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Abstract: Accurate monitoring of crop drought thresholds at different growth periods is crucial
for drought monitoring. In this study, the canopy temperature (Tc) of winter wheat (‘Weilong
169’ variety) during the three main growth periods was extracted from high-resolution thermal
and multispectral images taken by a complete unmanned aerial vehicle (UAV) system. Canopy-
air temperature difference (∆T) and statistic Crop Water Stress Index (CWSIsi) indicators were
constructed based on Tc. Combined experiment data from the field and drought thresholds for the
∆T and CWSIsi indicators for different drought levels at three main growth periods were monitored.
The results showed a strong correlation between the Tc extracted using the NDVI-OTSU method and
ground-truth temperature, with an R2 value of 0.94. The CWSIsi was more stable than the ∆T index in
monitoring the drought level affecting winter wheat. The threshold ranges of the CWSIsi for different
drought levels of winter wheat at three main growth periods were as follows: the jointing–heading
period, where the threshold ranges for normal, mild drought, moderate drought, and severe drought
are <0.30, 0.30–0.42, 0.42–0.48, and >0.48, respectively; the heading–filling period, where the threshold
ranges for normal, and mild, moderate, and severe drought are <0.33, 0.33–0.47, 0.44–0.53, and >0.53,
respectively; and the filling–maturation period, where the threshold ranges for normal, mild drought,
moderate drought, and severe drought are <0.41, 0.41–0.54, 0.54–0.59, and >0.59, respectively. The
UAV thermal threshold method system can improve the accuracy of crop drought monitoring and
has considerable potential in crop drought disaster identification.

Keywords: drought levels; UAV thermal; thresholds; CWSIsi; yield; winter wheat

1. Introduction

As one of the most destructive natural disasters, agricultural drought has a consid-
erable impact on crop growth and yield [1–4]. Drought intensity is likely to increase in
many regions in the 21st century because of global climate change and increased water
demand [5]. Meanwhile, population and socioeconomic growth has been forecast to double
food demand by 2050 [6–10]. Therefore, accurate monitoring of droughts and their impacts
on agricultural land is crucial to protect crop yields. Current indicators for characterizing
crop drought mainly include the Standardized Precipitation Index (SPI) [11,12], the Stan-
dardized Soil Moisture Index (SSI) [13], and the Normalized Difference Vegetation Index
(NDVI) [14,15]. As a key aspect of drought indicator research, crop canopy temperature
(Tc), which characterizes crop physiological changes [16–20], is a rapid response variable
for monitoring crop drought compared with other indicators [21,22].
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There are three main methods for agricultural drought monitoring [23,24]. The tra-
ditional agricultural drought monitoring method is point-scale site monitoring. Its appli-
cability at the regional scale mainly depends on the density and spatial distribution of
ground stations [25,26]. This limits the application of data results at the regional scale,
and it is difficult to reflect the spatial distribution of drought conditions [27,28]. As a
regional-scale monitoring method, satellite remote sensing technology has the advantages
of non-destructiveness and low human input [29,30]. It has been widely studied by re-
searchers and applied to crop drought monitoring [31–39]. Gohar Ghazaryan et al. [40]
used time-series data from optical and synthetic aperture radar satellites to evaluate crop
conditions and drought impacts at the field spatial scale. Maida Ashraf et al. [41] used
satellite remote sensing methods to obtain SPI, Reconnaissance Drought Index (RDI), and
Rainfall Deciles (DI) indicators. They then combined MODIS vegetation indices (NDVI
and EVI) and land surface temperature (LST) data to evaluate the impact of tempera-
ture and rainfall on drought conditions in Sindh Province, Pakistan, from 2000 to 2018.
Liu et al. [37] explored the potential of sun-induced chlorophyll fluorescence (SIF) in
drought detection and monitoring. It was concluded that SIF is more sensitive to drought
than the conventional vegetation indexes (NDVI, EVI, modified soil-adjusted vegetation
index (MSAVI2), and near-infrared reflectance of vegetation (NIRV)), and the drought index
based on SIF can be effectively used for drought monitoring. However, traditional remote
sensing methods are limited by spatial and temporal resolution and, therefore, are not
suitable for obtaining agricultural information at high frequency [42,43]. Thick cloud cover
is another major challenge in applying satellite remote sensing methods to agricultural
monitoring [44]. In recent years, unmanned aerial vehicle (UAV) remote sensing has been
widely used to acquire agricultural information because it is flexible, efficient, convenient,
and low-cost [45–51]. Pádua et al. [52] used drones equipped with RGB, multispectral, and
thermal infrared cameras to establish a water stress index for vineyards to monitor the
growth status of grapes. Zhou et al. [53] extracted seven image features to quantify the wilt-
ing of the soybean canopy under drought based on visible light, thermal, and multispectral
images; UAV thermal remote sensing demonstrated potential to select drought-tolerant
soybean genotypes. Qin et al. [54] used the Tc extracted from UAV thermal images and
combined it with hierarchical cluster analysis (HCA) to evaluate the drought resistance of
different wheat varieties. However, contemporary UAV thermal technology has limited
stitching accuracy, and requires complex preprocessing. To date, there has been relatively
little research on the UAV monitoring of crop drought, focusing on drought thresholds.

