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Abstract: Forest biomass is expected to remain a key part of the national energy portfolio mix,
yet residual forest biomass is currently underused. This study aimed to estimate the potential
availability of waste woody biomass in the Aizu region and its energy potential for local bioelectricity
generation as a sustainable strategy. The results showed that the available quantity of forest residual
biomass for energy production was 191,065 tons, with an average of 1.385 t/ha in 2018, of which 72%
(146,976 tons) was from logging residue for commercial purposes, and 28% (44,089 tons) was from
thinning operations for forest management purposes. Forests within the biomass–collection radius
of a local woody power plant can provide 45,925 tons of residual biomass, supplying bioelectricity
at 1.6 times the plant’s capacity, which could avoid the amount of 65,246 tons of CO2 emission
per year by replacing coal-fired power generation. The results highlight the bioelectricity potential
and carbon-neutral capacity of residual biomass. This encourages government initiatives or policy
inclinations to sustainably boost the production of bioenergy derived from residual biomass.

Keywords: bioenergy; woody biomass; woody residue; regional revitalization; carbon neutrality

1. Introduction

Energy represents a cornerstone in social development and economic growth by
providing fundamental modern services for fulfilling basic social needs, driving economic
growth, and fueling human development [1]. The longstanding global dependence on fossil
fuels has led to pressing concerns such as air pollution, greenhouse gas emissions, and the
formation of a “carbon bubble” [2–4]. As the world shifts away from fossil fuels, renewable
energy (particularly woody biomass) emerges as a promising alternative after wind, solar,
and geothermal technologies’ market penetration [3–6]. Unlike the variable outputs of
solar and wind power due to their fluctuation with weather and season [7], biomass offers
consistent energy production throughout the year, positioning it as a reliable base load
power source. This stability, combined with its ability to balance the intermittency of other
renewables, underscores the potential of biomass in creating a diversified, sustainable
energy system [8,9].

In Japan, 88% of the country’s 2019 total primary energy supply relied on fossil fuels,
and they heavily depend on imports to meet energy demands [10,11]. As coal is the most
carbon-intensive fossil fuel and accounts for 31.6% of Japan’s total power generation [12],
transitioning to renewables is not just environmentally beneficial but also crucial for Japan’s
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2050 carbon neutrality goal. To accelerate this transition, policies like the feed-in tariff
policy have been implemented, promoting coal-fired projects integrating renewable energy
since 2012 [5,13]. A total of 307 power generation plants have adopted, or are planning to
adopt, biomass co-firing energy resources to phase out coal in the power sector.

A total of 67% of Japan’s total land area is covered by forests, and 41% of the country’s
forests are mature post-WWII-planted forests (primarily Japanese cedar (44%) and Japanese
cypress (25%)) featuring fast growth and construction suitability [14]. The majority of
forest resources have been utilized for papermaking, building, and furniture industries.
Residues from lumber (processed wood ready for housing construction or furniture mak-
ing) preparation or thinning are the main woody fuel resource for power generation [15].
Current wood consumption for electricity is low, accounting for 0.058% of the total wood
supply [16]. Challenges like labor shortages, high management and collection costs, and
competition with other sectors have hindered optimal utilization of forest residues and
often led to the abandonment of residues in the thinning site or landing field [14,17–22].
Other reasons that have hindered the expansion of woody biomass for biomass energy
include the high initial investment for facilities, fuelwood procurement, transportation
costs, lower energy conversion efficiency (25–30%), source competition with other sectors,
and a general decrease across the entire domestic forestry industry affected by the import of
cheaper foreign timber products (70% of Japan’s total wood supply and 30.7% of fuel wood
are imported) [5,16,23,24]. Life-cycle studies on energy consumption and greenhouse gas
emissions indicate that substituting fossil fuels with forest residues and fast-growing woods
may promote carbon neutrality [25,26]. Tapping into the potential of forest residues could
enhance Japan’s domestic energy supplies and reduce fossil fuel reliance, making it impera-
tive to assess their quantity, distribution, and bioelectricity conversion potential. Such data
would serve as an important reference for sustainable forest management practices and
appropriate strategies to promote renewable energy and revitalize rural society [27,28].

Japan has a long tradition of research into forest biomass and its associated energy
utilization, including the estimation of availability, energy supply potential, cost estimation,
and technical/economic feasibility [7,18,20,29–32]. There are studies focusing on forest
residues, however they remain in the minority. Moreover, many of them estimated logging
residue availability based on the existing forest register book (GIS format) which can be
updated every several years. The most used GIS data provided by the New Energy and
Industrial Technology Development Organization (2011) features a coarse resolution (1 km2)
and the estimations rely on decade-old data, limiting their applicability to smaller-scale
regions [33]. Thus, up-to-date forest information and a fine-resolution forest map that
enables the classification of detailed tree types from advanced remote sensing images are
essential for reflecting field conditions, estimating forest biomass, and conducting economic
analysis to achieve more sustainable and efficient forest resource management [34–36].

