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Abstract: Hyperspectral target detection (HTD) is a crucial aspect of remote sensing applications,
aiming to identify targets in hyperspectral images (HSIs) based on their known prior spectral signa-
tures. However, the spectral variability resulting from various imaging conditions in multi-temporal
hyperspectral images poses a challenge to both classical and deep learning (DL) methods. To over-
come the limitations imposed by spectral variability, an implicit contrastive learning-based target
detector (ICLTD) is proposed to exploit in-scene spectra in an unsupervised way. First, only prior
spectra are utilized for explicit supervision, while an implicit contrastive learning module (ICLM) is
designed to normalize the feature distributions of prior and in-scene spectra. This paper theoretically
demonstrates that the ICLM can transfer the gradients from prior spectral features to those of in-scene
spectra based on their feature similarities and differences. Because of transferred gradient signals,
the ICLTD is regularized to extract similar representations for the prior and in-scene target spectra,
while augmenting feature differences between the target and background spectra. Additionally, a
local spectral similarity constraint (LSSC) is proposed to enhance the capability of scene adaptation
by leveraging the spectral similarities among in-scene targets. To validate the performance of the
ICLTD under spectral variability, multi-temporal HSIs captured under various imaging conditions
are collected to generate prior spectra and in-scene spectra. Comparative evaluations against several
DL detectors and classical methods reveal the superior performance of the ICLTD in achieving a
balance between target detectability and background suppressibility under spectral variability.

Keywords: hyperspectral target detection; remote sensing; spectral variability; multi-temporal
hyperspectral images

1. Introduction

With the advancement of hyperspectral imaging techniques, the spectral and spatial
characteristics of hyperspectral images (HSIs) have found applications in remote sensing
observations, including military defense [1], mineral exploration [2], and agricultural
monitoring [3]. Hyperspectral target detection (HTD), which stands out as a critical
technique for interpreting remote sensing HSIs, aims to identify the target of interest
within the test HSIs given their known waveform signatures. This paper focuses on HTD
in the radiance domain where the prior spectra and test HSIs are collected from multi-
temporal images. For clarity of description, “in-scene HSIs” refers to the test images in this
paper. An example shown is in Figure 1, where the diverse imaging conditions of the multi-
temporal HSIs lead to variations between the prior and in-scene target spectra, known as
spectral variability [4]. This variability presents a significant obstacle to achieving robust
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detection performance. Although the in-scene radiative parameters could be potentially
estimated to address radiance variations [5], such estimation necessitates the presence of
typical materials in the in-scene HSIs and prior knowledge of their spectra. This work
aims to mitigate the limitations posed by spectral variability and realize robust detection
performance without prior knowledge of radiative parameters.

Figure 1. Pipeline of HTD where prior spectra and the test spectra are captured in different time
phases. The prior spectra could either be obtained from a spectral library or known target spectra
from other HSIs (the latter being the focus of this paper). The prior spectra differ from the target
spectra due to various imaging conditions and intra-class variance, known as spectral variability,
which poses challenges to HTD.

In the last few decades, numerous classical methods have been developed for HTD.
Spectral angle mapper [6] and spectral information divergence [7] are two well-known
distance-based metrics used to assess the similarities between prior and in-scene spectra.
Signal detection-based approaches, such as the generalized likelihood ratio test [8] and
the adaptive coherence/cosine estimator (ACE) [9,10], employ hypothesis tests to model
HTD. Constrained energy minimization (CEM) [11] can be used to construct a detector that
minimizes the output energy while preserving prior spectra. To overcome the limitations of
the distribution assumption, Chang et al. [12] proposed more general theories based on the
signal-to-noise ratio and spectral angle, including the spectral angle in the correlated space
(R-SA). In addition, innovative approaches have been integrated into classical methods
to address limitations arising from model complexity. These include kernel methods [13],
hierarchical structures [14–16], and fractional Fourier transforms [17]. To utilize in-scene
spectra better, spectral unmixing techniques [18,19] and sparsity assumptions [20–24] are
introduced to construct hyperspectral target detectors, which require certain assumptions.

In the past decade, deep learning (DL) models have achieved great success in HSI
interpretation based on their complex model representation capabilities, such as classi-
fication [25], mapping [26], and unmixing [27]. Meanwhile, DL-based HTD approaches
have also received considerable attention. Supervised learning-based detectors were first
proposed to optimize the network in a contrastive learning method [28]. Two-stream [29,30]
and Siamese structures [31–33] are commonly used to realize contrastive learning. With the
advancement of neural networks, there have been significant improvements in feature
extraction techniques employed by supervised learning approaches. These techniques
have evolved from fully connected networks [28] and convolutional networks [29] to more
recent transformer models [31,34]. The optimization of numerous network parameters
requires abundant labeled data, while only prior spectra are available with annotations.
Therefore, supervised HTD methods commonly generate pseudo-data (e.g., pre-detect
spectra from in-scene HSIs or simulate spectra) to supplement the training data. Classical
detectors [30,31], end-member extraction [31], and clustering methods [29] are employed
to pre-detect background samples from in-scene HSIs. Background samples that are easily
misidentified as targets are valuable for training; however, they are relatively difficult to de-
tect. Spectral mixture models [29,32,35,36] and generative adversarial networks [37,38] are
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mainstream simulation approaches. However, simulating high-quality spectra is hard un-
der spectral variability. For supervised learning-based detectors, the reliability of generated
pseudo-data limits detection performance.

To overcome the few-shot samples problem, unsupervised and self-supervised learning-
based detectors were proposed to optimize networks with pretext tasks [39], which are
free of manual annotations. Typical pretext tasks for HTD include spectra reconstruc-
tion [40–42], denoising [43], and band selection [44]. Ref. [38] proposed a novel pretext
task that constructs contrastive learning between odd and even bands of unlabeled spectra.
These pretext tasks allow the detectors to learn the intrinsic properties of the HSIs and
extract representations of the in-scene spectra. Because pretext tasks do not introduce
supervision from manual annotations, supervised fine-tuning [45] or regularization [46–48]
is embedded in the optimization of pretext tasks, which commonly also requires labeled
data. Alternatively, additional classifiers or post-processing are necessary for the final
results [41,49,50], which complicates the detection process.

To summarize, exploiting in-scene spectra is crucial to alleviate the challenges posed
by spectral variability. Non-learning methods model in-scene spectra under certain assump-
tions, such as statistical assumptions and spectral mixing models. For DL methods, utilizing
in-scene spectra to generate pseudo-data is commonly adopted for supervised learning
or fine-tuning. However, ensuring the quality and reliability of the generated spectra-
annotation pairs requires significant effort. Additionally, most current approaches focus
on HTD using single-epoch HSIs, where prior spectra and in-scene spectra are captured
during the same time frame. Dealing with spectral variations of targets in multi-temporal
images is more challenging.

Unlike pseudo-data-based detectors, which distinguish background and target spec-
tral samples under the guidance of numerous pseudo annotations, this paper proposes
a pseudo-data-free detector that exploits in-scene spectra with implicit contrastive learn-
ing [51], which realizes contrastive learning without manual supervision. The proposed
detector is explicitly optimized to classify prior spectra while no other annotations are
needed. To prevent model collapse resulting from few-shot training samples, an implicit
contrastive learning module (ICLM) is proposed to regularize the detector to minimize the
loss function through learning differentiated representations of in-scene spectra instead
of over-fitting the prior spectra. Specifically, the ICLM normalizes the latent features of
prior and in-scene spectra and establishes gradient propagation paths between them. Later
in this paper, we theoretically analyze how the ICLM allocates differentiated gradient
signals from prior spectral features to the latent features of unlabeled in-scene spectra based
on their inherent feature differences. Based on the various allocated gradients, feature
differences between targets and backgrounds in the in-scene HSIs are augmented during
optimization. In addition to the ICLM, a local spectral similarity constraint (LSSC), which
utilizes the spectral similarities of in-scene targets within local neighborhoods, is proposed
to improve in-scene adaptability. Specifically, the LSSC assumes that the in-scene target
spectra of multi-pixel targets are similar and spatially connected. To better study the detec-
tion performance under spectral variability, three multi-temporal HSI pairs collected from
Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data were used to conduct ex-
periments. Each pair consisted of two HSIs captured under different imagining conditions,
one for prior spectra generation and the other for target rediscovery experiments. The same
category of targets appeared in each multi-temporal HSI pair. Four classical methods and
three DL detectors were used for performance comparison under spectral variability.

