membership
degree ui,j is expressed as follows:

ui,j =
C

∑
k=1

∥∥di f X
i − Cj

∥∥2∥∥di f X
i − Ck

∥∥2

 1
1−m

(8)

When the optimization of the objective function is completed, the probability puc
Xi

that
each vertex in graph GX remains unchanged can be calculated as follows:

puc
Xi

=

{
ui,1, i f di f X

i ∈ C1
0, else

(9)

Based on the calculated probabilities puc
Xi

, graph GX can be optimized through iterative
structural enhancements. Suppose the graph undergoes T iterations of refinement, where
the graph GX after the t-th (t = 1, 2, . . . , T) iteration is defined as G(t)

X . The adjacency matrix

AX(t) of graph G(t)
X is then calculated as follows:

AX(t)
(i,j) = AX(t−1)

(i,j) + puc(t−1)
Xi

AX(t−1)
(i,j) (10)

In the same way, we can obtain the enhanced graph G(t)
Y .

Then, the backward di fX and forward di fY can be calculated, respectively, as follows:

di f X
i =

NS

∑
j=1

∥∥∥∥(~
L

X(t)

i,j −
~
L

Y(t)

i,j

)
Xj

∥∥∥∥2

2
(11)

di f Y
i =

NS

∑
j=1

∥∥∥∥(~
L

X(t)

i,j −
~
L

Y(t)

i,j

)
Yj

∥∥∥∥2

2
(12)

where
~
L

X(t)
and

~
L

Y(t)
represent the normalized Laplacian matrices of graphs G(t)

X and G(t)
Y ,

respectively.

2.4. CM Generation

Once the iterative calculation is completed, we can obtain the final CI of image changes:

di f f inal = di f X/mean
(

di f X
)
+ di f Y/mean

(
di f Y

)
(13)
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The CI map (CIM) is obtained from the following formula:

CI(m,n) = di f f inal
i ; (m, n) ∈ Si (14)

The generation of the CM involves the binary segmentation of the CIM. In this study,
we utilize the FCM algorithm for the binary segmentation of CIM to obtain the CM.
Algorithm 1 summarizes the main workflow of the proposed EGSR.

Algorithm 1. Framework of EGSR

Input: images
.
X and

.
Y, parameters of Ns, kratio, T

Preprocessing:
Superpixel co-segmentation of heterogeneous images.
Structural graph construction.
CI measurement.
Main iteration loop of EGSR:
For t = 1,2, . . ., T
1. Calculating the unchanged probabilities puc

Xi
and puc

Yi
of

.
Xi and

.
Yi with Equations (8) and (9)

2. Constructing enhanced structured graph G(t)
X and G(t)

Y with Equation (10).
3. CI measurement:
Calculation of forward and backward CIs by Equations (11) and (12).
Exit for
Output: Compute the binary CM by FCM.

3. Experiments and Results

This section introduces the experimental dataset, the evaluation metrics, briefly de-
scribes the comparison methods and the algorithm parameter settings, and shows the
experimental results.

3.1. Experiments
3.1.1. Dataset Description

To validate the effectiveness of the proposed EGSR for heterogeneous CD and assess
its applicability for homogeneous CD, we conducted experiments using four heterogeneous
datasets (datasets #1–#4) and two homogeneous image datasets (dataset #5 and dataset #6,
which consisted of optical images and SAR images, respectively). In each heterogeneous
image dataset, the spatial resolutions of the two temporal images are different. To facil-
itate the CD task, we resampled them to the same spatial resolution. These six datasets
encompassed images acquired over wide time spans and across different regions, incorpo-
rating diverse change scenarios such as urban construction and river expansion. Therefore,
these six comprehensive datasets were able to test the robustness and performance of the
proposed method. We generated the ground truth through visual interpretation aided by
expert knowledge and by referencing high-resolution imagery close in time and space.
Detailed information of each dataset is provided in Table 1.

Table 1. Experimental datasets.

