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Abstract: The timely, accurate acquisition of geographic spatial information such as the location,
scope, and distribution of built-up areas is of great importance for urban planning, management, and
decision-making. Due to the diversity of target features and the complexity of spatial layouts, the
large-scale mapping of urban built-up areas using high-resolution (HR) satellite imagery still faces
considerable challenges. To address this issue, this study adopted a block-based processing strategy
and constructed a lightweight multilevel feature-fusion (FF) convolutional neural network for the
feature representation and discrimination of built-up areas in HR images. The proposed network
consists of three feature extraction modules composed of lightweight convolutions to extract features
at different levels, which are further fused sequentially through two attention-based FF modules.
Furthermore, to improve the problem of incorrect discrimination and severe jagged boundaries
caused by block-based processing, a majority voting method based on a grid offset is adopted to
achieve a refined extraction of built-up areas. The effectiveness of this method is evaluated using
Gaofen-2 satellite image data covering Shenzhen, China. Compared with several state-of-the-art
algorithms for detecting built-up areas, the proposed method achieves a higher detection accuracy
and preserves better shape integrity and boundary smoothness in the extracted results.

Keywords: built-up area; high resolution; satellite image; CNN

1. Introduction

Built-up areas are the gathering place for human activities. The timely, accurate ac-
cess to the spatial distribution information of built-up areas can provide indispensable
reference and assistance for applications, such as urban planning, construction, manage-
ment, decision-making, and research [1–3]. The wide availability of high-resolution (HR)
satellite data enables the fine-scale mapping of built-up areas [4]. Traditional built-up-area
extraction methods mainly use artificially designed algorithms to extract the spectrum,
texture, and local features of an image and then identify the built-up area by thresholding
the built-up index/saliency map [5–10] or by using a supervised classifier [11]. Built-up
areas are a composite target, covering a large geographical range, and their image features
have an extremely large spatial heterogeneity that makes the design of a feature extraction
(FE) algorithm with strong adaptability and robustness very difficult [4,12]. Thus, these
methods can achieve good detection results for low- and medium-resolution satellite im-
ages or HR images of simple scenes, but their detection performance is often poor when
they are applied to the HR images of large-scale complex scenes [13].

The development of deep learning has brought new opportunities for the recognition
of built-up areas in remote sensing images [14,15]. In the field of computer vision and
pattern recognition, various deep convolutional neural network (CNN) models, such as
VGG-Net [16], GoogleNet [17], ResNet [18], and DenseNet [19], have been developed.
However, these networks were originally designed for the multiclassification problem of
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ordinary images (e.g., 1000 classes in the ImageNet dataset). The extraction of built-up areas
from satellite images is essentially a binary classification problem of built-up areas/non-
built-up areas, requiring targeted networks to achieve efficient processing and accurate
mapping of built-up areas. Under the paradigm of deep learning, two processing strategies
have been developed for extracting built-up areas. The first approach is to consider it
as a segmentation problem [20], and semantic segmentation networks (such as FCN [21]
and U-Net [22]) are used to achieve the pixel-level category labeling of images [23,24].
Wu et al. [25] constructed a network of the U-Net structure for the semantic segmentation
of built-up areas in GF-3 SAR images with a 10 m resolution. Li et al. [26] proposed a dual-
attention-based transformer model for built-up area extraction, and the GF-3 and Sentinel-1
SAR image datasets demonstrated the effectiveness of this method in large-scale built-up
area mapping. To perform pixel-level dense prediction, semantic segmentation networks
based on deep learning require pixel-level labeled data. Accurately creating a sufficient
number of such datasets is often time-consuming, laborious, and even difficult, especially in
complex scenes [27,28]. To alleviate the pressure of these methods on sample requirements,
weakly supervised and unsupervised domain adaptive algorithms have recently been
studied to improve the mapping of built-up areas in optical and SAR images [29,30]. In
addition to the complexity of collecting labeled samples, pixel-based prediction can lead
to high computational costs and salt-and-pepper noises in mapping results, especially for
large-scale HR images.