The main contributions of this paper are as follows:

(1) This paper proposes a DL-based detector that adapts to spectral variability in multi-
temporal hyperspectral images using implicit contrastive learning with prior and
in-scene spectra.

(2) The ICLM is designed to regularize the optimization process of classifying prior
spectra. This regularization helps in learning distinct representations of in-scene
spectra based on their inherent differences from the prior spectra.
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(3) The LSSC is proposed to enhance scene adaptability by leveraging spectral similarities
among in-scene targets within local neighborhoods.

(4) Three datasets of multi-temporal HSI pairs were collected from AVIRIS data to validate
the detection performance under spectral variability. Comparison experiments with
classical and DL detectors validate that the proposed detector realizes a superior
balance between target detectability and background suppression under spectral
variability.

The remainder of this article is organized as follows. Section 2 introduces the proposed
implicit contrastive learning detector (ICLTD). Section 3 presents extensive experimental
results from the multi-temporal HTD datasets. Conclusions are presented in Section 4.

2. Method
2.1. Spectral Variability of Target Spectra in Multi-Temporal Images

Due to varying atmospheric, illumination, and environmental conditions, the spec-
tral signatures of a target captured at different times may exhibit variability, which is
commonly referred to as spectral variability [52]. In addition, intra-class differences in
spectral characteristics may exist within the same category of targets, also resulting in vari-
ations [4]. Therefore, the prior and in-scene target spectra collected from multi-temporal
HSIs may vary.

An urban-scene multi-temporal HSI pair was collected from AVIRIS data to illustrate
spectral variability, as exhibited in Figure 2. These two images were captured at different
periods within Jefferson County, Washington, United States. Image 1 was acquired under
conditions of minimal cloud coverage, whereas Image 2 was acquired under conditions
with significant cloud presence. Storage tanks were selected as the targets of interest for
this example. Manual target annotations are shown in Figure 1, which were obtained with
the help of ENVI software (Version 5.1). Based on these manual annotations, we computed
the average target spectra from one of the images to obtain prior spectra. A comparison
was then made with the target spectra in the other HSI. It is important to note that these
spectra are in the radiance domain and have been normalized for better comparison.

Figure 2. Exhibition of spectral variability in multi-temporal HSIs. The first row shows a pseudo-color
visualization of HSIs where storage tanks were chosen as the target of interest. The prior spectra
are obtained by averaging the target spectra in one of the images and are compared with the target
spectra in the other HSI. The red lines in the bottom plots represent the prior spectra, while the blue
lines represent the in-scene target spectra.

Based on the visualization depicted in Figure 2, notable differences can be observed
between the prior spectra and in-scene target spectra. Some conventional HTD methods,
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such as ACE, generally assume that the prior spectrum represents the mean of the target
spectral distribution. However, in real-world scenarios, this assumption may not always
hold true, thereby affecting the effectiveness of these methods. Due to the availability of
only prior and in-scene spectra (without labels), certain DL-based methods utilize non-
learning detectors to pre-detect background spectra. These methods generate pseudo-target
spectra by combining prior spectra with the detected background spectra. The augmented
data are considered pseudo-data because their labels are not manually annotated and they
are used to optimize the parameters of neural networks. Simulating high-quality variational
target spectra for training DL detectors is challenging because the variations in target spectra
are not solely caused by spectral mixture.

2.2. Exploiting In-Scene Spectra with Implicit Contrastive Learning

The motivation of this paper is to make the detector adapt to spectral variability by
exploiting in-scene spectra. Based on the exhibition in Section 2.1, it is more beneficial to
explore in-scene target spectra than the pseudo-data. Because the labels of in-scene spectra
are unknown, supervised contrastive learning, which teaches the detector to distinguish
spectra based on annotations, cannot be used for optimization. Instead, we introduce
implicit contrastive learning to exploit the in-scene spectra. Unlike original contrastive
learning, which provides loss functions that need to be minimized, implicit contrastive
learning does not provide any loss function and is more like a regularization process. A
comparison schematic diagram is shown in Figure 3 to exhibit their differences.

For the proposed detector, an objective function is used to detect prior spectra. How-
ever, such optimization may easily collapse without regularization, i.e., when considering
all the in-scene spectra as targets. One interpretation of model collapse is that the detector
only learns a simple and non-discriminative representation of the prior spectra. In contrast,
the introduced implicit contrastive learning aims to regularize the optimization by learning
representations of the prior and in-scene spectra. This regularization helps prevent the
model from over-fitting to the prior spectrum and allows it to recognize in-scene target
spectra under spectral variability. To realize this, the implicit contrastive learning module
(ICLM) is designed to create a gradient back-propagation channel through which the gradi-
ents of the prior spectral features (computed based on the loss function) are allocated to the
in-scene spectral features. The allocation of gradients is based on the feature differences
between prior spectra and in-scene spectra. As the in-scene target and background spectra
inherently differ, the gradients allocated to the different in-scene spectral features vary.
A specific description of this will be provided in the following subsections.

Net
Prior Spectra

Pseudo Spectra

Supervised

Contrastive

Learning

Pseudo 

Annotations

Net
Prior Spectra

In-Scene Spectra

Prior 

Annotations
Implicit

Contrastive

Learning

(a)

(b)

Flow of Prior SpectraFlow of In-Scene/Pseudo Spectra Label

Similarity

Confidence

Detection

Results

(Detection

Results)

Based on Annotations

Based on Inherent Difference

Figure 3. A comparison between (a) contrastive learning-based methods and (b) the proposed implicit
contrastive learning-based detector. Contrastive learning requires the supervision of numerous anno-
tations while implicit contrastive learning is free of annotations and plays the role of regularization.
Only prior spectra provide supervision for the proposed detector, and implicit contrastive learning
regularizes the detector based on the inherent differences between prior and in-scene spectra.
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2.3. Structure and Pipeline of the Proposed Detector

This subsection introduces the structure and pipeline of the proposed ICLTD. An in-
scene HSI is denoted S ∈ Rwh×l , where w, h, and l are the width, height, and band number
of the HSI, respectively. The ith in-scene spectrum of S is denoted si. A prior spectrum
captured from another HSI is denoted sp ∈ Rl . Different from box-level target detection in
the remote sensing field, existing HTD detectors commonly access in-scene spectra (without
annotations) for optimization. After training, the detector outputs the target confidence
scores of the in-scene spectra as detection results, which are denoted C ∈ Rwh×1. In the
training phase, all of the in-scene spectra and the prior spectrum make up the data batch.
For convenience, the number of in-scene spectra is denoted as n1 = w × h. In this paper,
only one prior spectrum is generated from the HSI captured at different times. Hence,
the batch size is n1 + 1.