Dataset Sensor Size (Pixels) Date Location Event (and Spatial
Resolution)

#1 Google
Earth/Sentinel-1 600 × 600 × 3(1) December 1999–November 2017 Chongqing, China River expansion (10 m)

#2 Pleiades/WorldView2 2000 × 2000 × 3(3) May 2012–July 2013 Toulouse, France Urban construction (0.52 m)

#3 Landsat-8/
Sentinel-1 3500 × 2000 × 11(3) January 2017–February 2017 Sutter County, CA, USA Flooding (≈15 m)

#4 Sentinel-
2/Sentinel-1 444 × 571 × 3(1) April 2017–October 2020 Lake Poyang, China Lake expansion (10 m)

#5 Zi-Yuan 3 458 × 559 × 3 2014–2016 Wuhan, China Urban construction (5.8 m)
#6 Sentinel-1 898 × 1500 × 1 November 2017–May 2018 Chongqing, China River expansion (10 m)
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3.1.2. Evaluation Criteria

In order to quantitatively evaluate the effectiveness of the proposed EGSR, several eval-
uation criteria are used, including percentage of overall accuracy (OA), kappa coefficient
(KC), and F1–measure (F1). They are calculated separately as follows:

OA =(TP + TN)/(TP + TN + FP + FN) (15)

KC =(OA − PRE)/(1 − PRE) (16)

where
PRE =((TP + FN)(TP + FP) + (TN + FP)(TN + FN))/N2 (17)

F1 =(2TP)/(2TP + FP + FN) (18)

N is the total number of pixels, and TP, FP, TN, and FN denote true positives, false
positives, true negatives, and false negatives, respectively.

3.1.3. Comparison Methods

To validate the effectiveness of our proposed method, we compare it against several
state-of-the-art approaches.

(1) LTFL [29]: It employs deep learning for extracting high-dimensional features from
heterogeneous images. It subsequently utilizes a change classifier trained on these
differences to identify regions that have changed.

(2) INLPG [36]: This method constructs non-local structural features from heterogeneous
images and maps these features to the same image domain for a comparative analysis,
aiming to emphasize changed regions.

(3) GBF [34]: By integrating graph structure information, GBF identifies regions with the
most dissimilar graph structures, effectively highlighting areas that have changed.

(4) IRG-McS [39]: This approach explores superpixel-based structural features in het-
erogeneous images. By employing Markov co-segmentation, it obtains a feature
difference map to identify regions that have changed.

(5) SCASC [38]: It preserves the structural features of the source image, transforms it into
the target image domain with sparse constraints, and extracts change information by
comparing the source and transformed images.

(6) SRGCAE [40]: SRGCAE employs a graph convolutional autoencoder to learn the
graph structure relationships of heterogeneous images and extracts change informa-
tion by contrasting these relationships.

(7) GIR-MRF [37]: GIR-MRF employs an unsupervised image regression approach
grounded in the inherent structure consistency of heterogeneous images, integrat-
ing global and local constraints through structured graph learning, and improving
detection accuracy with a Markov segmentation model.

3.1.4. Experimental Parameter Setting

In this paper, the maximum iteration count T is set to 5, the neighbor ratio Kratio is
set to 0.15, and the number of superpixels NS is set to 12,000. The key parameters for
the proposed algorithm are Kratio and NS, and a detailed analysis of these parameters is
presented in Section 4.1.

3.2. Results

Figure 3 shows the results of CD and the corresponding CIMs generated by the
proposed EGSR across datasets #1–6. Dataset #1 poses a challenge with diverse shadow
distributions in its land portions. While all the methods successfully pinpoint major
changes, LTFL, GBF, and SRGCAE exhibit higher false positives (FPs), whereas IRG-McS,
SCASC, and GIR-MRF tend to have more false negatives (FNs). The complexity escalates in
dataset #2, introducing intricate change scenarios and increasing FPs for all methods except
IRG-McS, SCASC, and GIR-MRF. Notably, SCASC, while boasting fewer FPs, overlooks
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the change area in the bottom right corner. Dataset #3 reflects changes from flooding
disasters, adding difficulty due to complex spectral features. Here, LTFL, INLPG, and GBF
misidentify changes on the right side, while IRG-McS, SCASC, SRGCAE, and GIR-MRF
accurately identify major changes, with some lingering FPs in the upper part. Transitioning
to dataset #4, showcasing river changes, LTFL, INLPG, GBF, and SRGCAE contribute
numerous FPs, whereas IRG-McS, SCASC, and GIR-MRF exhibit fewer FPs but more FNs.
Moving on, datasets #5 and #6, which are homogeneous image datasets, represent changes
in urban areas and rivers, respectively. With the exception of GBF, other comparative
methods can more comprehensively detect change areas.
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Figure 3k illustrates EGSR effectively highlighting change areas, minimizing both
FPs and FNs in its CMs (Figure 3l). To showcase the robustness of the CIMs generated
by the proposed EGSR across all datasets, the analysis includes the empirical receiver
operating characteristics (ROC) curves and precision–recall (PR) curves. Additionally,
corresponding metrics, including the area under the ROC curve (AUR) and the area under
the PR curve (AUP), are employed to facilitate a comprehensive evaluation. Figure 4
plots the ROC and PR curves of CIMs generated by the proposed EGSR, and Table 2 lists
the corresponding AUR and AUP. The ROC curves and the PR curves of the proposed
EGSR from Figure 4a indicate that conventional threshold segmentation methods can
easily distinguish between the changed and unchanged regions in EGSR’s CIMs. This
effectiveness arises from EGSR’s ability to enhance the expressiveness of the graph structure
through iterative optimization based on changed probabilities of vertices, resulting in a
more accurate representation of image structural features and improved identification of
changes between heterogeneous images.
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Table 2. Quantitative measures of CIMs on the datasets #1–#6.