The other approach is to consider it as a scene-based classification problem [31], where
CNNs are used to distinguish built-up and non-built-up areas through patch- or object-level
classification. Mboga et al. [32] proposed using CNNs to detect informal settlements from
VHR images, but they used sliding windows to learn the context information and category
labels of each central pixel, resulting in a low processing efficiency. Corbane et al. [33]
designed a CNN named GHS-S2Net that contains only four convolutional layers and two
flattened layers for the large-scale built-up area mapping of Sentinel-2 images. However,
the model uses a patch-based method to label the central pixel (similar to pixel-wise
classification). For HR images, a large window size for each pixel is required, which
would lead to numerous redundant calculations. Huang et al. [34] combined deep learning
with object-oriented methods to extract impervious surfaces in HR satellite images. The
spectrum, shape, and CNN features of each segmented object are jointly used to determine
its category. However, due to the effect of image segmentation quality, expressing HR
complex scenes is difficult for image objects. Recently, block-based deep learning methods
have been applied to extract built-up areas from HR images [12,35–37]. An image block
typically contains multiple objects and their spatial distribution patterns. An image block,
which is a basic processing unit, has strong feature representation and discrimination
capabilities, making it very suitable for the mapping of built-up areas in HR images of
large-scale, complex scenes [35]. Particularly, creating block-level labeled samples is easier
and takes less time than pixel-level-labeled samples. Nevertheless, scene-classification-
based methods still face substantial challenges in extracting built-up areas from large-scale
HR and VHR images due to the following main reasons:

(1) With the improvement of spatial resolution and the increase in geographical ranges,
the scene blocks as basic units contain richer object details, have a more complex spatial
layout, and exhibit remarkable scene heterogeneity in different geographical locations.
This approach requires the model to have a strong discriminative ability and adaptability.
(2) The increased spatial resolution means that larger images are processed. For example,
the size of a 1 m resolution image is 100 times that of a 10 m resolution image covering the
same area, which greatly increases the computational complexity of the model. Therefore,
a lightweight deep learning model would be a better choice. (3) Block-based discrimination
often overlooks the spatial relationships between blocks, leading to incorrect discrimination
and severe jagged boundaries in the extracted results. This method requires the recognition
model to consider the contextual information of the block and obtain a complete built-up
area target at the pixel level solely through block-level processing.
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To address the above issues effectively, this study designed a simple but highly ef-
fective model for identifying built-up areas in large-scale HR satellite images. The main
contributions are summarized as follows:

(1) A lightweight multilevel feature-fusion convolutional neural network (LMLFF-
CNN), which utilizes three FE modules composed of lightweight convolutions, is designed
to extract features at different levels. Two attention-based feature-fusion (FF) modules are
sequentially used to fuse features at different levels. The use of this network can effectively
distinguish between image blocks in built-up and non-built-up areas, and it has a lower
computational consumption.

(2) A block-level framework for extracting built-up areas considering contextual
information is proposed. This framework uses a set of offset grids to partition images and
obtain spatially overlapping image blocks. By integrating classification labels of multiple
contextual blocks, a pixel-level mapping of built-up areas is achieved.

(3) Based on the Gaofen-2 satellite images, a block-level sample set of built-up and
non-built-up areas, which will be publicly available online with the publication of the paper,
is constructed. To our knowledge, proprietary datasets suitable for identifying built-up
areas using HR satellite imagery are currently lacking. This paper will be a beneficial
supplement to publicly available remote sensing datasets.

(4) The proposed method is used to extract built-up areas from Gaofen-2 satellite
images of the entire Shenzhen City. A 1 m resolution distribution map of built-up areas
is obtained, demonstrating the potential and advantages of the proposed method in the
large-scale, HR mapping of built-up areas.

2. Methods

Built-up areas are large-scale artificial geographic objects that present complex, di-
verse scenes in HR satellite images. Thus, pixel-based or object-oriented processing is
not conducive to the feature representation of built-up areas. In this study, a block-based
processing strategy was adopted, and scene classification methods were utilized to achieve
the feature representation and discrimination of built-up areas. Figure 1 shows the over-
all workflow of this method, which mainly consists of three key components: first, the
input image is divided into image blocks with a certain overlap ratio through a set of
multidirectional, multistep shifting grids. Then, an LMLFF-CNN model is constructed to
achieve a binary classification of image blocks. Finally, the refined pixel-level built-up area
extraction results are obtained by integrating multiple preliminary prediction maps based
on block classification.

2.1. Image Partitioning Using Multi-Directional and Multi-Step Offset Grids

Block-based extraction strategies typically use a regular grid to partition images to
produce non-overlapping image blocks. This partitioning method may split the spatial
context of the target, resulting in incorrect discrimination and severe jagged boundaries
in the extraction results, especially when the block size is large. To alleviate this problem,
the input image is divided several times through a set of multidirectional, multistep offset
grids to generate spatially overlapping image blocks, which are then input into the trained
LMLFF-Net model to determine their category labels.