The evolution of satellite remote sensing technology has revolutionized the methods
used to observe the land surface. Sentinel-2 stands out for its free-of-charge, fine spatial
and temporal resolution, as well as the availability of a red-edge band, achieving higher
accuracies compared to images from other medium-resolution satellites [8,25]. Sentinel-2
multispectral satellite products were provided by a joint effort of the European Space
Agency (ESA) and the European Union (EU) [37]. Sentinel-2 features 13 multispectral
bands and provides fine-resolution (10–60 m) imagery for land cover/use monitoring [38].
Furthermore, GIS methods have become powerful tools for analyzing, visualizing, and
interpreting spatial data. The combination of remote sensing, GIS, and ground-based
measurements enables a comprehensive and accurate approach for monitoring and eval-
uating land surfaces, and it has become prevalent in estimating above-ground biomass
(AGB) [39–48].

This study aimed to estimate the availability and energy potential of forest residual
biomass derived from thinning and logging activities for electricity generation in the Aizu
region of Fukushima for local bioelectricity generation. To do this, residual biomass was
estimated based on local forest management practices and a high-resolution forest map
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extracted from multi-temporal Sentinel-2A images [49]. Road density data was used to
filter the availability of residuals for transportation, and the corresponding potential for
bioelectricity supply was determined. As there are hundreds of woody biomass power
plants that are either operational or planned to be in operation in Japan, we believe that
this paper will serve as a valuable reference for informing decision makers as well as those
planning or operating woody biomass plants by assessing the potential of residual biomass
energy, practicing sustainable forest management (health and harvest), providing guidance
to evaluate coal displacement opportunities [27,50].

2. Materials and Methods
2.1. Study Area

Aizu region is located in western Fukushima Prefecture (Figure 1, 36◦54′N to 37◦50′N
and 139◦10′E to 140◦17′E). The area covers nearly 542,069 ha, which accounts for 39% of
Fukushima Prefecture. Administratively, it consists of two cities, eleven towns, and four
villages in order of administrative ranking. The average temperature of the warmest month
(August) exceeds 20 ◦C, and the coldest month (January) is below −2.03 ◦C. The annual
precipitation is nearly 1715.6 mm. The average wind speed is 1.4 m/s [51].

Forests covered nearly 415,666 ha in 2010, accounting for 44% of the total forest area of
Fukushima Prefecture [52]. The Aizu region has the highest number, accounting for 33% of
Fukushima’s total whole tree volume [52]. In 2013, the Aizu region accounted for 14% of
the prefecture’s total felling and bucking, and its forest industry contributed 0.08% of the
prefecture’s total gross domestic product [53].
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Figure 1. Location of the Fukushima Prefecture (left), and SRTM DEM map (U.S. Geological Survey,
2013 [54]) of Aizu region (right).

The forest is divided into state (40.1% of its total area) and private (59.9% of its total
area) forests [52]. In the region’s private forest, sawtooth oak (Quercus acutissima) and
jolcham oak (Quercus serrata) are the major broad-leaved species, whereas Japanese cedar
(Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) are the major needle-leaved
species [52]. Natural forests are dominated by broad-leaved species such as the Japanese
beech (Fagus crenata) and the Japanese mizunara oak (Quercus crispula Blume), whereas
Japanese cedar (Cryptomeria japonica) and Japanese larch (Larix kaempferi) are the major
needle-leaved species dominating the artificial forest.

2.2. Data Preprocessing and Classification

Sentinel-2A products were used to generate a forest map of the Aizu region. Fifty-one
images of Sentinel-2A were acquired from 2018 to 2020 through the online cloud platform
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Google Earth Engine (GEE) (https://earthengine.google.org, accessed on 23 February
2021). The Sentinel-2A data is already applied with atmospheric correction. The overall
methodology used for processing Sentinel-2A images in this study is shown in Figure 2.
Initially, within the GEE code editor (https://code.earthengine.google.com/, accessed on),
cloud cover filter was utilized and set for a cloud coverage of less than 10% to remove
the clouds. A median composition method (by taking the median of each cloud-free pixel
available) was performed to composite cloud-free images and cover the entire study area.
This method enables the minimization of potential distortions from seasonal or short-term
environmental variations [55]. The periods during which the images were acquired were
categorized into three seasons: (1) spring (April–May), when broad-leaf trees start to green
up; (2) summer (June–August), when forested areas reach peak greenness; (3) autumn
(October–November), when some leaves start to gradually change colors. Among the
51 scenes acquired for image composition, 10 scenes were from spring, 34 from summer,
and 7 from autumn. As a result, three seasonal composited images were generated.
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Based on the seasonal composited images, three indexes including normalized differ-
ence water index (NDWI), soil-adjusted vegetation index (SAVI), and normalized difference
vegetation index (NDVI) [56–58] were derived for each seasonal composition to facilitate
the land cover classification. These indices have been proven to be robust and reliable
indicators for discriminating water bodies from vegetation and soil, as well as for tracking
changes in vegetation over time [59–63]. As a result, nine index images (three seasonal
images × three index images) were generated.