The network structure is shown in Figure 4. As the illumination intensity varies over
time and space, significant differences in the radiance amplitude may occur. To mitigate
the impact of varying amplitudes, a linear transformation process is used to normalize the
Euclidean norm (L2 norm) of the in-scene spectra and prior spectra to 1. The normalized
spectra are then inputted into multiple fully connected blocks (FCBs) for feature extraction.
Each FCB consists of a fully connected layer, the ICLM, and a nonlinear activation layer.
The FC is related to the normalized vector si by:

xi = W × si + b, (1)

where × represents matrix multiplication. W ∈ Rl×d and b ∈ Rd are the weight and
bias of the fully connected layer, respectively, where d is the dimension number of feature
representations. The FC transforms each input vector independently; that is, there is no
gradient path from xi to sj when i ̸= j.

The realization of implicit contrastive learning is based on the designed ICLM, which
is a refinement of the original batch normalization (BN) [53]. The original BN was proposed
to accelerate the training process while the ICLM is designed to regularize the optimization.
The motivation for creating the ICLM is to force the detector to learn a representation of
the in-scene spectra during the optimization. Without the ICLM, the detector only learns
to transform the prior spectra for classification, and it cannot distinguish other spectra.
The original BN could actually mitigate the above model collapse by leaking gradients
from the features of the prior spectra to the in-scene spectra. However, the original BN
was not specially designed for HTD and cannot provide adequate regularization because
BN preserves most gradients for the learning of prior spectra rather than delegating to the
in-scene spectra. Further theoretical analysis of this process is presented in Section 2.4.

To solve this problem, the ICLM duplicates the prior spectra representations for
normalization to provide adequate regularization. The pipeline of the ICLM is exhibited in
Figure 5. Specifically, the ICLM augments the prior spectra representation, xp, n2 times and
combines them with in-scene spectral features to compute the mean (µ ∈ Rd) and variance
(σ2 ∈ Rd), where d is the dimension number of input spectral feature x. ICLM is computed
using µ and σ2 as: 

µ =
1
m

(
n2xp +

n1

∑
i=1

xi

)

σ2 =
1
m

(
n2(xp − µ)2 +

n1

∑
i=1

(xi − µ)2

)
,

(2)

where n2 is the duplication number of prior spectra representation and m is the sum of n1
and n2.

The computed mean and variance vectors are used to normalize the features of in-scene
spectra and the prior spectra:

x̂ =
x − µ√

σ2
, (3)
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where x̂ is the normalized feature vector.

Figure 4. Network structure and training pipeline of the proposed ICLTD. The input in-scene HSI
and prior spectra are captured under different imaging conditions (at different times). The ICLTD is
optimized to classify the few-shot prior spectra. The ICLM is designed to regularize the optimization,
which forces the detector to learn differentiated representations of the in-scene spectra. The LSSC is
applied to the representations of the in-scene target spectra to improve target detectability.

Figure 5. Pipeline of the ICLM. The black and red lines represent the flow of forward propagation
and gradient back-propagation, respectively. The ICLM leaks supervised gradients from the prior
spectral features (x̂p) to the in-scene spectral features (x̂1, · · · x̂n1 ), which forces the detector to learn
representations of the in-scene spectra to minimize the loss function. Features of the prior spectra are
duplicated n2 times for adequate leaked gradient signals. The ICLM becomes the original BN when
n2 = 1.

Learnable vectors of the mean and variance (αb ∈ Rd and βb ∈ Rd, respectively) are
used to fine-tune the distributions:

y = αb ⊙ x̂ + βb, (4)

where ⊙ represents the element-wise product (Hadamard product). The complete algo-
rithm flow of ICLM is exhibited in Algorithm 1.

Algorithm 1 Pipeline of ICLM

Input: Features of the prior spectra and in-scene HSI: xp and x1, . . . , xi, . . . , xwh; and
learnable parameters of the ICLM: αb and βb.
Output: Normalized spectral features: yp and y1, . . . , ywh.

1: Duplicate xp n2 times and construct a feature batch.
2: Compute µ and σ2 of the feature batch following Equation (2).
3: Normalize xp and x1, . . . , xwh with µ and σ2 following Equation (3).
4: Fine-tune the features with αb and βb following Equation (4).
5: return yp and y1, . . . , ywh.

After using the ICLM, a sigmoid function is applied to features to increase the non-
linear feature extraction ability of ICLTD. Multiple FCBs are used to extract features of
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the input spectra in a cascading manner. It is worth noting that the last FCB is free of the
sigmoid layer, which brings a larger numerical range to the following classifier.

The classifier is composed of a fully connected layer and a softmax layer. The fully
connected layer outputs predicted confidence vectors. The softmax layer normalizes the
output confidence vectors to represent probabilities. The dimensions of the predicted
probability vectors are the same as those of the latent features. The values of different
dimensions represent the confidence of an in-scene spectrum belonging to different cate-
gories (targets of interest or various backgrounds). Because only the target prior is known
and target spectra are our interest, the probabilities belonging to the target are selected
from the output. The first dimension is assumed to be the target class by default, which is
used for computing the loss function. The other dimensions of the output vectors represent
the probabilities of class-agnostic backgrounds. For the visualization shown in Figure 4,
the predicted target probabilities of the input images are denoted C ∈ Rwh×1. The predicted
confidence of the prior spectrum and the ith in-scene spectrum of S are denoted cp and ci,
respectively.

Unlike existing contrastive learning-based detectors, which require both positive and
negative sample pairs for their loss functions, the proposed detector only utilizes the
manual annotations of the prior spectrum for explicit supervised learning. The specific loss
function for classifying positive samples is as follows:

ℓ = −log(cp). (5)

When the ICLM is not present in the detector, the feature extraction and classification
of a batch of spectra become independent of each other. This implies that the learning
of detecting prior spectra does not help the detector to distinguish in-scene spectra. If
optimizing the detector with Equation (5) in the absence of the ICLM, the detector will
over-fit when detecting prior spectra. When the ICLM is present, the detector will learn to
minimize Equation (5) by changing the representation of in-scene spectra, which regularizes
the optimization.

2.4. Analysis of the ICLM

Under the HTD task, this subsection illustrates how the ICLM realizes implicit con-
trastive learning and brings discriminative feature extraction capability to the detector.

From the data distribution perspective, the ICLM normalizes features to restrict ex-
treme output aggregation or divergence [51]. Therefore, the detector will not output
identical results (feature aggregation) or will only be able to detect prior spectra (feature
divergence). The ICLM, to some extent, mitigates the differences between the prior and
target spectra by adjusting the data distributions. However, adjusting the feature distri-
bution cannot help the optimization much. To validate the effectiveness of distribution
adjustment, an ablation study is conducted in Section 3.5 where the gradient propagation
component of the ICLM is disabled.

Compared to feature distribution adjustment, the gradient propagation path estab-
lished by the ICLM between the in-scene spectra and prior spectra is more important.
The last ICLM layer is chosen to analyze the implicit contrastive learning because the
gradient calculation in this layer is simpler than those in the previous layers. Note that all
of the vector multiplication presented in this subsection is the Hadamard product, which is
omitted for brevity.

For convenience, the hidden features before and after the last ICLM layer are de-
noted x and x̂, respectively. We define a spectral feature sequence to exhibit the gradient
propagation path from xp to unlabeled x as:

xi = x1, x2, . . . , xn1+n2 , (6)
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where x1, . . . , xn1 are in-scene spectral features and xn1+1, . . . , xn2 are duplicated prior
features. xi equals xp when i > n1. The normalized spectral features outputted by the last
ICLM are computed by substituting µ and σ2 in Equation (3) according to Equation (2):

x̂p =
m ∑m

i=1xp − xi√
∑m

i=1(∑
m
j=1(xi − xj))2

, (7)

where only the normalized prior spectral features are exhibited because the in-scene spectral
features are not used in the loss function.