This study was based on a winter wheat field moisture control experiment, and the
research aims were as follows: (1) to use the NDVI-OTSU method to extract Tc, providing a
method reference for the UAV thermal drought monitoring research of winter wheat; (2) to
evaluate the performance of monitoring different drought levels affecting winter wheat
using the ∆T and CWSIsi indicators and conduct precise drought threshold monitoring at
different drought levels during different growth periods in winter wheat; and (3) to explore
the performance of ∆T and CWSIsi indicators in evaluating drought disasters by combining
winter wheat yield data.

2. Materials and Methods
2.1. Study Area

The study was conducted in the Donglei Irrigation District (Phase II) (109◦10′–110◦10′E,
34◦41′–35◦00′N), which is the main grain-producing area in Northwestern China (Figure 1).
The annual average rainfall (519–552 mm) in this area is far less than the annual average
evaporation (1700~2000 mm). Rainfall is insufficient to meet the needs of crop growth.
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The experimental plot (Figure 1) was located on an open, flat, and uniformly tex-
tured field that could be drained and irrigated. A large rain shelter covering an area of
384 m2 was set up in the experimental area to prevent impacts from rainwater. There were
12 experimental plots, each with an area of 16 m2 (4 m × 4 m). There was an interval of 2 m
between plots and soil ridges to prevent water exchange.

The local commonly planted winter wheat variety, ‘Weilong 169’, is known for its
advantages of high quality, high yield, and strong adaptability. Therefore, ‘Weilong 169′

was selected for the experiment and was sown by machine on 23 October 2019, with row
spacing of 12–15 cm. Base fertilizer was applied after sowing, and chemical weed control
and insect control were conducted during growth.

The whole soil profile in the experimental area was mostly turbid yellow-orange, and
the texture was mostly clay loam or silty clay loam, with a clay content of 18–24% and silt
grain of 40–54%. The soil pH was 8.5–8.8 and alkaline. The soil cation exchange capacity
was about 12 me/100 g soil. The average field water-holding capacity was 29.5%, and
the average soil bulk density was 1.48 g/cm3. The experimental area featured deep soil
with a moderate sand-to-clay texture. The topsoil was loose and porous, facilitating water
retention and moisture conservation. It offered good tillage properties, abundant sunlight,
and was suitable for the growth of crops such as wheat and corn.

2.2. Methods
2.2.1. Experimental Method

The effects of drought on crop yield differ in different growth periods. Therefore, we
established different drought levels for winter wheat for the three growth periods. The
bottom moisture content of each plot was the same before sowing. On 9 November 2019
and 24 January 2020, uniform irrigation (total 90 mm) was applied to each plot to ensure
uniform seedling emergence and normal overwintering. The irrigation method used in this
experiment was flood irrigation.

The established experimental drought stress plots were mild drought stress, moderate
drought stress, and severe in the P1 period (jointing–heading period), P2 period (heading–
filling period), and P3 period (filling–maturation period), as well as normal and extreme
drought plots throughout the growth period (Table 1).

According to the Chinese agricultural industry standard “Technical Specifications for
Field Investigation and Leveling of Winter Wheat Disasters” [55], the drought classification
criteria for different growth periods of winter wheat are based on the soil relative water
content. Soil relative water content is defined as the percentage of soil water content relative
to the field capacity. The field capacity of the experimental plots was 29.5%, and this value
was used to determine the classification of drought levels in the plots (Table 2).
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Table 1. Plot drought level settings.

Number P1 Period P2 Period P3 Period

X6 Dro1 Nor Nor
X1 Dro2 Nor Nor
X3 Dro3 Nor Nor
X2 Nor Dro1 Nor
D4 Nor Dro2 Nor
D6 Nor Dro3 Nor
D5 Nor Nor Dro1
X4 Nor Nor Dro2
D3 Nor Nor Dro3
D1 EDro EDro EDro
X5 Nor Nor Nor

P1, winter wheat jointing–heading period; P2, heading–filling period; P3, filling–maturation period.