To export the seasonal composited images and their corresponding derived index
images, Google Drive was used as an export data receiver. However, due to the size
restriction of exportation to Google Drive, the images were exported by dividing each
image into three parts of the study area and were stitched again in ENVI 5.6 software
(Exelis Visual Information Solutions, Boulder, CO, USA).

Sentinel-2 mission provides multi-spectral (12 bands) at a spatial resolution of 10–60 m.
For this study, the 10 m bands (B2, B3, B4, and B8) and 20 m bands (B5, B6, B7, B8, B11, and
B12) were used. The bands 1 and 10 were removed as redundant information of coastal
aerosol and cirrus-type cloud radiation. To fully utilize the multispectral information
provided by the Sentinel-2A satellite, we resampled the bands with a native resolution of
20 m (B5, B6, B7, B8, B11, and B12) down to a finer 10 m resolution in ENVI 5.6 software.
The resampled bands were mosaiced with 10 m bands (B2, B3, B4, and B8) to create an
image at a resolution of 10 m. Furthermore, the resampled seasonal composition images
were ultimately combined with index (NDWI, SAVI, and NDVI) images to form a singular
image for land cover/land use classification. Figure 2 shows the flowchart of processing
Sentinel-2A images.

Field visits and ancillary datasets were utilized to collect comprehensive landscape
information, including land cover/use types and tree species, which facilitated the differ-
entiation of diverse landscapes and improvement of satellite image interpretation. Ground
truth data for Sentinel-2A image classification, primarily consisting of homogeneous tree
species in the Aizu region, were collected during field visits along major roads and forest
trails. A total of 126 sites were visited and the typical land cover and forest types, as well
as their GPS locations, were recorded using a MAP64SJZ GPS receiver (Garmin, Olathe,
KS, USA) and digitalized. Additionally, the high-quality images and geotagged photos
available in Google Earth Pro™ (https://www.google.com/earth/, accessed on 20 March
2021) were used to derive reference information through visual image interpretation. The
land cover classes observed were recorded with geo-referenced information, and these
records served as an auxiliary reference dataset for selecting regions of interest (ROI).
Further supplementary data sources included 10 plots (3 were NLF and 7 were BLF) from
the National Forest Inventory (http://www.rinya.maff.go.jp/j/keikaku/tayouseichousa/,
accessed on 10 April 2021) for the study area and the forest register of Fukushima Prefecture
provided by Forestry Promotion Division of Fukushima, both available in GIS file format.
These resources provided crucial tree information (e.g., species, age, and ownership) aiding
in tree species identification for satellite image interpretation. Based on our field expe-
rience and supplementary data, we selected the sample points (pixels) showing similar
features through visual interpretation of images. A total of 23,136 sample points (pixels) of
Sentinel-2A images were selected as our ROI. Subsequently, 70% and 30% of these pixels
were randomly assigned as training and testing samples following the methodology of
Breiman and Spector et al. [64].

Classification categories were defined based on the land use and land cover map prod-
ucts (https://www.eorc.jaxa.jp/ALOS/en/dataset/lulc_e.htm, accessed on 15 March 2021)
provided by the Japan Aerospace Exploration Agency (JAXA) and visual interpretation
(Table 1).

https://www.google.com/earth/
http://www.rinya.maff.go.jp/j/keikaku/tayouseichousa/
https://www.eorc.jaxa.jp/ALOS/en/dataset/lulc_e.htm
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Table 1. Land cover and land use classes with descriptions for the Aizu region.

Major
Category Sub-Category Definition

Forest

Broad-leaf forest (BLF)

Forest dominated by deciduous broad-leaf trees,
including Quercus (Quercus acutissima and Quercus
serrata), Fagus (Fagus crenata and Fagus japonica), and
Castanea crenata

Needle-leaf forest (NLF)

Forest dominated by coniferous trees, including
Cupressaceae (Cryptomeria japonica and
Chamaecyparis obtusa) and Pinaceae (Larix kaempferi and
Pinus densiflora)

Non-forest

Water body Rivers, lakes, reservoirs, and swimming pools

Cropland Cultivated land, fallow land, or uncultivated land
after harvest

Grassland Land dominated by grass-like features and low shrubs

Bare land
Land dominated by mining fields, quarries,
riverbanks, rocky mountainous areas, or
unpaved playgrounds