According to the numerator in Equation (7), the prior spectral features are subtracted
from each input feature when the ICLM normalizes the distribution means. Similarly,
the denominator constructs computational relationships between any two spectral samples.
Because of the established gradient propagation paths, representations of in-scene spectra
also receive supervised signals during optimization.

The gradient of features before the last ICLM (x) received from the ICLM is calculated
to analyze the regularization of the implicit contrastive learning. There are three paths that
could pass the gradients to x: x̂, µ, and σ2. Because the gradients ∂ℓ

∂µ and ∂ℓ
∂σ2 rely on ∂ℓ

∂x̂ ,
the latter is calculated first.

Since in-scene spectral features are not used in classification loss, their derivatives
are zero:

∂ℓ

∂x̂i
= gi =

{
0, x̂i is unlabeled

gp, x̂i is prior,
(8)

where ∂ℓ
∂x̂i

is denoted gi for convenience. When i > n1, ∂ℓ
∂x̂i

are the same because of
duplication and are denoted gp.

Next, the derivative of ℓ with respect to µ and σ2 is calculated. According to Equation (3),
the gradient of the loss function ℓ with respect to σ2 is:

∂ℓ

∂σ2 =
−n2gp x̂p

2σ2 . (9)

The gradient of the loss function ℓ with respect to µ can be simplified as:

∂ℓ

∂µ
=

−n2gp√
σ2

. (10)

According to Equation (3) and Equation (2), the gradients of x̂, µ, and σ2 with respect
to x are, respectively: 

∂x̂
∂x

=
1√
σ2

∂µ

∂x
=

1
m

∂σ2

∂x
=

2(x − µ)

m
.

(11)

According to the above gradients, ∂ℓ
∂x can be expressed as:

∂ℓ

∂x
=

1

m
√

σ2
(mg

①

− n2gp
②

− n2 x̂p x̂gp
③

), (12)

where the gradients labeled as ①, ②, and ③ come from x̂, µ, and σ2, respectively.
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Based on the loss function (Equation 5), gi = 0 for in-scene spectral features (i < n1).
According to Equation (12), the gradient of ℓ with respect to xi is summarized as:

∂ℓ

∂xi
=


1

m
√

σ2
(−n2gp − n2 x̂p x̂igp), i ≤ n1

1

m
√

σ2
(n1gp − n2 x̂2

pgp), i > n1

(13)

Based on Equation (13), the gradients computed from ℓ are passed to in-scene spectra
through µ and σ2 in the ICLM. In other words, the features of in-scene spectra are also
optimized to realize the classification of prior spectra. Therefore, implicit contrastive
learning of the in-scene spectra regularizes the optimization and prevents model collapse.

To analyze how the ICLM enables the model to learn the differentiated representation
of in-scene spectra, we calculate the difference in gradients obtained through the ICLM for
two in-scene spectra:

∂ℓ

∂xi
− ∂ℓ

∂xj
=

n2 x̂pgp(x̂i − x̂j)

m
√

σ2
. (14)

Assuming the two in-scene spectra in Equation (14) are the target and background
spectra, their inherent differences are automatically utilized by the ICLM to allocate differ-
entiated gradients. We also calculate the difference in gradients obtained through σ2 for
the in-scene spectra and the prior spectra:

∂ℓ

∂σ2
∂σ2

∂xi
− ∂ℓ

∂σ2
∂σ2

∂xp
=

n2 x̂pgp(x̂i − x̂p)

m
√

σ2
. (15)

Based on Equation (15), the gradients received by in-scene target spectra (through
σ2) are more similar to those of the prior spectra than the in-scene background spectra,
because of their inherent data similarities. In contrast, the gradients received by the in-
scene background spectra are different from those of the prior spectra because of inherent
data differences.

∑
∂ℓ

∂x
=

n2gp x̂p ∑m
i=1 x̂i

m
√

σ2
= 0. (16)

According to Equation (16), the total amount of gradients passed through the ICLM
from ℓ to x equals 0, which means that the signs of the transmitted gradients through
the ICLM to the prior and in-scene spectral features are opposite. Therefore, the more
prior spectra in the ICLM are duplicated, the stronger the supervised signal transferred
to the unlabeled spectra will be. Therefore, n2 determines the strength of regularization.
The larger n2 is, the more the model relies on learning the representations of in-scene
spectra to minimize the loss function. When n2 = 1, the ICLM becomes the original BN. Be-
cause n1 ≫ n2, the gradients received by in-scene spectral features are close to 0 according
to Equation (15). Hence, the original BN could not provide adequate regularization.

To summarize, in this section, we analyzed the ICLM from three perspectives. From the
perspective of data distribution, the ICLM avoids excessive aggregation or divergence of
the extracted features. Regarding forward propagation, the ICLM establishes gradient
propagation paths between prior and unlabeled spectra. From the perspective of gradient
back-propagation, the ICLM transfers the gradient of the loss function to in-scene spectra,
and the feature differences are used to determine the transferred gradients. As the number
of prior spectra increases in the ICLM (i.e., as n2 increases), the regularization brought by
implicit contrastive learning is enhanced.

2.5. Local Spectral Similarity Constraint

With the development of imaging spectroscopy technology, the spatial and spectral
resolution of HSIs has improved. Targets in HSIs may occupy multiple pixels, as shown
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by the example in Figure 6. For a multiple-pixel target, its 3D geometric structure and
its relationship with the background vary from different locations, which cause differ-
ences in its spectral characteristics. Our aim is to minimize the feature differences of these
locally connected spectra, thereby improving the performance of in-scene adaptability.
During training, the predicted confidence scores of in-scene spectra can be used to select
candidate targets. For each candidate sample, if there are samples with higher confidence
within their 3 × 3 neighborhoods, we increase the similarity between the feature represen-
tations of these two samples. Note that the LSSC can be employed if a target occupies two
or more connected pixels.
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Figure 6. Process diagram of the LSSC. The LSSC is based on the assumption that the spectral samples
of multi-pixel targets are similar and spatially connected. The detection results (ci) are used to collect
candidate targets (xk

i ) as the centers of 3 × 3 local patches (η(xk
i )). The candidate in-scene spectra are

optimized to be similar to surrounding spectra whose confidence scores are higher than that of the
center. An example is shown in the figure. The detection results of the left wing of the aircraft are
shown in the red box. Because ci < c3

i , the LSSC enhances the similarity between xk
i and xk,3

i .

According to the above motivation, the LSSC was proposed and applied to representa-
tions of in-scene spectra outputted by each fully connected layer of the FCBs. First, we find
the target neighborhoods. A threshold, t, is set to select high-confidence in-scene spectra.
Given the detection results of in-scene HSI, C, the mask that reflects the distribution of
target candidates is:

M = C > t. (17)

Latent features of the in-scene spectra extracted by the kth fully connected layer are
denoted {xk

1, . . . , xk
wh}. Their corresponding confidence scores are denoted {c1, . . . , cwh}.

According to M, the representations of target candidates are collected into the set: Tk =
{xk

i |Mi > 0}. For each candidate, its 3 × 3 neighborhood is constructed, encompassing
multi-level representations and confidence scores. The neighborhood of features is denoted
{xk,1

i , xk,2
i , . . . , xk,8

i }, where xk,1
i represents the first neighboring feature of xk

i . The corre-
sponding confidence scores are {c1

i , c2
i , . . . , c8

i }. For each xk
i , the set consisting of its neigh-

boring target spectral features is denoted η(xk
i ) = {xk,j

i |ci < cj
i}, where cj

i represents the

target confidence score of xk,j
i . With the above features, the proposed LSSC is defined as:

ℓLSSC=
−1
ns

∑4
k=1∑x∈Tk ∑x′∈η(x)log(

sg( f (x′)) · f (x)
||sg( f (x′))||2|| f (x)||2

), (18)
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where sg(x′) represents stopping the gradient propagation of x′, f is the softmax operation,
and ns is the number of candidate targets. Stopping the gradients of neighboring features
is to ensure that the LSSC enhances the detectability of target candidates rather than
diminishing that of the neighboring targets. The complete calculation process of LSSC is
described in Algorithm 2. The total optimization function, L, is the combination of positive
sample classification loss and the LSSC:

L = ℓ+ ℓLSSC. (19)

Algorithm 2 Pipeline for computing LSSC

Input: Spectral features extracted by the kth fully connected layer: {xk
1, . . . , xk

wh}, k ∈
{1, 2, 3, 4}; confidence scores of in-scene spectra: c1, . . . , cwh; and the threshold of the
LSSC: t.
Output: The loss of the LSSC, ℓLSSC.