Table 2. Drought level division for winter wheat.

Drought
Levels

Soil Relative Humidity Content Soil Relative Humidity (%)

P1 P2 P3 P1 P2 P3

Dro1 65–70% 65–70% 60–65% 19.2–20.7 19.2–20.7 17.7–19.2
Dro2 60–65% 60–65% 55–60% 17.7–19.2 17.7–19.2 16.2–17.7
Dro3 55–60% 50–60% 45–55% 16.2–17.7 14.8–17.7 11.8–16.2
EDro <55% <55% <45% <16.2 <16.2 <11.8
Nor >70% >70% >65% >20.7 >20.7 >19.2

The experimental timeline is shown in Figure 2. During P1 and thereafter, the soil
relative humidity was recorded daily at 5 pm. This was to ensure that the drought levels of
each plot were within the specified range. The X5 plot received a total of five irrigations,
with 90 mm of water. During the P1 period, X6 and X1 were irrigated on March 29th with
45 mm and 30 mm, respectively. X6, X1, and X3 were all irrigated with 30 mm on April 24th.
Additionally, on April 29th, rehydration irrigation of 60 mm was conducted. During the P2
period, X2 and D4 were irrigated with 30 mm on May 7th, and a rehydration irrigation of
60 mm was conducted on May 19th. During the P3 period, on May 23rd, D5, X4, and D3
were irrigated with 30 mm, 15 mm, and 15 mm, respectively. Data were collected twice in
each growth period of winter wheat, comprising a total of six times.

2.2.2. UAV Method

This study employed a complete UAV remote sensing system (Figure 3), including
the UAV hardware system (Feilong-81 quadcopter UAV) and the UAV image process-
ing software (YC-Mapper 1.0 software). The Feilong-81 quadcopter UAV platform was
equipped with a Flir VUE PRO R thermal infrared camera and a MicaSense RedEdge-MTM

multispectral camera. The main technical parameters are shown in Table 3. The flight plan
was managed using “FL-81 UAV ground station” software 1.0. This allows users to set
flight modes, plan task routes, control flight operations, and display flight data in real time.
The Position and Orientation System (POS) information records the geographic position
and posture of the image. The POS information of thermal infrared aerial images is stored
by the ground station, while the POS information of multispectral aerial images is stored in
the image.
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Figure 2. Experimental timeline for the 2019–2020 winter wheat planting period. The light green
solid line represents the sowing date. The red solid line represents the harvest date; the blue solid line
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dates. The dark green solid line represents the data collection date. The light blue, yellow, orange,
red, and wine red horizontal bars represent the winter wheat plots under normal, mild drought,
moderate drought, severe drought, and extreme drought levels, respectively.
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Table 3. Main technical parameters of the Feilong-81 UAV.

UAV Platform

Load 1 kg

Endurance time ≥40 min (No load)/≥30 min (Full load)
Wind resistance Four level (Normal execution task)
Rain resistance Can fly in light rain

Takeoff and landing method Manual/Automatic
Full system deployment and

retraction time ≤3 min

UAV load

Thermal infrared
camera

Sensor resolution 336 × 256
Thermal sensitivity <50 mk

Spectral range 7.5–13.5 µm
Measurement accuracy +/− 5 ◦C or 5% of reading

Multispectral camera

Spectral bands Blue, Green, Red, Red Edge, Near Red
Spatial resolution 8 cm per pixel at 120 m

Capture rate Captured every second (All bands)
Field of view 47.2◦ HFOV

After obtaining the UAV thermal and multispectral images, they were processed
using YC-mapper1.0 software for one-click stitching to directly obtain the UAV thermal
and multispectral image results. The software calculation process involves six steps:
computing topology relationships, extracting feature points, matching feature points, aerial
triangulation, elevation information calculation, and orthoimages mosaic.

2.2.3. Tc Extraction Method

The co-registration method, i.e., the NDVI-OTSU method, was used to separate vege-
tation pixels from soil pixels for subsequent Tc extraction. This method had two main steps
(Figure 4). First, the OTSU algorithm [56] was applied to the NDVI [57] to obtain the winter
wheat canopy mask data. This was then resampled to match the thermal infrared images.
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The NDVI is one of the best indicators for monitoring vegetation cover [58]; the
calculation formula is as follows:

NDVI =
NIR − R
NIR + R

(1)

where NIR is the reflectance in the near-infrared band, and R is the reflectance in the red
band.