Built-up area Land dominated by buildings and paved surfaces

Random forest (RF) classifier was used for image classification. High classification ac-
curacies have been reported for the land cover/use classification of Sentinel-2 data using RF
compared with other classifiers such as the maximum likelihood classifier (MLC), support
vector machine (SVM), classification tree (CT), and k-nearest neighbor (k-NN) [65–68]. RF
is an ensemble method based on classification and regression trees that can be constructed
in parallel without strong dependencies among individual learners [69–71]. The decision
trees are created based on variables including the object attributes (independent variables)
and their visually identified label (dependent variable) of the training set (ROIs) [72]. For
each decision tree node, a random subset of the training set is assessed and used to develop
other decision trees. By default, two-thirds of the training set (so-called in-bag samples
with a total number of 494 samples of all classes) were used for decision tree development,
whereas the remaining one-third of the training set (so-called out-of-bag samples with
a total number of 277 samples of all classes) were used for assessing the prediction per-
formance of the RF [73]. By aggregating the predictions of all individual decision trees,
the final class of a certain land cover type was determined by the prediction with the
highest majority vote [72–74]. We defined the number of decision trees as 10,000 to build
the RF. The classification result was assessed using a confusion matrix [75], the overall
classification accuracy, kappa coefficient, producer’s accuracy, and user’s accuracy [76].
Non-forest classes were removed from the resulting classification map so that only forest
classes remained.

2.3. Estimation and Mapping of Residual Woody Biomass
2.3.1. Trunk Volume Estimation

As a key parameter in forest ecosystems, trunk volume (TV) (m3/ha) is closely cor-
related with the aboveground biomass of forest ecosystems and allows for the prediction
of all related biomass components (stems, branches, foliage, roots, and understory) for
various research purposes.

In this study, we utilized the BGC-ES sub-biomass model developed by Ooba et al. [77]
to estimate the TV. The sub-biomass model can estimate the TV based on tree age and tree
type information by using the growth function and population function that considers
factors like water availability, light, soil nutrients, and forest management. The process
began with the estimation of average tree height (hm) as a function of forest age (t), followed
by the determination of population number (N), and culminated in the calculation of TV (V).
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The average tree height was calculated using a growth function hf (t) as follows:

h = sc hmax hf (t), (1)

where hmax is the maximum tree height (m), sc is the site coefficient, and hf (t) is a growth
function that is defined by the Mitscherlich [78] (Equation (2)) or Gompertz equations [79]
(Equation (3)) as follows:

hf (t) = 1 − hb exp(−hct), (2)

hf (t) = exp(−hb exp(−hct)), (3)

where hb and hc are species-specific parameters that characterize the growth rate and the
shape of the growth curve, respectively.

The population number in a forest unit is estimated using the theoretical 3/2-law [80].
The maximum volume of the trunk of a plant Vmax (m3 ha−1) depends on the maximum
population number Nmax (ha−1):

Vmax = kN−α
max, (4)

where k and α are parameters (Table 2). α is an empirical constant typically valued at 1/2.
Equation (4) is represented as a line with a slope of −0.5 in a logarithmic coordinated
N–V plane.

Table 2. Parameter values used in equations.

NLF BLF
Growth Unit

hmax m 29.94 18.93
hb 1 1.515
hc 0.021 0.0181
ch 0.972 0.9059

Equation type * M G
Population

α 0.953 0.4998
k 104 m3 ha−1 96.06 1.538

k * 104 m3 ha−1 347.2 3.995
pa m−3 ha 0.00021 0.07004
pb −1.175 −1.071
pc m−3 ha 2665.12 20,850
pd −2.322 −3.214

*M: Mitscherlich (Equation (2)); G: Gompertz (Equation (3)).

Subsequently, the population number (N) was estimated using the natural mortality
curve, which takes into account the intraspecific competition:

1 =
V

k∗N−α
0

+
N

N0
, (5)

where k∗ is a scaling parameter, N0 represents the initial population number (ha−1), and α

is an empirical constant typically valued at 1/2, reflecting the 3/2-law of self-thinning.
Finally, trunk volume (V) was calculated by inverting the relationship between volume

and population number, integrating the average tree height (hm):

V−1 = pahpb
m +

pChpd
m

N
, (6)

where pa, pa, pc and pd, were sourced from the National Forestry Agency of Japan [81].
(Table 2), adjusted for the region and tree type. By inputting the age data into these
equations, we estimated the TV (V) for individual trees.
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To calculate the annual total TV per hectare (Gv, m3 ha−1), TV (V) was multiplied by
the population number of trees (ha−1):

Gv = N·V, (7)

It is worth mentioning that the sub-biomass model was developed under relatively
simple assumptions (such as an increase in the tree diameter at breast height changes with
competition and an increase in the averaged upper-layer tree height mainly depending
on the forest age) about the forest ecosystem. Furthermore, the coefficients used for these
functions vary with region and tree type. Forest inventory and forest report review are
necessary when determining the coefficients. More detailed investigations are necessary
for more specific woody biomass estimations.