Measures #1 #2 #3 #4 #5 #6

AUR 0.8545 0.8169 0.8835 0.8965 0.8324 0.8586
AUP 0.7069 0.5497 0.3495 0.6674 0.4354 0.5378

Tables 3 and 4 present accuracy metrics for different methods on datasets #1–3 and
#4–6. EGSR achieves the highest OA and F1 score on most datasets, with the highest KC
across all datasets. Compared to other methods, EGSR improves OA, KC, and F1 values
by at least 0.52%, 4.07%, and 2.80%, respectively, demonstrating the effectiveness and
robustness of the proposed method.

Table 3. Quantitative measures of CMs on the heterogeneous datasets #1–#3.

Methods
#1 #2 #3

OA KC F1 OA KC F1 OA KC F1

LTFL 0.9204 0.7119 0.7579 0.6800 0.2181 0.3862 0.8504 0.0631 0.1240
INLPG 0.9083 0.5635 0.6092 0.8171 0.3395 0.4482 0.9059 0.3730 0.4128

GBF 0.8989 0.5530 0.6109 0.8261 0.2155 0.3105 0.7915 0.1093 0.1737
IRG-McS 0.9128 0.6022 0.6483 0.8685 0.4239 0.4973 0.9469 0.4703 0.4975
SCASC 0.8955 0.5069 0.5599 0.8918 0.4711 0.5247 0.9381 0.4585 0.4888

SRGCAE 0.9223 0.6812 0.7259 0.8231 0.3817 0.4867 0.9376 0.4246 0.4557
GIR-MRF 0.9037 0.5913 0.6457 0.8960 0.4840 0.5350 0.9446 0.4674 0.4954

EGSR 0.9366 0.7329 0.7689 0.8973 0.5029 0.5544 0.9465 0.4784 0.5056

Table 4. Quantitative measures of CMs on the heterogeneous datasets #4–#6.

Methods
#4 #5 #6

OA KC F1 OA KC F1 OA KC F1

LTFL 0.7016 0.1490 0.2600 0.9051 0.4092 0.4598 0.9550 0.6188 0.6428
INLPG 0.9148 0.5426 0.5879 0.8851 0.4500 0.5138 0.9659 0.6448 0.6621

GBF 0.8300 0.3458 0.4231 0.6240 0.1439 0.2845 0.6636 0.1185 0.2087
IRG-McS 0.9450 0.4948 0.5182 0.9203 0.4024 0.4365 0.9591 0.5579 0.5782
SCASC 0.9537 0.6443 0.6684 0.9090 0.3035 0.3407 0.9528 0.4745 0.4974

SRGCAE 0.8354 0.3585 0.4339 0.8354 0.1958 0.2874 0.9592 0.5212 0.5399
GIR-MRF 0.9481 0.6398 0.6678 0.9171 0.3950 0.4321 0.9554 0.5796 0.6031

EGSR 0.9611 0.7072 0.7277 0.9184 0.4673 0.5094 0.9676 0.6594 0.6758
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4. Discussion
4.1. Parameter Analysis
4.1.1. Neighbor Ratio Kratio

To analyze the impact of the neighbor ratio kratio on the proposed EGSR, we fix on
the number of superpixels NS at 10,000 and varied kratio from 0.05 to 0.3 with a step size
of 0.05. Figure 5a depicts the accuracy changes in the proposed EGSR corresponding to
different kratio values. The results show that, with the exception of dataset #4, where the KC
value of EGSR gradually increases from kratio 0.05 to 0.1 and then begins to decline, EGSR’s
KC value on other datasets generally rises from kratio 0.05 to 0.15 and then experiences
various degrees of decline. This phenomenon is attributed to the fact that selecting too
many neighbors can introduce excessive redundancies and inaccuracies, affecting the
accuracy of the graph structure. Conversely, too few neighbors may result in an incomplete
representation of graph structural features, leading to reduced detection accuracy. It is
noteworthy that datasets #3 and #4 capture changes in rivers, encompassing both significant
alterations in the main river channels and subtle changes in the tributaries. This necessitates
a stringent requirement for the precision of structural feature construction. Consequently,
the accuracy of the proposed EGSR declines when kratio exceeds 0.2, particularly for these
two datasets. Nevertheless, the performance of the proposed method remains relatively
consistent when kratio is confined within the range of 0.05 to 0.2. After a thorough analysis
and standardization of the parameter settings, this study recommends a universal kratio
value of 0.15 across all datasets.
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4.1.2. Number of Superpixels NS