1: Generate the target candidate mask M according to predicted confidence scores follow-
ing Equation (17).

2: Collect features of candidate in-scene targets: Tk = {xk
i |Mi > 0}.

3: Collect confidence scores of the candidates {ci|Mi > 0}.
4: Collect neighboring spectral features of each xk

i in Tk: {xk,1
i , xk,2

i , . . . , xk,8
i }.

5: Collect confidence scores of neighboring features: {c1
i , c2

i , . . . , c8
i }.

6: Collect desired neighboring features of xk
i : η(xk

i ) = {xk,j
i |ci < cj

i}.
7: Get ℓLSSC following Equation (18).
8: return ℓLSSC.

3. Experiments
3.1. Experimental Setup
3.1.1. Datasets

We conducted experiments using three pairs of multi-temporal HSIs collected from
AVIRIS data (https://aviris.jpl.nasa.gov/, accessed on 23 December 2023). AVIRIS is an
airborne imaging spectrometer instrument capable of capturing 224 contiguous spectral
radiance images in the wavelength range of 400–2500 nm. The AVIRIS data used in this
study consist of the hyperspectral data collected during ground observation experiments
when AVIRIS was mounted on an aircraft. The AVIRIS data have been ortho-corrected and
underwent radiometric calibration.

Specifically, we collected three sets of multi-temporal HSIs from airport, beach, and ur-
ban scenes. These datasets are referred to as MT-ABU for convenience. The groundtruth
maps of targets were annotated using ENVI software. The pseudo-color images and corre-
sponding annotations are shown in Figure 7. Further details of the MT-ABU dataset can be
found in Table 1.
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Figure 7. Pseudo-color images (first row) and ground-truth maps (second row) of six HSIs.

https://aviris.jpl.nasa.gov/
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Each scene consists of two images captured at different times to form an image pair.
Although the targets in each pair of images are not identical, they belong to the same
category. The spatial resolution of each image was estimated based on the flying altitude.
In cases where the AVIRIS data did not provide fly altitudes, the spatial resolution was
estimated using information from Google Maps.

Table 1. Detailed features of the collected multi-temporal datasets.

Dataset Place Time Spatial Resolution Target Pixel Image Size Source of Prior Spectra

MT-ABU-A1 Riverside 4 August 2013 3.8 m 185 150 × 150 MT-ABU-A2
MT-ABU-A2 San Francisco Bay Area 23 June 2008 13.7 m 8 50 × 50 MT-ABU-A1
MT-ABU-B1 Long Beach 19 April 2014 16.7 m 14 150 × 150 MT-ABU-B2
MT-ABU-B2 Bay Area 22 November 2013 16.7 m 16 100 × 100 MT-ABU-B1
MT-ABU-U1 Jefferson County 29 August 2010 7.1 m 51 100 × 100 MT-ABU-U2
MT-ABU-U2 Jefferson County 28 August 2010 7.1 m 118 100 × 100 MT-ABU-U1

We conducted HTD experiments in a target-rediscovery way. Specifically, two HSIs of
each scene provided prior spectra for each other. For example, the prior spectrum used for
detecting targets in MT-ABU-A1 was generated by averaging the target spectral radiances
from MT-ABU-A2 based on the ground-truth annotations. As a result, six images were
used in the experiments, each with its corresponding prior spectrum. The in-scene HSIs
and their corresponding prior spectra sources are presented in Table 1. For convenience,
we will refer to each experimental dataset by the name of its respective in-scene HSI.

3.1.2. Comparison Methods

In order to validate the performance of the proposed method under the spectral vari-
ability condition, both learning and non-learning methods were employed for comparison.
Three DL-based methods that required pseudo-data generation were compared: Siamese
fully connected target detector (SFCTD) [32], two stream convolutional target detector
(TSCNTD) [29], and Siamese transformer target detector (STTD) [31]. Non-deep learning
methods included a classical method (ACE), a spectral distance-based method (R-SA2) [12]),
and the improved classical methods hierarchical CEM (HCEM) [14] and ensemble-based
CEM (ECEM) [15]. Note that all of the methods utilized the same prior spectral information
and did not employ any additional data; they used just the prior spectra and in-scene HSIs.
Therefore, the experiments provide a fair comparison.

3.1.3. Evaluation Criteria

Three-dimensional (3D)-receiver operator characteristic (ROC) curves [54], area under
the curve (AUC), and detection map visualization were used to evaluate the performances
comprehensively. The training and inference times of DL methods and the processing
times of the non-learning methods were used to evaluate their efficiency. The 3D-ROC
curve reflects the relationship between detection probability, PD, false alarm probability,
PF, and confidence threshold, τ. The desired curve has a lower PF and a higher τ for the
same PD.

The AUC values of 3D-ROC curves quantitatively reflect the quality of the curves,
which are denoted AUC(D,F), AUC(D,τ), and AUC(F,τ). AUC(D,F) measures the abil-
ity of the detector to discriminate between targets and backgrounds. AUC(D,τ) and
AUC(F,τ) reflect the average confidence values of targets and backgrounds, respectively. Be-
cause AUC(D,τ) and AUC(F,τ) are unable to evaluate target–background separation ability,
two derived AUC values that are proposed in this work [12] are utilized to replace them:AUCTDBS = AUC(D,τ) − AUC(F,τ),

AUCSNPR = AUC(D,τ)/AUC(F,τ).
(20)

AUCTDBS reflects the difference in confidence scores between targets and backgrounds,
while AUCSNPR measures the ratio between them. Since the number of background
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samples in an HSI is much larger than the number of target samples, changes in confidence
scores for a subset of background samples may not significantly affect the overall amplitude
but can still impact background suppression performance. In such cases, AUCSNPR, which
measures the differences in magnitude, provides a better reflection of performance changes.
However, it is worth noting that even though some results may have high AUCSNPR values,
both the confidence scores for the target and the background may still be low. In such
situations, AUCTDBS is a more suitable metric for evaluation.

3.1.4. Implementation Details

The output dimension of each fully connected layer, d, was 50, including feature
extraction and the final classifier. For convenience, the ratio of prior spectral features to in-
scene spectral features in the ICLM is denoted r = n2/n1. Unless otherwise specified, r was
set to 0.5 and the confidence threshold t in the LSSC was set to 0.3. These two parameters
were fixed for all the comparison experiments. Parameter sensitivity experiments of r and
t were conducted. During training, all of the in-scene spectra were put into a data batch.
The Adam optimizer was used to optimize the model parameters, with a learning rate of
1 × 10−4 and a weight decay of 5 × 10−4. The number of training epochs was set to 500.

The configuration of the server used for the experiment consisted of an Intel i9-9900x
CPU, NVIDIA TITAN Xp, and 32 GB of RAM. The operating system was Windows 11.
The Pytorch package was used for running the DL-based approach codes. When comparing
the detection performance, all methods used the same prior spectra. Non-learning methods
were run using the NumPy package in the Python environment. For all the methods,
the L2-norm of in-scene and prior spectra were normalized to 1 for better performance.