2.3.2. Trunk Volume Data Preparation

The tree age and tree type information (forest registrator book) of our study area was
obtained in GIS file format provided by the Forestry Promotion Division of Fukushima.

As a result of Section 2.3.1, two maps of TV (Gv, m3 ha−1) for NLF and BLF were
generated. Then, through the raster calculation in ArcGIS 10.8 software (https://www.
esrij.com, accessed on 1 December 2023), the forest map obtained in Section 2.2 was linked
geographically with the two TV maps of NLF and BLF by using the information of tree type
(NLF or BLF). Thus, an integrated TV (Gv, m3 ha−1) map of 10 m resolution was created.

A flowchart summarizing the preparation of the TV map is shown in Figure 3 (yellow
color background).
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Figure 3. The flowchart of 10 m resolution of the TV and potential residual woody biomass estimation
for the Aizu region. NLF stands for needle-leaf forest and BLF stands for broad-leaf forest. Details of
estimation of transportable woody biomass (blue background) are described in Section 2.3.3.

2.3.3. Estimation of Forest Residual Biomass

Forest residual biomass (waste woody biomass) is comprised of residues resulting
from two kinds of anthropogenic practices (thinning and logging). Estimations of forest
residual biomass were performed separately for the two different practices (thinning and
logging) (Figure 3).

Thinning activity, according to the local forestry management plan [53], was performed
mainly on certain ages of young needle-leaf trees to improve the health and growth of a
forest. Therefore, the estimation of thinned residual biomass was focused on NLF of age
classes 3–6 and 8 (one age class is equal to 5 years). BLF was excluded from this step, as
there were no thinning plans for BLF. The thinning rate was 35% for trees of all thinning
ages combined [53]. The entire portion of each thinned NLF was assumed to be used for
bioelectricity generation. The available thinned NLF volume was calculated by multiplying
the annual total NLF TV (Gv m3 ha−1) by a thinning rate of 35%.

https://www.esrij.com
https://www.esrij.com
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For logging activity, according to the local forestry management plan [53], cutting
ages for logging were performed mainly on NLF trees aged at least 45 years (age class 9 or
greater) and BLF trees aged at least 40 years (age class 8 or greater). Unlike in the case of
thinning, the logging residue including branches, leaves, stumps, roots, tops, and bark that
had been stripped from the harvested raw wood and was assumed to be used for bioenergy
generation. In the Aizu region, logging residues are typically found at felling sites in the
forest or wood piles alongside the road [53].

The amount of forest logging residue was estimated by using the method developed
by Japan’s Forestry and Forest Products Research Institute (Equation (8)):

Qresidue = Gv × fresidue × (1 − Wd) (8)

where
Qresidue represents the quantity of dry wood logging residue (t ha−1);
Gv represents the annual logging of trunk volume per unit (m3 ha−1);
f residue represents the logging residue generation coefficient (0.07 for NLF and 0.091

for BLF) [82];
Wd represents the 15% air-dry water content of logged woods.
Because the utilization of potential woody biomass is largely restricted by transporta-

tion infrastructures for the collection of woody biomasses and its transportation out of
the forest, we needed to consider the road network (density of the forest road and the
distance from the road required for wood collection) in forests. Therefore, the quantities
of transportable (available for energy production) thinned woods and logging residues in
each pixel in the raster data were further estimated by integrating the road network infor-
mation, including the density of the forest road network and the distance from the road at
which point wood is collectible using Equation (9). It is worth mentioning that this method
has been commonly used in Japan and is interpretable across multiple disciplines and by
policymakers [14,33,82]. However, the use of a fixed road density across the study area
may not accurately capture the variations in road network densities, potentially leading
to overestimations or underestimations of transportable biomass in different sub-regions
such as remote mountainous areas (with less road density) and lower areas (with higher
road density).

Vtransport = GV thinned/residual × Droad × Rcollect × 10−4 (9)

where
Vtransport represents the annual volume of transportable residual woody biomass (m3);
GV thinned/residual represents the annual volume of thinned NLF or logging residues of

NLF or BLF (m3 ha−1);
Droad represents the density of the forest road network (6.29 m/ha);
Rcollect represents the collection distance for forest residues, which is assumed to be

25 m from the forest road to the mountain slope and 25 m to the valley slope, equalling a
total of 50 m from the roads [83];

10−4 is the scale factor (ha m−2).
The mass of the transportable (available for bioenergy production) forest residual

biomass (Qtransport) in tonnes of dry matter per hectare per year (t dry-weight (ha−1) in
each pixel was derived from the following formula:

Qtransport = Dbulk × Vtransport (10)

where
Dbulk represents the bulk density of NLF (0.314 t m−3) or BLF (0.573 t m−3) [84].
A flowchart summarizing the process of the overall estimation is shown in Figure 2

(blue color background).
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2.3.4. Available Bioelectricity Potential

The available potential of woody bioelectricity represents the available quantity of
biomass that can be technically and economically harvested and used for energy pur-
poses [85]. In Japan, wood fuels used for electricity generation are generally made from
residuals from the sawmill process, the manufacture of wood products and construction,
and harvesting/thinning residuals in the forest. The available bioelectricity potential from
combustion was evaluated using Equation (11), developed by Tatebayashi et al. [86].