To illustrate this process intuitively, assuming that the input image is divided into a
series of image blocks of size L × L using a predefined regular grid, Figure 2 shows the
result of moving the original grid to the right and down by L/2. The size of the generated
image block is reduced to 1/4 of the original size. Each newly generated block is covered
by three original image blocks, which provide additional contextual information for that
block. The final category of the block can be obtained by integrating the contextual labels
of the original blocks that cover it. In this way, compared with directly dividing into
smaller blocks for classification, the accuracy and computational efficiency of built-up area
mapping can be greatly improved, and the jagged boundaries can be substantially refined.
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For this overlapping partitioning strategy, the direction and step size of the grid offset
are two key parameters that determine the position and ratio of overlap between image
blocks, respectively. As described in Section 4.2, the influence of these two parameters on
the extraction results was explored in detail through experiments.

2.2. LMLFF-CNN Model

In this study, a CNN-based method was used to obtain the category labels for each im-
age block. Instead of using existing CNN models, an LMLFF-CNN model was constructed
to characterize the distinctive features of built-up areas in HR images more effectively,
thereby achieving more robust and efficient discrimination. In the design process of the
model, considering that the discrimination between built and non-built blocks is a binary
classification problem, a lightweight network is a more ideal choice. It can reduce the
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parameter size of the model, thereby lowering the requirement for sample size and the
consumption of computational costs for large-scale image processing. Furthermore, to
improve the discriminant performance of the model, the multiscale features of the built-up
areas, which play a crucial role in their correct recognition, are fully utilized. Therefore,
unlike commonly used CNN models that mainly utilize high-level abstract features from
the end outputs of the network, a multiscale FF module is designed to fuse the low-level
details and high-level semantic features of built-up areas, which can provide valuable
information for distinguishing built-up areas.

The proposed LMLFF-CNN has a lightweight network architecture with several
typical characteristics: (1) the structure is simple, and its key components only include
three FE modules and two attention-based FF modules. (2) The FE module adopts a dual-
branch structure to reduce the depth of the network, and each branch uses a depthwise
separable convolution (DSC) and 1 × 1 convolution to reduce the number of parameters
and computational burden of the network. (3) At the end of the network, instead of the
commonly used fully connected layer, a global average pooling layer is adopted to reduce
the number of parameters and computational costs further.

Specifically, Figure 1 shows that the input image first passes through a 3 × 3 convolu-
tional layer and a 2 × 2 maximum pooling layer to extract the initial low-level features and
then enters the FE and FF modules.

(1) Feature Extraction Module

Each FE module (Figure 3) contains two branches composed of different convolutional
layers to obtain features of different scales and types. The final output feature maps of
the two branches are concatenated and then enter a 2 × 2 max-pooling layer. The lower
branch only contains a 1 × 1 convolutional layer that is used to undertake the low-level
features of the previous convolutional module/layer. The upper branch consists of three
(including one 1 × 1 and two 3 × 3) DSC [38] layers that have fewer parameters but a higher
computational efficiency than the standard convolution. Here, the 1 × 1 DSC layer is used
to compress the number of channels of the feature and reduce the amount of calculation
for subsequent operations. The first 3 × 3 DSC layer is used to obtain the initial semantic
information, whereas the second 3 × 3 DSC layer is used to enhance and obtain higher-level
semantic features. In addition, all convolutional and DSC layers are followed by batch
normalization and a rectified linear unit.
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(2) Multilevel Feature-Fusion Module

Existing deep-learning-based methods mainly use the high-level semantic features
output by the full connection (FC) layer at the end of CNNs [39]. However, the built-up
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area has multiscale characteristics. In addition to the high-level semantic information, the
structure and details of the middle and low levels play a very important role in the dis-
crimination of built-up areas. In our network, the three FE modules above output different
levels of features that can provide complementary information for the discrimination of
built-up areas. To make full use of these features, two FF modules are designed to integrate
this information with different degrees of abstraction. FF is conducted module by module.
The structure of the FF module is shown in Figure 4. Its design is inspired by the human
visual attention mechanism, which enables the human visual system to focus on useful
information in the scene consciously while suppressing unnecessary information. The
attention-based FF module can achieve multilevel FF of different channels. Specifically, the
input low-level feature maps (Flow) is first transformed to generate a weight vector that is
then fused with the input high-level feature maps (Fhigh) by multiplication. This process
can be expressed as follows:

Ff used = Fhigh × T(Flow), (1)

where Ff used is the fused feature maps; T is a composite transformation, including four
consecutive operations: a 1 × 1 convolution, a global max-pooling, and an FC, followed by
a sigmoid activation function.

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 4. Feature-fusion module. 