The core idea of the OTSU algorithm is to maximize the inter-class variance [56]. Let
{0, 1, 2, . . ., L − 1} represent L different gray levels of an M × N pixel image, and ni represent
the number of pixels with gray level i.

The probability that the gray level of a pixel is i is as follows:

pi =
ni

n
(2)

And:
∑L−1

i=0 pi = 1 (3)

Assume a threshold T(k) = k, 0 < k < L − 1, which divides the image into two classes,
C1 and C2, where C1 consists of all pixels with gray values in the range [0, k] and C2 consists
of pixels with gray values in the range [k + 1, L − 1]. Then, the probabilities of pixels being
classified into C1 and C2 can be given by Formula (4) and Formula (5), respectively:

P1(k) = ∑k
i=0 pi (4)

P2(k) = ∑L−1
i=K+1 pi = 1 − P1(k) (5)

The average gray value of pixels assigned to C1 and C2 is given by Formula (6) and
Formula (7), respectively:

m1(k) = ∑k
i=0 iP(i|C1 ) = ∑k

i=0
iP(C1|i)P(i)

P(C1)
=

1
P1(k)

∑k
i=0 ipi (6)

m2(k) = ∑L−1
i=k+1 iP(i|C2 ) =

1
P2(k)

∑L−1
i=k+1 ipi (7)

The average gray value of pixels with gray levels ranging from 0 to k is as follows:

mk = ∑k
i=0 iPi (8)

The average gray value of the entire image is as follows:

mG = ∑L−1
i=0 ipi (9)

Then:
P1(k)× m1(k) + P2(k)× m2(k) = mG (10)

P1(k) + P2(k) = 1 (11)

The inter-class variance is defined as follows:

σ2
B = P1P2(m1 − m2)

2 =
(mGP1 − m)2

P1(1 − P1)
(12)

Using the traversal method, the gray level K that maximizes σ2
B is the OTSU threshold.
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2.2.4. Tc-Based Crop Water Stress Indicators

This study used the ∆T and CWSIsi indicator-based Tc to monitor winter wheat
droughts using a rapid and efficient method. The calculation formula is as follows:

∆T = Tc − Ta (13)

where Tc is the temperature of the winter wheat canopy and Ta is the air temperature.
The Crop Water Stress Index (CWSI/CWSIt) is a commonly used index for monitoring

crop drought based on canopy temperature [59,60]. Idso and Jackson et al. [61] established
their own empirical and theoretical models, respectively. However, both require a consider-
able amount of parameter data, which is inconvenient to obtain in the context of practical
applications [62,63]. Another relatively simple empirical model, i.e., CWSIe, is available.
However, the parameters directly measured are susceptible to environmental and regional
influences, and its applicability is not strong [61,64,65]. For the CWSIs statistical model [66]
based on CWSIs, CWSIsi overcomes the instability of temperature factors by improving
Tdry. However, it is still difficult to eliminate the influence of soil background pixels [67].
Therefore, based on the NDVI-OTSU method for removing soil background pixels to extract
Tc, this study constructed a statistical CWSIsi model that can be calculated using thermal
infrared images only. The calculation formula is as follows:

CWSIsi =
T1 − Twet

Tdry − Twet
(14)

where T1 is the average Tc obtained from the UAV thermal image after removing soil
background pixels. Twet and Tdry are the lowest and highest 5% of the UAV thermal
image temperature histogram of the community after removing soil background pixels,
respectively.

2.2.5. Yield Calculation Method

The winter wheat yield in each plot was calculated based on the monitoring points
method [68]. A complete quadrat of 1 m × 1 m was selected in each plot, and the number
of winter wheat ears was counted after removing the ears with fewer than five grains. Then,
ten wheat plants were randomly selected in each quadrat, and the number of grains per
panicle was counted. After that, 1000 wheat grains were counted in each plot for weighing.
The calculation formula is as follows:

Y = S × G × W × 10(−6) (15)

where Y is the yield (kg/km2), S is the number of ears per km2, G is the number of grains
per km2, and W is the 1000-grain weight (g).

2.2.6. Statistical Methods

For statistical analysis, ground-truth Tc values were compared with the Tc extracted
from the UAV. Soil relative humidity was used to evaluate the performance of the two Tc-
based crop water stress indicators. Linear regression models were used, with the coefficient
of determination (R2) calculated for comparisons. The regressions were implemented using
Python programming language.