We maintained a neighbor ratio kratio value of 0.15 while adjusting the number of
superpixels NS within the range of 4000 to 16,000, with a step size of 2000. In Figure 5b, the
influence of varying superpixel numbers on the proposed method’s accuracy is depicted.
A comparison to the neighbor ratio kratio reveals that the number of superpixels NS has
a more subtle impact on the accuracy of the proposed EGSR. Across all datasets, the KC
value of the proposed EGSR exhibits a slight upward trend within the NS range of 4000
to 12,000. For datasets #1, #4, and #6, minimal changes in KC values are observed within
the NS range of 12,000 to 16,000, with a slight decrease noted for datasets #1, #4, and #6 in
this interval.

In general, a larger number of superpixels NS enables the detection of finer-grained
changes, but this comes at the cost of increased computational time (as shown in Figure 5c)
and the potential for excessively fragmented superpixels. Conversely, a smaller number of
superpixels may introduce significant internal variances, posing challenges in accurately
representing the same physical target and complicating CI measurement. Consequently,
this paper establishes the number of superpixels NS at 12,000.
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4.2. Ablation Experiment
4.2.1. The Effectiveness of Iterative Graph Structure Enhancement

To validate the effectiveness of graph structure enhancement using the proposed
method, we analyzed the CIMs and CMs of dataset #3 as the number of iterations increased.
Specifically, we examined the first row of Figure 6a–e, which depicted the CIMs, and the
second row, which illustrated the CMs. As the iterations progressed, we observed that
the contrast between changed and unchanged regions in the CIMs of dataset #3 gradually
strengthened, particularly in the boxed areas. Moreover, by inspecting the CMs, we found
that the last iteration contained significantly fewer FPs than the initial iteration. To further
illustrate the effectiveness of iterative graph structure enhancement, we present the ROC
curves and PR curves of EGSR’s CIMs for iterations 1 to 5 (Figure 7). Corresponding AUR
and AUP values, as well as relevant metrics for EGSR’s CMs at each iteration, are displayed
in Table 5. From Figure 7, it is evident that with an increase in the number of iterations,
the quality of EGSR’s CIMs gradually improves, making it easier to distinguish between
changed and unchanged regions. This demonstrates that graph structure enhancement
using the proposed method can accurately characterize the structural features of images by
enhancing contrasts, thus improving detection accuracy.
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Table 5. Quantitative measures of CIMs and CMs for each iteration of EGSR on dataset #3.
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OA 0.9088 0.9296 0.9412 0.9459 0.9465
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Concurrently, we observe that as the number of iterations increases, the enhancement
in the quality of CIMs and CMs generated by EGSR gradually diminishes, as evidenced by
the close results of the 4th and 5th iterations. This slowdown in improvement is primarily
attributed to the substantial headroom for enhancing graph structure expression ability
during the early iterations. However, with the progression of iterations, the enhancement
in graph structure representation ability tends to approach its upper limit. Therefore, while
augmenting the number of iterations proves beneficial for refining graph structure represen-
tation ability, an excessively iterative process becomes resource-consuming. Consequently,
we recommend limiting the number of iterations to five, which is deemed sufficient for
practical requirements.