Ebiosolid = Qtransport × (1 − Wp)−1 × YR × LHV (11)

where
Ebiosolid represents the woody biomass energy (Gigajoule ha−1, hereafter referred to

as GJ ha−1);
Qtransport represents the dry wood matter of transportable biomass (t ha−1);
Wp represents the water content percentage, which was set at 10% for air-dried pro-

cessed wood residues, and (1 − Wp)−1 represents the composition ratio of wood solids;
YR represents the yield (the ratio of the output to the total input of materials in a

process), and 20% was set as the output loss of wood materials during the processing;
LHV represents the lower heating value of 16 GJ t−1.
To make the unit of TV map pixel (10 × 10 m2) consistent with the units of the quantity

of transportable (collectible) residual biomass and the residual biomass energy (Qtransport
and Ebiosolid, respectively), we converted the units of Qtransport and Ebiosolid from t ha−1 and
GJ ha−1 to t 100 m−2 and GJ·100 m−2 by multiplying them by a scale factor of 0.01. Each
pixel then represented the biomass quantity/volume of a certain type of tree.

At last, the overall quantity of residual biomass over the study area was calculated
by multiplying the biomass quantity/volume values with the statistically counted pixel
numbers that share the same type of tree and age. Thus, the overall quantity of transportable
woody biomass and the energy feedstock potential of the whole study area was obtained.

However, the amount of woody biomass that can be collected and used for power
generation is restricted by various factors such as terrain features, the road network for
collecting and transporting wood materials, and the collection range from the power plant
to the chip processing sites. We selected the Green Power Aizu Power Plant as the target of
this analysis as it is the first local woody biomass power plant and is supported by MAFF,
aiming to recycle local waste woody biomass into electricity generation. The sources of
fuelwood are thinned and logging residues. The electricity generated mainly serves the
Aizu region’s largest city of Wakamatsu, catering to power producers and suppliers of
industrial electricity. The plant’s electricity generation capacity (generating-end output)
is about 5700 kW, and the total annual electricity generation capacity is 167,443.2 GJ.
Operating 24 h a day for 340 days a year, the plant requires an annual feedstock of 36,000 t
of dried chips.

Therefore, to more accurately estimate the realistic potential of accessible woody
biomass for the power plant, we used data from the forest plan of the Aizu Region [53] to
set and apply several filters to the local forest register data. The filters and the reasons for
their application were as follows:

(1) Because the national average woody material collection radius is 50 km [87], which
is also the operating radius of the towable wood chippers that are adopted by most
of the small scale power plants, the area within 50 km was set as the maximum
biomass-collection buffer radius to the Green Energy Aizu Power Plant.

(2) Under the distance reachable by lumber-collecting machinery, the distance from the
center of each unit of each forest land unit (forest compartment) to the nearest road
was set at no more than 500 m.
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(3) The slope of land was set at no more than 35◦ due to difficulties in logging/thinning,
collecting, and transporting operations. Moreover, many areas with slopes greater
than 35◦ are classified as protected land to prevent natural disasters such as landslides
and soil erosion.

(4) Forests in which cutting was forbidden were not included, as local government
has strict land-use rules to protect national parks or lands that are at a high risk of
natural disasters.

Based on the estimated bioelectricity potential within a 50 km radius of the power
plant, we estimated the potential reduction in CO2 emissions by replacing coal-fired power
generation with biomass-fired power generation. This estimation was derived from the
difference in CO2 emissions between the biomass-fired generation system (0.0618 tons
CO2/MWh) and the coal-fired generation system (0.96 tons CO2/MWh) in Japan [88].

3. Results
3.1. Forest Cover Mapping

A total of 84% of the study area was classified as forest (Figure 4). Almost 32% of
the forest was BLF, distributed below an elevation of 1400 m across the study area. Most
of these BLFs are secondary woods planted after clean cutting for woodfires and mainly
distributed around villages. A total of 52% of the forest was NLF, most of which had been
planted along streams, rivers, urban areas, and villages below 1000 m elevation.
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Table 3 gives an accuracy assessment of land cover classification results. The class-
specific producer’s accuracies were 97.93% and 92.57% for NLF and BLF, respectively. An
overall accuracy of 92.32% and a Kappa index of 0.9086 indicate a satisfactory accuracy,
which underscores the robustness of the RF classifier in incorporating the multi-temporal
dimension of the dataset into the analysis and evaluating the different features which are
critical for accurate classification. In previous research, multitemporal data and RF classi-
fication showed satisfying forest mapping and facilitated further above-ground biomass
estimation [89–92].
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Table 3. Accuracy of forest classification for the Aizu region.