3.2. Parameter Sensitivity Experiments

The proposed HTD method consists of two main components: the ICLM and LSSC.
Both modules have parameters that are manually set, r and t. r is the ratio of the number
of prior spectra to in-scene spectral features in the ICLM, and t is a confidence threshold
for collecting target candidates. In order to analyze the influence of these two parameters
on performance, we conducted experiments with different parameter settings. The tested
values for r were {0.1, 0.25, 0.5, 0.75, 1} and for t were {0.1, 0.2, 0.3, 0.4, 0.5}. In total, 25
experiments were performed on each dataset, and the AUC results of each experiment are
displayed in a 3D bar graph in Figure 8.

The AUC(D,F) results under different t are stable and excellent for the six datasets.
Although there is a slight fluctuation in the AUC(D,F) results for the MT-ABU-A1 data, they
remain at a high level. The differences in the AUCTDBS and AUCSNPR results under the
different settings of t are not significant. According to the above results, the ICLTD has
relatively weak sensitivity to the variable t. In practical applications, t has the flexibility to
assume values across a wide range without significantly influencing the performance.

The AUC(D,F) results with different r are also stable and great. However, the AUCTDBS
and AUCSNPR results significantly changes for different values of r. As r increases,
AUCTDBS decreases while AUCSNPR increases. Although the changes are significant,
the AUCTDBS and AUCSNPR results are promising. According to the illustration given
in Section 2.4, r determines the regularization strength brought by implicit comparison
learning. The above experimental results reflect that an increase in regularization strength
improves the background suppression ability while impacting the detector’s ability to
detect variational in-scene target spectra. In practical applications, if spectral variability
is strong, a small r could ensure target detectability. On the other hand, when spectral
variability is not obvious, a larger r could be set to achieve better background suppres-
sion performance.
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Figure 8. Visualization of the AUC results (AUC(D,F), AUCTDBS, and AUCSNPR) of the ICLTD for
different parameters (r and t). r is the ratio of the number of prior spectra to in-scene spectral features
in the ICLM. t is a confidence threshold for collecting target candidates.

3.3. Visualization of Feature Distance during Training

According to the theoretical analysis illustrated in Section 2.4, implicit contrastive
learning of in-scene spectra regularizes the optimization and allocates various gradients
for discriminative representations of in-scene spectra. Moreover, the LSSC was designed
to reduce variance among the in-scene target spectra representations. To study how the
ICLM and LSSC influence feature extraction, we computed the feature difference between
in-scene spectra and prior spectra during the training process. The L1 distance was applied
to features extracted by the last FCB. For convenience, the distance between in-scene
targets and priors is denoted d(t,p)−LSSC, and the distance between in-scene backgrounds
and priors is denoted d(b,p)−LSSC. The above two distances are denoted d(t,p) and d(b,p),
respectively, if the LSSC was not applied to the optimization. The distances of all the targets
and backgrounds were averaged for visualization, as exhibited in Figure 9.

Because the parameters of the ICLTD were randomly initialized, d(t,p) and d(b,p) were
small at the beginning. During the optimization process, d(b,p) consistently increased,
and d(t,p) also increased during the first few epochs. Then, d(t,p) started to decline and
eventually stabilized or increased slowly. Because of the different growth paths of d(b,p)
and d(t,p), the optimized detector learns differentiated representations of in-scene spectra.
These results validate that the introduced implicit contrastive learning of in-scene spectra
prevents model collapse and can help the ICLTD distinguish in-scene target spectra from
background spectra. Because the regularization of implicit contrastive learning is based
on inherent data differences, some variational in-scene targets are also suppressed due
to spectral variability, which is the reason why d(b,p) may increase slowly near the end of
the process.

When LSSC was applied to the optimization, d(b,p)−LSSC also consistently increased,
eventually equaling d(b,p), which validates why the LSSC is automatically applied to
the in-scene targets and does not have a significant impact on background suppression.
The trends of d(t,p) and d(t,p)−LSSC exhibited similarities in the initial epochs. However,
as training progressed, d(t,p)−LSSC consistently showed a notably lower value compared
to d(t,p). Furthermore, d(t,p)−LSSC either stabilized or continued to decrease in the later
stages of training. These findings provide evidence that the introduction of the LSSC
effectively reduces feature variations between the prior and in-scene spectra. Consequently,
it mitigates the impact caused by spectral variability.
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Figure 9. L1 feature distance between the features of the prior spectra and in-scene target/background
spectra during training. d(t,p)−LSSC and d(b,p)−LSSC represent the target-prior and background-prior
distances, respectively. The above distances are denoted d(t,p) and d(b,p) for cases when the LSSC was
not applied.

3.4. Comparison with Other Approaches
3.4.1. 3D-ROC Curves

We first analyzed the results of ROC(PD ,PF)
, shown in the third left column of Figure 10.

It is desirable for PD to be higher for a given PF. For all datasets except MT-ABU-B2, the pro-
posed ICLTD has the best ROC(PD ,PF)

results. For the MT-ABU-B2 dataset, the ROC(PD ,PF)

of the ICLTD is competitive. Among the three DL methods that were compared, SFCTD
has the best ROC(PD ,PF)

results, with STTD coming in second place. The ROC(PD ,PF)
results

of HCEM are better and more stable than for ECEM. For all of the HSIs except MT-ABU-B2,
the ROC(PD ,PF)

results of ACE and R-SA2 are inferior compared to those of STTD, STTD,
HCEM, and ECEM. The ROC(PD ,PF)

results of TSCNTD are inferior to the other methods
for nearly all datasets.

The experimental results of ROC(PD ,τ) and ROC(PF ,τ) were analyzed together. These
two curves reflect the target detectability and background suppression of the detector,
respectively, and the difference between them reflects target–background separability. The
desired ROC(PD ,τ) has a higher PD at given τ, while the desired ROC(PF ,τ) has the opposite
behavior. The proposed ICLTD, STTD, and HCEM have desirable ROC(PD ,τ) and ROC(PF ,τ)
results, while the ICLTD makes the best balance between these two curves. For ECEM and
SFCTD, they have great ROC(PD ,τ) results but unsatisfactory ROC(PF ,τ) results. For ACE
and R-SA2, their ROC(PF ,τ) results are desirable but their ROC(PD ,τ) results are not ideal.

The 3D-ROC combines the above three 2D-ROC curves together. For convenience, we
defined a coordinate order (τ, PF, PD) and positioned two planes in 3D coordinate space,
where the green one contains samples with τ = 1 while the gray one contains samples
with τ = 0. As shown in the visualization in Figure 10, each 3D-ROC is from (1, 0, 0) to (0,
1, 1). The ideal 3D-ROC should first increase PD and then PF. The curve should be close
to the green plane when ascending, which reflects great target detectability. Meanwhile,
the desired curve should be close to the gray plane when the value of PF increases, proving
its background suppression ability. For instance, the best curve will connect the following
coordinates with a straight line: (1, 0, 0), (1, 0, 1), (0, 0, 1), and (0, 1, 1). Based on the results,
the curves of the ICLTD are superior to those of the other methods in terms of balancing
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target detectability and background suppression. The curves of the ICLTD first ascend then
maintain high confidence scores. When the PF increases, the curve of the ICLTD is close to
the gray plane. Although the curves of ECEM are closer to the green plane when ascending,
they are far from the gray plane when PF increases. The curves of ACE and R-SA2 are far
from the green plane when ascending.

Figure 10. 3D-ROC curves results for the six MT-ABU datasets. The black lines represent the curves
of the proposed ICLTD.