4.2.2. The Robustness of EGSR under Different Superpixel Segmentation Methods

In evaluating the impact of various superpixel segmentation algorithms on our ap-
proach, we conducted a comparative analysis using the Felzenszwalb [44], Quickshift [45],
and Watershed [46] algorithms. The Felzenszwalb algorithm, which relies on regional fea-
tures within the image, employs an adaptive edge-merging strategy to generate superpixels
of variable sizes. This adaptability renders it suitable for diverse targets with varying scales
and shapes. Meanwhile, the Quickshift algorithm, leveraging color and spatial information,
identifies superpixel centers through density peaks and gradient information, ensuring
rapid superpixel generation. The Watershed algorithm conceptualizes the image as terrain,
pinpointing potential watershed points at local minima and segmenting the image by
flooding from these points—an approach particularly effective for images with pronounced
edge structures. To enhance the illustration of diverse superpixel segmentation effects, we
standardized the number of superpixels generated by each algorithm to around 400. The
results of the segmentation process for each algorithm on the overlaid image of dataset #1
are depicted in Figure 8.
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By observing Figure 8, it becomes evident that the segmentation results exhibit diverse
shapes, sizes, and structures, attributed to the distinct core concepts of these superpixel
segmentation algorithms. Felzenszwalb and Quickshift prioritize adaptability over the
shape and size of the target, Watershed emphasizes the image’s edge structure, and SLIC
is distinguished by compact and regular superpixels. Nonetheless, all four superpixel
segmentation algorithms demonstrate the capability to generate superpixel regions with
uniform spectral and spatial features.

In Figure 9, the results of CIMs and CMs from different superpixel segmentation
algorithms on six experimental datasets are presented (the number of superpixels for
each method is approximately 12,000). Visually, CIMs produced by the four algorithms
significantly highlight changed areas, and CMs accurately extract the edge contours of
the changed objects, revealing no apparent differences. For a quantitative assessment
and comparison of algorithm performance, Table 6 provides accuracy metrics for the CMs
generated by each algorithm on the six datasets. The results indicate that the four algorithms
achieve very close or identical high-precision values across all evaluation metrics, with
minimal differences. This implies that the choice of superpixel segmentation method has
negligible impact on the quality of the CIMs and CMs produced by the proposed method.
Thus, this fully validates the robust stability of our method under various superpixel
algorithm choices.
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Table 6. Quantitative measures of CMs on the heterogeneous datasets #1–#3.

Methods
Felzenszwalb Quickshift Watershed SLIC

OA KC F1 OA KC F1 OA KC F1 OA KC F1

#1 0.9602 0.7033 0.7243 0.9353 0.7293 0.7662 0.9345 0.7239 0.7610 0.9366 0.7329 0.7689
#2 0.8921 0.4787 0.5331 0.8882 0.4734 0.5317 0.8909 0.4906 0.5480 0.8973 0.5029 0.5544
#3 0.9407 0.4701 0.4994 0.9446 0.4674 0.4954 0.9407 0.4701 0.4994 0.9465 0.4784 0.5056
#4 0.9589 0.6930 0.7147 0.9573 0.6920 0.7149 0.9600 0.7104 0.7318 0.9611 0.7072 0.7277
#5 0.9120 0.4433 0.4897 0.9163 0.4507 0.4936 0.9149 0.4518 0.4962 0.9184 0.4673 0.5094
#6 0.9669 0.6510 0.6678 0.9653 0.6351 0.6527 0.9660 0.6413 0.6585 0.9676 0.6594 0.6758

5. Conclusions

To address the relatively weak structural expression capacity of existing graph-based
heterogeneous CD methods, the proposed EGSR iteratively enhances the structural expres-
sion ability to improve CD accuracy. The EGSR first constructs an adaptively structured
graph to preliminarily characterize image structural features. By comparing graph struc-
tural relationships, it obtains the initial CIM. Based on this initial CIM and FCM clustering,
the EGSR then calculates the unchanged probability of graph vertices and dynamically
reconstructs the graph structures accordingly. This enhances the structural expression
ability of the graph. After several such iterative refinements, the EGSR performs binary
segmentation on the final CIM to derive the CM. Evaluation on six datasets against six
state-of-the-art methods demonstrates that the EGSR achieves the best overall accuracy,
with KC and F1 scores increased by at least 4.07%, and 2.80%, respectively.

This paper has validated the effectiveness of the proposed method in obtaining robust
CIMs through six distinct sets of experimental datasets. The results demonstrate that
the proposed EGSR can offer valuable prior knowledge for CD methods [8] that leverage
pre-trained models. This prior knowledge facilitates faster convergence to the optimal
solution and diminishes the need for extensive training data during the CD process, thereby
enhancing the efficiency and practicality of the CD algorithm. Moreover, in addressing the
CD issues of remote sensing images with different resolutions [7], the proposed EGSR can
leverage its capability in extracting and utilizing structural features to provide insights for
solving such problems.

In this work, structural graphs are built upon original image features only, without
considering high-dimensional features. As a result, the mining of spectral domain informa-
tion remains limited. Future work will explore leveraging high-dimensional spectral image
features to further enrich graph structural representations. Additionally, in our future
studies, we aim to enhance the proposed method’s generalization in diverse and complex
remote sensing scenarios.
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