2.3. Integrated Prediction through Majority Voting 
For each input image block, using the trained LMLFF-CNN, a label can be obtained: 

1 or 0, representing the built class or non-built class, respectively. If all pixels contained in 
each grid cell are assigned the same label value, each grid division of the original image 
generates a binary map similar to a mosaic puzzle through block-level classification. To 
further improve the recognition error and rough jagged boundaries caused by block-
based discrimination, this study used the said set of offset grids to divide the original 
image multiple times to generate image blocks with a certain degree of spatial overlap. By 
integrating the classification results of these image blocks, a refined extraction of built-up 
areas can be achieved. Specifically, each pixel is covered by image blocks from different 
grids. These blocks may have different labels, providing contextual label information for 
the discrimination of that pixel. By conducting a majority vote on these labels, the final 
label value for that pixel is determined. In this way, the extraction results of built-up areas 
can be greatly improved by utilizing contextual information, and their boundaries can be 
remarkably refined. 

3. Results 
3.1. Study Area and Dataset  

The selected study area is in Shenzhen, southern China’s Pearl River Delta region 
(Figure 5). As a window city for China’s reform and opening up, Shenzhen has rapidly 
developed from a small fishing village in the 1980s to a modern metropolis, creating a 
world-renowned “Shenzhen speed” and is known as the “Silicon Valley of China”. It is 
also one of the four central cities in the Guangdong–Hong Kong–Macao Greater Bay Area. 
As of 2022, the city had nine districts under its jurisdiction, with a total area of 1997.47 
square kilometers and a built-up area of 927.96 square kilometers. The terrain of Shenzhen 
is high in the southeast and low in the northwest; most of it is low hilly areas, interspersed 
with gentle terraces; and the western part is a coastal plain.  

Figure 4. Feature-fusion module.

In Section 4.1, the effectiveness and advantages of the FF module is discussed through
ablation experiments.

2.3. Integrated Prediction through Majority Voting

For each input image block, using the trained LMLFF-CNN, a label can be obtained:
1 or 0, representing the built class or non-built class, respectively. If all pixels contained in
each grid cell are assigned the same label value, each grid division of the original image
generates a binary map similar to a mosaic puzzle through block-level classification. To
further improve the recognition error and rough jagged boundaries caused by block-based
discrimination, this study used the said set of offset grids to divide the original image
multiple times to generate image blocks with a certain degree of spatial overlap. By
integrating the classification results of these image blocks, a refined extraction of built-up
areas can be achieved. Specifically, each pixel is covered by image blocks from different
grids. These blocks may have different labels, providing contextual label information for
the discrimination of that pixel. By conducting a majority vote on these labels, the final
label value for that pixel is determined. In this way, the extraction results of built-up areas
can be greatly improved by utilizing contextual information, and their boundaries can be
remarkably refined.
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3. Results
3.1. Study Area and Dataset

The selected study area is in Shenzhen, southern China’s Pearl River Delta region
(Figure 5). As a window city for China’s reform and opening up, Shenzhen has rapidly
developed from a small fishing village in the 1980s to a modern metropolis, creating a
world-renowned “Shenzhen speed” and is known as the “Silicon Valley of China”. It is also
one of the four central cities in the Guangdong–Hong Kong–Macao Greater Bay Area. As
of 2022, the city had nine districts under its jurisdiction, with a total area of 1997.47 square
kilometers and a built-up area of 927.96 square kilometers. The terrain of Shenzhen is high
in the southeast and low in the northwest; most of it is low hilly areas, interspersed with
gentle terraces; and the western part is a coastal plain.
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To verify the effectiveness of the proposed method, an evaluation dataset was con-
structed using Gaofen-2 satellite images covering the study area. The Gaofen-2 satellite was
successfully launched on 19 August 2014. It is China’s first civilian optical remote sensing
satellite with a spatial resolution better than 1 m (nadir: 0.8 m), equipped with two HR 1 m
panchromatic and 4 m multispectral cameras. The used images include three channels
of RGB with panchromatic sharpening and a spatial resolution of 1 m. The training set
consists of 9808 sample images, with 4904 samples in the built-up and non-built-up areas,
and each sample image has a size of 112 × 112. Figure 6 shows some sample images
from these two classes, each containing scenes that are as diverse as possible. The test set
includes satellite images of five sub-regions in Shenzhen, as shown in Figure 5, with sizes of
8960 × 7840 (Test 1), 10,080 × 8960 (Test 2), 8400 × 8400 (Test 3), 8960 × 8960 (Test 4), and
8400 × 8400 (Test 5). The basic processing of these data in the study area was completed
through PIE and ArcGIS.
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3.2. Experimental Setup

The hardware platform for the experiment was a Dell workstation equipped with an
Intel XeonE5-2620 V3 CPU, 32 GB of memory, and NVIDIA Quadro K620 graphics card.
The software platforms included a Windows operating system, Python 3.6, TensorFlow 1.4,
and Keras. In the training phase, the binary cross-entropy loss function and the Adam
optimizer were selected to train the network. The initial learning rate of the network
was set to 0.01, and in the following training, the learning rate was reduced to 10% for
every 30 generations of training. Under this training strategy, the network was trained for
100 generations.