Class NLF BLF
NLF (needle-leaf forest) 1752 62
BLF (broad-leaf forest) 37 1321
Producer accuracy (%) 97.93 92.57
User accuracy (%) 95.84 96.42
Overall accuracy (%) 92.32%
Kappa coefficient 0.9086

However, class confusion between NLF and BLF did occur. Some tree species have
different patterns of phenological variation in their leaves and flowering over seasons
(e.g., BLF leaves do not always turn yellow or red in autumn, and the leaves of certain
pine tree species (such as Metasequoia) turn reddish in autumn and winter). This could
have caused confusion between NLF and BLF, as the spectral reflection of plants was one
of the indicators used in our classification. Some of the pixels of Sentinel-2A contained
mixed forest stands (e.g., broad-leaf and needle-leaf, or mixed-age) and were classified
into homogeneous forest types (NLF/BLF). Furthermore, due to the limited data set that
contained forest information about our study area, we only used two general forest types
(NLF and BLF) for the biomass estimation. As the biomass varies among different tree
species, there might be some discrepancies between our estimation with the actual forest
biomass. Combining active remote sensing data such as LiDAR/SAR that can be used to
extract forest structural attributes including tree height and classifying tree species can
enhance the precision of detailed forest mapping and biomass estimation.

3.2. Spatial Analysis of Forest Residual Biomass
3.2.1. Analysis of Thinned Residue Biomass

For thinned residue biomass, we mapped the spatial distribution of transportable
thinned residue biomass (Figure 5a) and bioelectricity potential (Figure 5b).
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There was a uniform distribution pattern of both low and high biomass quantity across
the study area. According to elevation information provided by the forest register, the
residue biomass left by thinning was distributed mainly at elevations of 180 m to 900 m
along the rivers over the study area, except in populated areas such as Wakamatsu city.

The TV (Gv in table) of NLF (ages 15, 20, 25, 30, and 40) ranged from 89.34 to
374.54 m3 ha−1 year−1. The volume of residues (Gv-residue) extracted from thinned
NLF trees ranged from 31.27 to 131.09 m3 ha−1 year−1. The corresponding mass of
residues (Qresidue) ranged from 9.82 to 41.46 t dry-weight ha−1 year−1 with a mean value of
24.08 t dry-weight ha−1 year−1. Of this residue mass, the transportable amount of residues
(Qtransport) varied from 0.31 to 1.29 t dry-weight ha−1 year−1, available for delivery to a
power plant for energy production. Consequently, the bioelectricity potential (Ebiosolid) of
this transportable mass of residues ranged from 4.1 to 18.10 GJ ha−1 with a mean value of
10.77 GJ ha−1 (Table 3).

3.2.2. Analysis of Logging Residue Biomass

The distributions of logging residue biomass and corresponding bioelectricity produc-
tion potential of NLF (Figure 6a,b) and BLF (Figure 6c,d) were mapped separately.

As in the case of thinning residues, the logging residues also showed a general uniform
distribution pattern over the study area. However, some high biomass values (dark blue in
Figure 6a) were distributed in the south-western part of our study area, which is a remote
mountainous area with relatively higher elevation than other parts of the study area and
has less residential area.

The TV of NLF (aged at least 45 years) ranged from 89.34 to 374.54 m3 ha−1 year−1.
The logging residue mass ranged from 9.17 to 14.26 t dry-weight ha−1 with a mean value of
12.79 t ha−1, while the mean value of mass available for energy production (transportable
amount) reduced to 0.29–0.45 t dry-weight ha−1 with a mean value of 0.4 t ha−1. The
corresponding bioelectricity potential ranged from 4.1 to 6.38 GJ ha−1 with a mean value
of 5.72 GJ ha−1 (Figure 7).The TV of BLF (aged at least 40 years) did not vary markedly
(range, 128.5 to 138.58 t dry-weight ha−1) because the growing volume tends to be stable for
mature BLF. Compared with NLF, their mean values of logging residues were close, but the
minimum value of BLF was greater than NLF while the maximum value of BLF was smaller
than NLF. The corresponding bioelectricity potential ranged from 3 to 3.23 GJ—which is
lower than NLF (Figure 7).