2.3. Data Collection
2.3.1. UAV Data Collection

From 11:00 to 14:00 China Standard Time, the self-developed quadcopter UAV remote
sensing system was used to obtain winter wheat canopy thermal infrared remote sensing
images and multispectral remote sensing images. The camera was set to point vertically
downwards, with a heading overlap and sidelap of 85%. The flight altitude was set at
55 m. In total, 603 UAV thermal images with a spatial resolution of 5.7 cm and 3075 UAV
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multispectral images with a spatial resolution of 4.0 cm were collected during six flights
(Table 4).

Table 4. Data collection table.

Date Date Type Equipment Date Number Method

UAV date
Thermal images FL-81 (From China Institute of Water

Resources and Hydropower Research in
Beijing, China)

603 VUE PRO thermal camera

Multispectral images 3075 MicaSense RedEdge-MTM

Multispectral Camera

Ground data

Ground-truth Tc
Raytek ST80+ (From Fluke Corporatioin

in Everett, Washington, USA) 648 Measure 9 sample points evenly within
the plot and take the average

Atmospheric
temperature

DeFu temperature and humidity
recorder (From Defu Hardware products

Co., Ltd. in Shenzhen, Guangdong
Province, China Ltd.),

12

Record the two atmospheric
temperatures before and after the

ground-truth Tc measurement and
calculate the average

Yield Scales, ropes, etc. 12 Calculated based on monitoring points

Soil relative
humidity data

BS-3555 soil temperature and humidity
recorder (From Beijing Yugen Technology

Co., Ltd. in Beijing, China)
3792 Copy using data cable

2.3.2. Field and Meteorological Data Collection

Figure 5 shows the collected underlying data, including winter wheat ground-truth
canopy temperature (ground-truth Tc, Figure 5A), atmospheric temperature (T, Figure 5B),
yield data (Y, Figure 5C), and soil relative humidity (Figure 5D). Ground-truth Tc and T
were collected synchronously with the UAV data. Soil relative humidity data were collected
daily at 5 pm. Yield data were collected at the end of the growth period.
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Infrared thermometers, as a non-contact temperature measurement method, offer
the advantages of speed, convenience, and accuracy. They typically provide reliable real-
time temperature data and are suitable for scientific research and experimental purposes.
Therefore, winter wheat ground-truth Tc was measured using a handheld infrared ther-
mometer (RAYTEK ST80+) produced by Santa Cruz, CA, USA. The temperature range was
−32~760 ◦C. The measurement accuracy was ±1 ◦C or ±1% of the reading. The RAYTEK
ST80+ measures at approximately 15 cm above the canopy, at a 45◦ angle. Nine temper-
ature averages were collected per plot as the ground-truth Tc of the plot. Atmospheric
temperature was measured using a DeFu temperature and humidity recorder. Readings
were taken before and after measuring the plot temperature, and the average of the two
readings was taken. The temperature range was −30~50 ◦C, with a measurement accuracy
of ±1 ◦C. Soil relative humidity at a depth of 20 cm was measured using the BS-3555 soil
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relative humidity recorder from Beijing Yugen Technology Co., Ltd in Beijing, China. The
range was 0~saturation, the accuracy was ±1%, and the resolution was 0.1%. The BS-3555
recorder was set to collect data at ten minute intervals and store the average value every
half hour. The data were downloaded from the recorder using a USB cable.

3. Results
3.1. Extraction of Winter Wheat Tc

Figure 6 shows that there was a strong linear relationship between the Tc extracted
from the UAV-based NDVI-OTSU method and the ground-truth Tc from the three growth
periods. The UAV maintained a constant flight altitude.
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Figure 6. Linear regression model between the Tc extracted by UAV using the co-registration method
and the ground-truth Tc.

In P1, R2 = 0.94. During the first data collection, which occurred on an overcast day, the
data trend showed that the Tc values extracted from UAV were lower than the ground-truth
Tc overall. In contrast, during the second data collection on a sunny day with ample solar
radiation, the data trend indicated that the Tc values extracted from UAV were higher
than the ground-truth Tc overall. Therefore, the canopy temperature fitting curve was first
located above the 1:1 reference line and then below it. This was attributed to the influence
of solar radiation on the UAV thermal image. The R2 fitted in P2 and P3 were 0.86 and 0.92,
respectively. As the growth periods progressed, subsequent data collections consistently
occurred on sunny days, exhibiting the same phenomenon where the Tc values extracted
from UAV were higher than the ground-truth Tc. The trend of the fitted line falling below
the reference line became even more pronounced. This indicates that the higher the solar
radiation, the greater the influence of ground reflection on the Tc values extracted from
UAV thermal images.