3.3. Evaluation Metrics

To assess the performance of this approach quantitatively, the experiment employed
four widely used metrics to evaluate the predictive performance of the model. These
metrics include precision (P), recall (R), F1-score, and intersection over union (IoU). The
definitions of these metrics are as follows:

P =
TP

TP + FP
, (2)

R =
TP

TP + FN
, (3)

F1 − Score =
2PR

P + R
, (4)

IoU =
TP

TP + FP + FN
=

PR
P + R − PR

(5)
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where TP and FP represent the number of pixels correctly and incorrectly labeled as built-up
areas, respectively, whereas FN refers to the number of pixels incorrectly labeled as non-
built-up areas. The F1-Score is the harmonic mean of P and R, whereas IoU measures the
ratio of the intersection of predicted and actual built-up area pixels to their union. F1-Score
and IoU are comprehensive indicators that consider correctness (P) and completeness (R),
providing a more holistic evaluation of the performance in built-up area detection.

3.4. Experimental Results and Analysis
3.4.1. Performance of the Proposed LMLFF-CNN

Based on the previously mentioned data sets and evaluation metrics, the proposed
LMLFF-CNN model was quantitatively evaluated. Moreover, four state-of-the-art CNN
models, including Inception [40], Mobilenet [38], ShuffleNet [41], and EfficientNet [42]
with lightweight designs, were tested for performance comparison. Table 1 presents the
quantitative evaluation results of these models. On all test images, the proposed LMLFF-
CNN obtains the highest F1-Score and IoU value among these models. Considering the
precision and completeness of built-up area detection, the proposed network demonstrates
notably superior recognition capabilities.

Table 1. Accuracy evaluation results of different CNN models.

Test Image Model P R F1-Score IoU

1

InceptionV3 0.7461 0.9740 0.8450 0.7316
MobileNet 0.8986 0.8747 0.8865 0.7962
ShuffleNetV2 0.8854 0.8973 0.8913 0.8039
EfficientNet-B0 0.8865 0.8957 0.8911 0.8036
LMLFF-CNN 0.8930 0.8995 0.8962 0.8120

2

InceptionV3 0.7544 0.9686 0.8481 0.7364
MobileNet 0.8952 0.9103 0.9027 0.8226
ShuffleNetV2 0.9016 0.8831 0.8923 0.8056
EfficientNet-B0 0.9097 0.8807 0.8949 0.8099
LMLFF-CNN 0.9039 0.9106 0.9072 0.8302

3

InceptionV3 0.7946 0.9603 0.8696 0.7483
MobileNet 0.8468 0.9153 0.8797 0.7852
ShuffleNetV2 0.8417 0.9110 0.8750 0.7778
EfficientNet-B0 0.8731 0.8848 0.8789 0.7840
LMLFF-CNN 0.8657 0.9171 0.8906 0.8029

4

InceptionV3 0.7754 0.9708 0.8623 0.7565
MobileNet 0.8863 0.8622 0.8741 0.7764
ShuffleNetV2 0.8840 0.8556 0.8696 0.7692
EfficientNet-B0 0.9030 0.8139 0.8562 0.7485
LMLFF-CNN 0.8825 0.8714 0.8769 0.7808

5

InceptionV3 0.7295 0.9800 0.8364 0.7488
MobileNet 0.9147 0.8710 0.8923 0.8056
ShuffleNetV2 0.9023 0.8825 0.8923 0.8055
EfficientNet-B0 0.9174 0.8668 0.8914 0.8041
LMLFF-CNN 0.9048 0.8920 0.8984 0.8155

In addition to its accuracy advantage, the proposed LMLFF-CNN is a lightweight
network. Table 2 compares these models in terms of parameter quantity and computational
power. LMLFF-CNN only contains 0.18 G of parameters and 0.068 M of Flops, demonstrat-
ing substantially fewer parameters and higher computational efficiency compared with the
four other networks. This result is attributed to the simple model structure of LMLFF-CNN,
whose key components only include three FE modules and two FF modules. The use of a
series of lightweight techniques such as a dual-branch structure, DSC, and global average
pooling further reduces the number of parameters and computational burden.
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Table 2. Comparison of model parameters and flops.