In summary, the proposed ICLTD has the best overall detection performance, which
balances the performance of distinguishing targets and backgrounds (ROC(PD ,PF)

), target
detectability (ROC(PD ,τ)), and background suppression (ROC(PF ,τ)). HCEM has the second-
best detection performance, followed by SFCTD and STTD. SFCTD is better than STTD in
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terms of distinguishing targets and backgrounds while STTD has better target–background
separability. ECEM is not as good as the above methods but is still better than TSCNTD,
ACE, and R-SA2. TSCNTD, ACE, and R-SA2 do not perform well on multi-temporal
HTD datasets. The unsatisfactory performance of TSCNTD may come from optimization
difficulties resulting from the absence of normalization layers. The inferior performances
of ACE and R-SA2 may result from the variations in the prior spectra.

3.4.2. AUC Values

AUC values can quantitatively reflect the quality of ROC curves. The AUC(D,F) results
are shown in Table 2. The proposed method has the highest AUC(D,F) results for all datasets.
HCEM, SFCTD, and STTD also achieved promising AUC(D,F) results, followed by ECEM,
ACE, and R-SA2. TSCNTD did not perform well in terms of AUC(D,F).

Table 2. AUC(D,F) results for the MT-ABU datasets. The best results are indicated in bold.

Method
Dataset A1 A2 B1 B2 U1 U2

ACE 0.6785 0.8974 0.9909 0.9661 0.8690 0.7125
R-SA2 0.6805 0.8996 0.9912 0.9663 0.8701 0.7147
HCEM 0.9934 1.0000 0.9997 1.0000 0.9980 0.8612
ECEM 0.9048 0.9501 0.9958 1.0000 0.9950 0.8880
SFCTD 0.9697 0.9975 0.9999 1.0000 0.9987 0.9754

TSCNTD 0.2921 0.8768 0.9647 1.0000 0.3980 0.7060
STTD 0.9939 0.9743 0.9998 1.0000 0.9974 0.9263
ICLTD 0.9956 1.0000 0.9999 1.0000 0.9997 0.9993

The AUCTDBS results are shown in Table 3. For all datasets, the proposed ICLTD
maintained a competitive AUCTDBS performance. HCEM also showed a stable and great
AUCTDBS performance. The AUCTDBS results of STTD are the best for the MT-ABU-A1
and MT-ABU-B1 datasets, but are not ideal for the MT-ABU-A2 and MT-ABU-U2 datasets.
Similarly, the AUCTDBS results of ECEM are competitive but not promising for the MT-
ABU-A1 and MT-ABU-B2 datasets. SFCTD is inferior to ICLTD, HCEM, STTD, and ECEM
in terms of AUCTDBS, but superior to ACE, R-SA2, and TSCNTD.

The AUCSNPR results are shown in Table 4. The proposed ICLTD shows the highest
overall AUCSNPR results, followed by STTD. HCEM is the third-best method in terms of
AUCSNPR results, followed by ACE, R-SA2, SFCTD, and ECEM. TSCNTD performed the
worst among all methods.

According to the above results, the confidence differences between targets and back-
grounds of the proposed method were significant for all the datasets from both the ampli-
tude and ratio perspectives. HCEM also performed well from the amplitude perspective
but not as well as the ICLTD in terms of amplitude ratio. The target–background separation
performances of the other approaches were not as stable as those of HCEM and the ICLTD.

Table 3. AUCTDBS results for the MT-ABU datasets. The best results are indicated in bold.

Method
Dataset A1 A2 B1 B2 U1 U2

ACE 0.0064 0.0247 0.0391 0.1023 0.0413 0.0178
R-SA2 0.0065 0.0248 0.0393 0.1024 0.0417 0.0179
HCEM 0.5844 0.6767 0.7185 0.6808 0.6391 0.3264
ECEM 0.1701 0.5862 0.4510 0.1973 0.9081 0.4017
SFCTD 0.0695 0.2473 0.2767 0.2299 0.3570 0.2013

TSCNTD −0.0371 0.0665 0.5022 0.6141 0.0000 0.1172
STTD 0.5906 0.2736 0.9070 0.4578 0.5235 0.1543
ICLTD 0.4417 0.4125 0.8994 0.7838 0.7698 0.5748
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Table 4. AUCSNPR results for the MT-ABU datasets. The best results are indicated in bold.

Method
Dataset A1 A2 B1 B2 U1 U2

ACE 2.449 6.319 10.400 29.094 10.561 5.062
R-SA2 2.474 6.376 10.498 29.267 10.724 5.127
HCEM 21.997 61.046 149.261 591.155 112.825 55.556
ECEM 1.213 2.420 1.852 1.254 10.222 1.731
SFCTD 2.036 3.723 9.439 19.885 7.662 4.285

TSCNTD 0.197 1.715 9.674 20.905 0.606 2.420
STTD 231.164 10.794 538.713 13,189.051 320.844 343.675
ICLTD 409.669 789.488 717.131 2158.172 348.794 471.063

3.4.3. Detection Map Visualization

Detection map visualization can intuitively reflect the saliency of targets and the con-
trast between targets and backgrounds. Here, to show real contrast, the original detection
results of HTD methods (except HCEM and ECEM) were visualized without normalization.
When the maximum values outputted by HCEM and ECEM were larger than 1, their
detection maps were normalized to 0–1 for visualization.

The visualization results are shown in Figure 11. The ICLTD is highly effective in
providing accurate target distribution while suppressing the background spectra, resulting
in optimal target–background contrast. The visualization results of HCEM are the second-
best, whose background suppression performance was slightly worse than that of the
ICLTD. However, its achieved target saliency for the MT-ABU-A2 dataset was even better
than that achieved with the ICLTD. STTD and SFCTD both provided fairly comprehensive
target distributions. STTD showed excellent target–background contrast but more false
alarms. SFCTD presented a slightly lower target–background contrast compared to STTD.
ECEM, ACE, and R-SA showed reasonable performance for certain datasets. However,
they performed poorly for specific datasets, such as the MT-ABU-A1 dataset. According to
the detection map visualization, TSCNTD only performed well for the MT-ABU-B2 dataset.

Figure 11. Detection map comparison for the MT-ABU datasets.
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3.4.4. Inference Time Comparison

The training times of the DL methods were used for comparison because these methods
need to retrain their respective parameters for new in-scene HSIs. However, when there
is a large amount of data, DL-based methods can train models before detecting in-scene
HSIs, just like object detection in RGB images [55]. In that case, these methods only require
a small amount of time (inference time) to complete the detection task.

The consumed times of the ICLTD and the other methods are exhibited in Table 5. We
have also exhibited the inference times of the DL methods for reference. Of the compared
methods, ACE and R-SA2 are the most efficient. HCEM and ECEM take less time than the
DL methods. In terms of DL methods, SFCTD and the ICLTD are more efficient due to their
composition of fully connected layers. On the other hand, TSCNTD consists of multiple 1D
convolution layers, and STTD includes several self-attention modules, resulting in longer
training times compared to SFCTD and the ICLTD. Although the training times of the DL
methods are longer than the time consumed by the classical approaches, their inference
times are very fast. If the trained models can be directly applied to other similar in-scene
HSIs, the efficiency of DL methods will be much higher than non-learning methods.

Table 5. Time consumption (s) of traditional approaches and DL methods on six datasets. ∗ represents
the inference time of the DL methods. The best results are shown in bold.