Figure 7 shows the Tc of winter wheat calibrated using UAV. Throughout the growth
period, D1 and D2 consistently had the highest Tc, especially since the P2 period. X5
consistently had the lowest Tc. During the P1 period, X6, X1, and X3 showed higher Tc
values after drought. Meanwhile, the Tc of the other non-drought-stressed plots did not
differ significantly. After the rehydration of X6, X1, and X3 during the P2 period, the Tc of
the plots gradually approached that of the normal plots. During the P3 period, the Tc of the
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X6, X1, and X3 plots approached that of X5. The Tc of the X2, D4, and D6 plots gradually
approached that of the normal plots. The crown temperatures of the D5, X4, and D3 plots
also gradually increased after drought.
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Figure 7. Tc of winter wheat calibrated using UAV.

3.2. Construction of Tc-Based Crop Water Stress Indicators

Figure 8 shows the ∆T and CWSIsi indicators extracted after rectification of the UAV
thermal images. Both the ∆T and CWSIsi indicators increased gradually with the aggrava-
tion of drought levels in each growth period. The ∆T index under each drought treatment
tended to be stable after the P2 growth period. For the CWSIsi, in each period, CWSIsi
became higher as the drought duration increased. The CWSIsi values under the same
drought level in different growth periods were relatively stable.
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3.3. Threshold of Tc-Based Crop Water Stress Indicators

Threshold ranges of the ∆T and CWSIsi indicators between different drought levels at
different growth periods of winter wheat were calibrated. For each indicator in every period,
the mean value of different drought levels was first calculated, and then the boundaries
of different drought levels were the middle value of the two means. The threshold values
are shown in Table 5. Extreme drought refers to drought throughout the growth period.
Therefore, the threshold values for extreme drought at a specific growth period are not
given in Table 5.

Table 5. Drought level threshold table.

Nor Dro1 Dro2 Dro3

△T/°C
P1 period ≤−5.6 ◦C −5.6 °C to −5.1 ◦C −5.1 °C to −4 ◦C ≥−4 ◦C
P2 period ≤−7.6 ◦C −7.6°C to −5.4 ◦C −5.4 °C to −3.4 ◦C ≥−3.4 ◦C
P3 period ≤−8 ◦C −8 °C to −5.5 ◦C −5.5 °C to −1.5 ◦C ≥−1.5 ◦C

CWSIsi

P1 period <0.30 0.30–0.42 0.42–0.48 >0.48
P2 period <0.33 0.33–0.47 0.44–0.53 >0.53
P3 period <0.41 0.41–0.54 0.54–0.59 >0.59

Eight-hundred sample points were randomly selected within 100 m of the six soil
moisture sensors in the field outside the test area to assess the drought level (Figure 9). This
was then compared with the drought level corresponding to the soil relative humidity. For
the ∆T index, the accuracies of the P1, P2, and P3 growth periods were 90.8%, 92.5%, and
91.8%, respectively, with a total average accuracy of 91.7%. For the CWSIsi, the accuracies
of the P1, P2, and P3 growth periods were 93.1%, 92.6%, and 92.2%, respectively, with a
total average accuracy of 92.6%.
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3.4. Yield

Figure 10 shows the calculated yield of winter wheat for each plot. For each growth
period, drought-stressed plots caused a certain degree of yield reduction. Throughout
the growth period, the highest yield at 979.39 kg/km2 was observed in the X5 plot. The
lowest yield at 249.15 kg/km2 was observed in the D1 and D2 plots, resulting in a 74.56%
yield reduction. During the P1 period, the X6 plot exhibited a relatively insignificant yield
reduction of 3.73%. Meanwhile, the X1 and X3 plots exhibited yield reductions of 16.63%
and 29.42%, respectively. During the P2 period, the X2, D4, and D6 plots exhibited yield
reductions of 11.64%, 18.38%, and 30.65%, respectively. During the P3 period, the D5, X4,
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and D3 plots had yield reductions of 11.54%, 19.40%, and 34.84%, respectively. The degree
of yield reduction increased with drought severity during each growth period.
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4. Discussion
4.1. Tc-Based Crop Water Stress Indicators Determined by UAV