Model Params (G) Flops (M)

InceptionV3 3.51 0.102
MobileNet 2.24 0.583
ShuffleNetV2 5.015 0.957
EfficientNet-B0 5.288 0.705
LMLFF-Net 0.18 0.068

Furthermore, taking the Test 1 image (size: 8960 × 7840) as an example, the prediction
time of these models are shown in Table 3. For the prediction of the built-up area in
this image, the proposed LMLFF-CNN only takes 42.2 s, which is much less than the
computational time of other models.

Table 3. Comparison of prediction time for different models.

Model Time (s)

InceptionV3 96.7
MobileNet 208.3
ShuffleNetV2 159.6
EfficientNet-B0 241
LMLFF-Net 42.2

3.4.2. Integrated Prediction through Majority Voting

Although grid blocks, as basic processing units, are beneficial for the feature represen-
tation and discrimination of built-up areas in complex scenes, traditional single-grid-based
methods do not consider the contextual information of the target when splitting images.
This limitation not only increases the probability of erroneous discrimination but also leads
to evident jagged boundaries, especially when the size of the grid cells is large. This study
achieved multiple partitions of the test image by offsetting the grid horizontally and verti-
cally in multiple steps. Using the proposed LMLFF-CNN, the image blocks generated by
each grid partition are classified, and a series of preliminary prediction results are obtained.
Subsequently, through the majority voting method, the final refined extraction result is
generated. Figure 7 presents the accuracy evaluation results of each test image using
this strategy. Compared with prediction methods based on a single grid partition, voting
methods based on multiple grids achieve varying degrees of performance improvement
in terms of evaluation metrics. For example, for test image 1, the F1-score increases from
0.8962 to 0.9170, and the IoU value increases from 0.8120 to 0.8468, representing increases
of 2.08% and 3.48%, respectively. Similarly, consistent performance improvements can be
observed on other test images. This outcome is primarily attributed to the efficacy of this
integrated decision method in leveraging label information from contextual image blocks,
thereby augmenting the robustness of discrimination.

The proposed method can achieve superior performance in the extraction of built-up
areas, primarily due to two key techniques: the LMLFF-CNN model and majority voting.
To further understand their performances in the extraction of built-up areas, Figure 8 shows
a percentage stacked bar chart in terms of F1 score and IoU, showing how much they
contribute to accuracy. In the proposed method, the LMLFF-CNN model plays a crucial
role, whereas majority voting contributes less than 5% to accuracy. Nevertheless, majority
voting remains important in the proposed methods.

To illustrate the advantages of this integrated discrimination method more intuitively,
Figure 9 takes the Test 2 image as an example to show the extraction results using the
single-grid method and the multigrid-based voting method. Compared with the commonly
used single-grid division method, the majority voting method based on multigrid division
can remarkably improve the detection results of built-up areas, resulting in better shape
integrity and boundary smoothness.
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3.4.3. Comparison with State-of-the-Art Built-Up Area Detection Methods

To evaluate the overall performance of the proposed method in the task of extracting
built-up areas, several representative built-up area extraction methods were also tested
on the same dataset to compare their performance differences. The compared methods
include MSTSD [7], GLCM + SVM, LMB-CNN [41], and GHS-S2Net [37]. MSTSD is a
pixel-based unsupervised method that utilizes multiscale textures and spatial dependencies
to construct saliency maps of built-up areas; then, it segments built-up areas through
Ostu thresholding. GLCM+SVM adopts a block-based supervised method, which uses the
grayscale co-occurrence matrix to measure the texture features of built-up areas in image
blocks and then inputs them into the SVM classifier to distinguish between built-up and
non-built-up areas. Both methods are traditional methods based on manually designed
features. LMB-CNN and GHS-S2Net are deep-learning-based methods. In the LMB-CNN
method, a regular grid is used to partition images to generate image blocks, and then
LMB-CNN is used for the block-level feature representation and discrimination of built-up
areas. GHS-S2Net is also based on CNN, and it uses a sliding-window-based method for
each pixel to predict the category of the center pixel.

Figure 10 shows the extraction results obtained using these methods separately. The
results obtained using the proposed method are generally closer to the actual situation of
the built-up area and maintain better shape integrity. The results of the MSTSD method
have a large number of missed detections, which makes the extracted built-up areas
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appear extremely incomplete, whereas the GLCM+SVM method has a more evident false
detection phenomenon, resulting in a large number of redundant detections. Compared
with these two classic methods, the detection performance of the LMB-CNN and GHS-
S2Net methods is greatly improved, but the resulting map contains a large amount of
salt-and-pepper noise.
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Figure 10. Detection results of built-up areas using different methods.