Method
Dataset A1 A2 B1 B2 U1 U2

ACE 0.784 0.551 0.574 0.752 0.758 0.542
R-SA2 0.872 0.723 0.694 0.475 0.392 0.650
HCEM 14.942 1.374 2.022 5.916 2.734 3.445
ECEM 13.532 3.666 7.418 8.186 14.156 7.778
SFCTD 50.964 4.215 15.513 16.247 47.035 15.475

TSCNTD 90.925 10.716 35.577 37.047 89.884 36.882
STTD 133.413 14.486 53.971 54.563 133.266 54.133
ICLTD 37.193 14.245 21.611 21.457 35.574 22.234

SFCTD ∗ 0.019 0.003 0.007 0.007 0.014 0.004
TSCNTD ∗ 0.169 0.052 0.066 0.063 0.145 0.062

STTD ∗ 3.061 0.281 1.376 1.188 2.883 1.357
ICLTD ∗ 0.018 0.015 0.007 0.008 0.030 0.015

3.5. Ablation Study

The results in this section are used to validate and discuss the effectiveness of the
ICLM and LSSC. The ICLM realizes implicit contrastive learning using in-scene spectra. It
aims to regularize the learning process of classifying few-shot prior spectra by enabling the
model to learn differentiated representations of in-scene spectra, rather than over-fitting
the few-shot prior spectra. According to the analysis in Section 2.4, although the ICLM
changes the input feature distributions, the work of the ICLM relies on sufficient gradient
signals that propagate between the prior spectra and in-scene spectra.

In order to validate the aforementioned analysis and the effectiveness of the LSSC, the
following four experiments were conducted:

1. ICLM removal.
2. Zeroing gradient signals in the ICLM.
3. Replacing the ICLM with the original batch normalization (BN).
4. LSSC removal.

Experiments 1–3 were conducted with the LSSC removed. The first experiment aimed
to validate the effectiveness of the ICLM; the second aimed to validate that the effectiveness
of the ICLM lies in signal transmission rather than changes in feature distribution; and
the third experiment was designed to study the consequences of insufficient gradient
signal transmission. Experiment 4 was conducted to validate the effectiveness of the
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LSSC. The results of these four experiments are denoted ICLTD-w/o-ICLM, ICLTD-ZG,
ICLTD-BN, and ICLTD-w/o-LSSC, respectively.

The visualization results are exhibited in Figure 12. The AUC results are presented
in Tables 6–8. After removing the ICLM, optimization of the ICLTD collapsed and all the
in-scene spectra were considered as targets with higher confidence. The AUC results and
visualization of the ICLTD-w/o-ICLM are poor. The results of Experiment 1 prove the
effectiveness of the ICLM in regularizing the optimization.

Table 6. AUC(D,F) results for the ablation studies using the MT-ABU datasets. The best results are
indicated in bold.

Exp
Dataset A1 A2 B1 B2 U1 U2

ICLTD-w/o-ICLM 0.8983 0.7621 0.9895 1.0000 0.9713 0.4907
ICLTD-ZG 0.7931 0.9891 0.9993 0.9994 0.8453 0.6297
ICLTD-BN 0.9949 1.0000 0.9995 0.9985 0.9867 0.9235

ICLTD-w/o-LSSC 0.9950 1.0000 0.9999 1.0000 0.9989 0.9991
ICLTD 0.9956 1.0000 0.9999 1.0000 0.9997 0.9993

Table 7. AUCTDBS results for the ablation studies using the MT-ABU datasets. The best results are
indicated in bold.

Exp
Dataset A1 A2 B1 B2 U1 U2

ICLTD-w/o-ICLM 0.0000 0.0053 0.0003 0.0011 0.0002 0.0001
ICLTD-ZG 0.2407 0.8372 0.9084 0.9026 0.5237 0.1482
ICLTD-BN 0.6028 0.9214 0.9151 0.6077 0.7296 0.3461

ICLTD-w/o-LSSC 0.1187 0.4267 0.7361 0.4559 0.5215 0.2742
ICLTD 0.4417 0.4125 0.8994 0.7838 0.7698 0.5748

Table 8. AUCSNPR results for the ablation studies using the MT-ABU datasets. The best results are
indicated in bold.

Exp
Dataset A1 A2 B1 B2 U1 U2

ICLTD-w/o-ICLM 1.000 1.005 1.000 1.001 1.002 1.000
ICLTD-ZG 2.524 7.482 12.554 15.076 3.042 1.724
ICLTD-BN 40.127 29.447 47.522 38.923 23.485 30.188

ICLTD-w/o-LSSC 340.796 1000.888 999.948 1605.910 326.152 421.725
ICLTD 408.216 753.550 710.780 1749.182 342.586 465.132

After zeroing the gradient signal transmission in the ICLM, the performance of target–
background separation is better than that of ICLTD-w/o-ICLM, which is reflected by
the visualization and AUCTDBS results. However, the AUC(D,F) and AUCSNPR results
of ICLTD-ZG are unsatisfactory, which means that ICLTD-ZG mistakenly detects many
background samples. The comparison of ICLTD-w/o-ICLTD and ICLTD-ZG validates that
changing the feature distribution with the ICLM could improve the target–background
separation. The comparison of ICLTD-ZG and ICLTD-w/o-LSSC proves that the gradient
transmission by the ICLM is the key to success.

The AUC(D,F) results after replacing the ICLM with the original BN are promising
for all datasets. The target–background separation performance in terms of amplitude
difference was excellent. However, the AUCSNPR results and background suppression
performance of the ICLTD-BN are not as good as those of the ICLTD-w/o-LSSC. Especially
for the MT-ABU-A2, MT-ABU-B1, and MT-ABU-U1 datasets, the ICLTD-BN mistakenly
detected a few background spectra. These results validate that insufficient prior spectral
features for normalization reduce the regularization strength, resulting in unpromising
background suppression performance.
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After removing the LSSC, the completeness of targets in the visualization results
decreased. The AUCTDBS results of the ICLTD-w/o-LSSC also degraded. The performance
comparison between the ICLTD-w/o-LSSC and ICLTD proves the effectiveness of the
LSSC in improving target detectability. It is worth noting that the background suppres-
sion ability of the ICLTD does not decrease significantly with the addition of the LSSC.
Therefore, the LSSC can utilize local spectral similarities to improve target–background
separation performance.

Figure 12. Ablation study results in terms of detection maps visualization. Due to model collapse,
ICLTD-w/o-ICLM considered all the in-scene spectra as targets, resulting in poor contrast of its
visualization results.

4. Conclusions

This paper introduced a DL-based method for HTD that effectively mitigates the
challenge of spectral variability in multi-temporal HSIs. The proposed approach utilizes
only prior spectra for supervised learning and does not rely on pseudo-data generation
for optimization. By introducing implicit contrastive learning between the prior and in-
scene spectra, the optimization process is regularized through a specifically designed
ICLM. A theoretical analysis demonstrated the efficacy of the ICLM, showing that it
successfully transfers differentiated gradient signals from prior spectral features to the
representation of in-scene spectra, leveraging their inherent differences. This allows the
ICLTD to learn discriminative representations of the in-scene spectra, avoiding over-fitting
the prior spectra. Consequently, it is capable of effectively distinguishing variational in-
scene target spectra from background spectra and adapting to the spectral variability in
multi-temporal HSIs. Additionally, the proposed LSSC leverages the spectral similarity
of multi-pixel targets within local neighborhoods to enhance target detectability. The
performance of the proposed method was evaluated using three multi-temporal image sets
obtained from AVIRIS data, which demonstrated its robustness under spectral variability.
A comparison with classical detectors and DL detectors confirmed the superior performance
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of the proposed method in achieving a balance between target detectability and background
suppression. Based on the experimental results, practical recommendations for application
of the ICLTD emphasize the consideration of adjusting the strength of implicit contrast
learning based on the intensity of spectral variations. In future research, exploring how to
better combine implicit contrastive learning with annotation-based supervised learning
from both theoretical and experimental perspectives can enhance the performance of
hyperspectral target detection and expand its application scenarios.
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