UAV thermal images have considerable potential in monitoring drought, and have
already been applied to cotton, potatoes, soybeans, corn, and orchards [66,69–72]. However,
the accurate extraction of Tc from UAV thermal images posed certain difficulties. It is limited
by the UAV platform system, which has problems such as single data, cumbersome stitching,
and low stitching accuracy. Meanwhile, the mixed pixels of crop canopy and background
substantially reduce the image quality before the crop reaches a certain cover [73,74]. We
have developed a complete UAV remote sensing system. The UAV hardware system
was equipped with thermal infrared and multispectral cameras. The UAV aerial image
processing software supports one-click acquisition of multi-source UAV data results. This
has substantially improved the work efficiency and monitoring accuracy of the UAV
monitoring of crop drought. This study combined NDVI images obtained simultaneously
and used the NDVI-OTSU method to extract the crown temperature of winter wheat.
Nearest neighbor resampling was used to resample the multispectral images to match the
spatial resolution of the thermal infrared image. During the resampling process, nearest
neighbor interpolation set the pixel value of each point in the target image to the nearest
point in the source image without producing mixed pixels. This effectively reduced the
impact of mixed pixels on crown temperature extraction. It is important to note that
different flight altitudes and weather conditions can impact the calibration model of the
UAV thermal infrared data.

Figure 11 shows the soil’s relative humidity. During the experiment, four small and
uniform irrigations were performed to maintain the drought level of the plot. The soil
relative humidity at different drought levels in different growth periods remained within
the experimental design range.
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Figure 11. Soil relative humidity data.

This study only used UAV thermal images to extract Tc and construct the ∆T and
CWSIsi indicators. Soil relative humidity was used to evaluate the performance of winter
wheat drought monitoring at different levels (Figure 12). Under drought, both ∆T and
CWSIsi increased and were significantly negatively correlated with soil relative humidity.
For the ∆T index, the correlation is highest in the P3 period, with an R2 of 0.89. The R2 of P2
period is 0.86. The R2 value during the P1 period was 0.78, and it is speculated that this may
have been due to the influence of the initial soil moisture conditions in the control plots. For
the CWSIsi, the correlation was highest in the P3 period, with an R2 of 0.90. In the P2 and
P1 periods, the R2 values were 0.89 and 0.87, respectively. Overall, ∆T and CWSIsi were
both highly correlated with soil relative humidity, while the correlation between CWSIsi
and soil relative humidity was more stable.
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Figure 12. Regression equations of temperature indicators and soil relative humidity for different
growth periods.

It is worth noting that in the controlled humidity experiment, we controlled the soil
relative humidity variable and attempted to keep other environmental factors as consistent
as possible. As a result, the Tc-based indicators exhibited a linear relationship with soil
relative humidity. In natural environments, however, the relationship between these two
variables is typically more complex.

4.2. Thresholds of Tc-Based Crop Water Stress Indicators Determined Using the UAV

For the ∆T index, under the Nor situation, ∆T gradually decreased. This indicates
that as the reproductive period progressed, the physiological and biochemical reactions of
the plant gradually increased. The change in the ∆T index was not significant during the
reproductive period from P2 to P3. This indicates that the physiological and biochemical
processes within the plant stabilized during the P2 reproductive period. During the P3
period, the threshold range for Dro2 was 4 ◦C, indicating that the inhibitory effects of Dro2
on the physiological and biochemical activities of plants were significant. Under the Dro3
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treatment, ∆T gradually increased, indicating that Dro3 had a strong inhibitory effect on
plant physiological and biochemical activities.

The CWSIsi showed a trend of a larger threshold range between Dro1 and Dro2
(0.12–0.14) and a smaller threshold range between Dro2 and Dro3 (0.05–0.09) in all three
growth periods. This indicates that Dro2 has had a significant impact on the physio-
logical and biochemical processes of winter wheat. From the perspective of the entire
growth period, the threshold range of the same drought level showed relatively little
change. This indicates that the CWSIsi is relatively stable in reflecting the degree of winter
wheat drought.

This threshold can provide a methodological reference for drought monitoring based
on UAV thermal data, while also providing data support for accurate drought level assess-
ments in winter wheat. It holds great potential for wide-ranging applications. However, it
has certain regional limitations. Further research is required to determine its applicability
in different regions. The scant data is also a limitation, which could potentially affect the
fluctuation of the threshold range. Experimental data and other data need to be collected
and explored.