The accuracy statistics of the quantitative evaluation of these methods are shown in
Table 4. According to the evaluation indicators, deep-learning-based methods obtain higher
F1-score and IoU values than traditional manually designed feature-based methods. This
outcome indicates a better balance between accuracy and completeness in extracting built-
up areas and a higher consistency between the extraction results and the actual situation.
The proposed method achieves the highest F1-score and IoU values for all test images, with
only slight fluctuations in different test areas. Especially in Region 3, the scene is extremely
complex, but our method still achieves stable performance with an F1-score of 0.9086 and
an IoU value of 0.8326.

Table 4. Comparison of detection accuracies of built-up areas using different methods.

Test Image Method P R F1-Score IoU

1

MSTSD 0.8938 0.8171 0.8537 0.7448
GLCM + SVM 0.7180 0.9296 0.8102 0.6810

LMB-CNN 0.8974 0.8922 0.8948 0.8096
GHS-S2Net 0.9182 0.8747 0.8959 0.8115

Proposed (LMLFF CNN + Majority Voting) 0.9101 0.9241 0.9170 0.8468

2

MSTSD 0.8401 0.8033 0.8213 0.6968
GLCM + SVM 0.6576 0.9814 0.7875 0.6495

LMB-CNN 0.8988 0.8880 0.8933 0.8072
GHS-S2Net 0.8933 0.9039 0.8986 0.8158

Proposed (LMLFF CNN + Majority Voting) 0.9169 0.9301 0.9235 0.8578

3

MSTSD 0.6940 0.7848 0.7366 0.5830
GLCM + SVM 0.5195 0.9287 0.6663 0.4996

LMB-CNN 0.8110 0.9244 0.8640 0.7606
GHS-S2Net 0.7838 0.9327 0.8518 0.7419

Proposed (LMLFF CNN + Majority Voting) 0.8844 0.9342 0.9086 0.8326

4

MSTSD 0.8977 0.5232 0.6611 0.4938
GLCM + SVM 0.6471 0.9043 0.7544 0.6056

LMB-CNN 0.8522 0.8693 0.8607 0.7555
GHS-S2Net 0.7991 0.8970 0.8452 0.7320

Proposed (LMLFF CNN + Majority Voting) 0.8985 0.8951 0.8968 0.8129
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Table 4. Cont.

Test Image Method P R F1-Score IoU

5

MSTSD 0.9130 0.6545 0.7625 0.6161
GLCM + SVM 0.7527 0.8530 0.7997 0.6663

LMB-CNN 0.8650 0.9278 0.8953 0.8105
GHS-S2Net 0.8812 0.9038 0.8923 0.8056

Proposed (LMLFF CNN + Majority Voting) 0.9182 0.9111 0.9146 0.8427

4. Discussion
4.1. Ablation Study on FF Module

In the proposed LMLFF-CNN, the FF module can integrate different levels of features
for built-up area discrimination. To evaluate the effectiveness of the module, the network
prediction performance without the FF module was further tested. In Table 5, the results of
the ablation experiment indicate that the addition of the FF module substantially improves
the predictive performance of the model for each test area. Especially in test image 4, the
performance improvement is most remarkable, with F1 scores increasing from 0.7976 to
0.8769 and IoU increasing from 0.6634 to 0.7808. This result indicates the effectiveness
of the FF module. Furthermore, the FF module substantially improved the P of built-up
area discrimination, achieving a balance between P and R. This result is attributed to the
module’s ability to effectively integrate the multilevel convolutional features for a more
accurate discrimination between built-up and non-built-up areas.

Table 5. Results of ablation experiment on FF module.

Test Image Models P R F1-Score IoU

1
With FF 0.8930 0.8995 0.8962 0.8120
Without FF 0.8007 0.9812 0.8818 0.7886

2
With FF 0.9039 0.9106 0.9072 0.8302
Without FF 0.8179 0.9671 0.8862 0.7958

3
With FF 0.8657 0.9171 0.8906 0.8029
Without FF 0.7853 0.9647 0.8658 0.7634

4
With FF 0.8825 0.8714 0.8769 0.7808
Without FF 0.6733 0.9782 0.7976 0.6634

5
With FF 0.9048 0.8920 0.8984 0.8155
Without FF 0.7943 0.9701 0.8734 0.7754

4.2. Effect of Grid Offset Parameters on Extraction Results

This study used a grid-offset-based method to generate image blocks with a certain
overlap rate, which provides rich contextual information for the final discrimination of
built-up areas. It not only improved the accuracy of built-up area recognition but also
refined the severely jagged boundaries of the extracted results. Furthermore, taking a test
image as an example, experiments were conducted on different grid offset strategies to
evaluate the effect of their two parameters, namely, direction and step size, on the final
extraction results. The offset directions included horizontal (moving to the right) and
vertical (moving down). In each direction, the offset steps were 1/2 L (56 pixels), 1/4 L
(28 pixels), and 1/8 L (14 pixels), where L = 112 pixels is the length of the original grid cell;
correspondingly, the number of offsets required were 2, 4, and 8, respectively.