4.3. Drought Disaster Monitoring

Although there have been many studies on the use of UAV images for crop drought
monitoring, there has been relatively little exploration of the relationship and differences
between drought and drought disasters. There are more than 100 definitions of drought
internationally. The earliest can be traced back to 1894, when American researcher Abbe
first proposed that drought is “the result of long-term accumulated lack of rain” [75]. The
definition of “drought disaster” is an event caused by a shortage of water supplies because
of reduced precipitation and insufficient water engineering, which causes harm to life,
production, and ecology [76]. Agricultural drought disasters refer to events in which crops
have a large-scale reduction in yield or complete crop failure from drought during the
growing period. The measurement indicators of drought disaster are relatively complex.
China’s water industry standard, “Drought Grade Standard” [77], evaluates the loss of
grain from drought as an evaluation indicator.

The occurrence of agricultural drought does not necessarily lead to agricultural
drought disaster. Currently, the international response to drought disasters is mainly
focused on post-disaster management [78,79]. Therefore, this study has explored the po-
tential application of Tc-based indicators from UAVs in drought disaster monitoring. This
can provide a reference for drought disaster assessment. According to this definition, an
area where grain crop yields are reduced by 30% or more compared with a normal year
from drought is considered a disaster area. During the three growth periods, Dro1 and
Dro2 did not constitute a drought disaster. Dro3 during the P1 period was on the verge of
constituting a drought disaster, while Dro3 during the P2 and P3 periods resulted in a yield
reduction of more than 30%, constituting a drought disaster.

Figure 13 shows the correlation between the ∆T, CWSIsi indicators, and yield during
each growth period. Under drought conditions, the ∆T and CWSIsi indicators and yield
all showed significant negative correlations (n = 5, p < 0.001). The correlation between the
∆T index and yield was relatively high during the P2 and P3 periods, with R2 values of
0.96 and 0.93, respectively. The ∆T index had a lower correlation with yield during the P1
growth period, with an R2 value of 0.71. Therefore, during the P1 period, it was challenging
to accurately monitor drought disasters using the ∆T index. The correlation between the
CWSIsi and yield was relatively high during all three growth periods, with R2 values of
0.82, 0.83, and 0.79, respectively. Compared with the ∆T index, the CWSIsi had a relatively
stable correlation with yield and did not fluctuate significantly with changes in the growth
period for winter wheat.
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Figure 13. Regression equations of temperature indicators and yield at different growth periods.

Based on the relationship between two temperature indicators and yield (Figure 13),
the threshold for differentiating winter wheat drought disasters was calibrated. When
the winter wheat yield decreased by more than 30%, i.e., when the yield was less than
685.58 kg/km2, it was considered a drought disaster. The threshold values for identifying
drought using the ∆T index during the P2 and P3 periods were −6.38 ◦C, and −6.14 ◦C, re-
spectively. The threshold values for identifying drought using the CWSIsi during the P1, P2,
and P3 periods were 0.49, 0.52, and 0.57, respectively. Given the limited experimental data
and small sample size, further research is needed to verify the accuracy of this threshold.

5. Conclusions

This study conducted a controlled experiment on winter wheat in the field and used a
UAV remote sensing system to conduct precise drought threshold monitoring of different
drought levels at different growth periods of winter wheat. The main conclusions are
as follows:

(1) Using the NDVI-OTSU collaborative method based on UAV thermal images to
extract the crown temperature can reduce the influence of mixed pixels on the extraction of
crown temperature. The Tc extracted from the UAV was regressed against the ground-truth
Tc. The R2 values for the jointing–heading period, heading–filling period, and filling–
maturation period were 0.94, 0.87, and 0.92, respectively.

(2) The Tc extracted from the UAV image was used to construct the ∆T and CWSIsi
indicators for different growth periods of winter wheat, and the threshold range was
calibrated. For the ∆T index, the accuracies of the jointing–heading period, heading–filling
period, and filling–maturation period were 90.8%, 92.5%, and 91.8%, respectively, with a
total average accuracy of 91.7%. For the CWSIsi, the accuracies of the jointing–heading
period, heading–filling period, and filling–maturation period were 93.1%, 92.6%, and 92.2%,
respectively, with a total average accuracy of 92.6%.

(3) Based on regression analysis of the ∆T, CWSIsi, and yield, there was a certain
potential for identifying drought disasters in winter wheat.

This study can provide a reference method for the rapid monitoring of crop drought
with the UAV thermal method and can address the problem of accurate threshold dif-
ferentiation for different drought levels in winter wheat at different growth periods in
prior research. In the future, UAV methods could be used in conjunction with remote
sensing satellites to obtain ground truthing at the field scale and improve the accuracy of
agricultural drought monitoring.
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