Figure 11 shows the overall performance of the built-up area detection using offset
grids with different directions and step sizes on the test data. As the offset step size
decreases, the F1 score and IoU value show a similar trend of first increasing and then
stabilizing. Furthermore, adopting grids that integrate the horizontal and vertical di-
rections achieves superior performance compared with using a single direction because
multidirectional, multistep integration methods can more effectively utilize the contextual
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information of objects. In addition, although smaller offset step sizes can result in a higher
resolution of the extraction results, the use of more offset grids means greater computa-
tional consumption. Considering accuracy and computation time, 1/4 L (28 pixels) or
1/8 L (14 pixels) was taken as the offset step size for this study. For image data of other
resolutions, this parameter can be adjusted accordingly.
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4.3. Generation of Urban-Scale Built-Up Area Maps with a Resolution of 1 m

The distribution map of built-up areas at the urban scale is valuable foundational geo-
graphic data for urban planning, management, construction, and research. To demonstrate
the feasibility of the proposed method in large-scale, HR mapping of built-up areas, it was
further applied to the extraction of built-up areas from Gaofen-2 satellite images covering
the entire Shenzhen City. The image data used included 90,698 × 46,444 pixels, occupying
31.3 G of memory. Considering that our computer could directly process such large image
data, the original data were first split into five sub images, which were then fed into our
model for prediction. Finally, the extracted results from these sub images were combined
to obtain a distribution map of the entire city’s built-up areas. Figure 12 shows the urban
built-up area map of Shenzhen, with a spatial resolution of 1 m. Compared with commonly
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used mapping products based on Landsat or Sentinel data, it has a higher spatial resolution
and contains richer details. According to the quantitative evaluation results of the five test
areas described in Section 3, their average F1 score and IoU value are 0.9121 and 0.8386,
respectively. Compared with previous similar studies [12], this result also demonstrates
superior performance in the accuracy and shape integrity of urban built-up area detection.
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5. Conclusions

Urban built-up areas are large-scale composite object classes that exhibit remarkable
spatial heterogeneity and scene complexity in their characteristics. Currently, the mapping
of built-up areas using HR satellite imagery still faces considerable challenges. This study
adopted a block-based image processing strategy and constructed an LMLFF-CNN model
for the feature representation and discrimination of built-up areas in HR images. Further-
more, to improve the problem of incorrect discrimination and severe jagged boundaries
caused by block-based processing, a majority voting method based on a grid offset was
adopted to achieve a refined extraction of built-up areas. The Gaofen-2 satellite images
covering Shenzhen, China, were used to evaluate the performance of the proposed method
experimentally. The main findings are as follows: (1) the proposed LMLFF-CNN model has
fewer parameters and computational power than the classical CNN model but achieves a
higher discrimination accuracy. (2) The integrated discrimination method based on grid
offset can effectively utilize block-level spatial contextual information and considerably
improve the accuracy of built-up area detection and the smoothness of target boundaries.
(3) The proposed built-up area detection method achieved good experimental results in
five selected test areas, with F1 scores of 0.9170, 0.9235, 0.9086, 0.8968, and 0.9146, and IoU
of 0.8468, 0.8578, 0.8326, 0.8129, and 0.8427, respectively. Compared with the current repre-
sentative built-up area extraction algorithm, it demonstrated a higher recognition accuracy
and maintains better shape integrity in the extraction results. (4) The proposed method was
used to generate a 1 m resolution distribution map of built-up areas throughout Shenzhen,
demonstrating its feasibility in large-scale HR mapping of built-up areas.

In the future, image data from more regions and sensors will be utilized to evaluate
the performance of the proposed method. In addition, how to achieve large-scale, mul-
tiresolution urban built-up area mapping through the transfer learning of cross-regional or
sensor data will be explored. In addition to satellite imagery, the processing and mapping
of underwater images [43,44] are currently a promising research field. Considering the
unique features of underwater images, including challenges related to lighting conditions,



Remote Sens. 2024, 16, 716 18 of 19

environmental factors, and unique features of underwater scenes, whether the proposed
method can be applied to underwater images for object detection and mapping will be
another research focus.
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