3.2.3. Estimation of Potential Bioelectricity

By using the pixel-based values of estimated bioelectricity for different tree age classes
of the residues of thinned NLF and the logging residues of BLF and NLF, we calculated
the total amount of potential bioelectricity for each tree age class by multiplying the pixel
values of bioelectricity by the number of pixels that shared the same values. The sum value
of the calculated total potential bioelectricity was then regarded as the overall potential
bioelectricity of the entire study area. All the transportable amounts of forest residues
can provide 744,964 tons of woody biomass. The relative potential bioelectricity of 2018
was approximately 2,717,366 GJ (627,046 GJ for thinned NLF, 1,031,436 GJ for BLF logging
residues, and 1,058,884 GJ for NLF logging residues), which is 16.2 times the plant’s
power-generating capacity. NLF logging residues contributed to 39% of the Aizu region’s
total bioelectricity potential, BLF logging residues contributed to 38%, and thinned NLF
contributed to 23%. According to the Wood Demand Chart of 2020 [16], the coefficients
for converting wood to chips are 2.2 for NLF and 1.7 for BLF. After conversion of the
collectable dry-matter biomass quantity to chip production, the total dried-chip production
potential was approximately 246,052 t (63,823 t for thinned NLF; 74,451 t for BLF logging
residues; and 107,778 t for NLF logging residues). The potential chip production is more
than 6.8 times the annual chip demand of the Green Energy Aizu Power Plant which
requires an annual feedstock of 36,000 t of dried chips.
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Figure 6. Spatial distributions of (a) Transportable quantity of biomass of NLF logging residues
(t dry-weight ha−1); (b) Bioelectricity potential of NLF logging residues based on transportable
biomass (GJ ha−1); (c) Transportable quantity of biomass of BLF logging residues (t dry-weight ha−1);
(d) Bioelectricity potential of BLF logging residues based on transportable biomass (GJ ha−1). NLF
stands for needle-leaf forest, and BLF stands for broad-leaf forest.
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Figure 7. Values of parameters of thinning and logging activities in needle-leaf and broad-leaf
forests. Gv refers to trunk volume, Gv-residue refers to thinned residue volume, Qresidue refers to
thinned residue mass, Qtransport refers to thinned residue mass available for energy production, and
Ebiosolid refers to bioelectricity production potential. NLF stands for needle-leaf forest, BLF stands for
broad-leaf forest. Lines inside the boxes represent error bars.
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Within the extracted 50 km radius of the Green Energy Aizu Power Plant, approxi-
mately 70% of the extracted forest was NLF and 30% was BLF. The forest residues within the
extracted area can provide 45,925 tons of woody biomass. The total dried-chip production
potential was approximately 22,960 t, which can meet the 64% of the annual chip demand
of the power plant. The spatial distribution of potential chip production indicated the
values range from 0.0005 to 0.645 t/ha with a majority of 0.233–0.645 t/ha (Figure 8a).
The estimated total energy potential was 261,507 GJ—approximately 1.6 times the annual
electricity-generation capacity of the power plant. The spatial distribution of potential
bioelectricity indicated that most forests within the area have the potential to provide
3.2–6.3 GJ/ha of bioelectricity (as represented by the blue color in Figure 8b). The potential
bioelectricity would also supply 2% of the total population-based energy consumption
of Wakamatsu city in 2015 (102.43 GJ/person for a population of 124,100 people) [93,94].
Additionally, the substitution of coal fuel with this residual biomass is estimated to re-
duce CO2 emissions by approximately 65,246 tons/year. The reduction of CO2 emissions
from the entire study area’s residual biomass-fired power generation was estimated to
be 677,983 tons/year, which corresponds to 1.84% of the Fukushima Prefecture’s CO2
emissions as of 2019 (36,876,452 tons/year) [95].
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4. Discussion

This study used growth and population functions from a sub-biomass model of
BGC-ES developed by Ooba [29]. BGC-ES is advantageous for estimating forest resource
dynamics as it incorporates factors such as water, light, soil nutrients, and forest manage-
ment into the simulation. It also facilitates area-wide estimations easily, particularly when
using satellite imagery-based land cover classifications as the data source. However, since
it provides estimations of average size and growth of trees, more detailed investigations are
necessary for more specific woody biomass projects. In the present study, it was observed
that although NLF for thinning has a lower TV (mean value: 219.1 m3 ha−1) compared
to NLF for logging (mean values: 581.99 m3 ha−1) due to the younger age of the thinned
trees, it yields more residues per unit (mean value: 76.68 m3 ha−1), as the whole tree
was cut down and considered as a biomass resource in thinning activities (Figure 9). In



Remote Sens. 2024, 16, 706 17 of 22

logging activities, only the stripped parts of the tree, excluding the merchantable trunk, are
considered as residual biomass. Among the logging residues, the BLF has a lower TV and
fewer residues compared to NLF. This is because most of the trees in BLF areas are mature,
and their trunk volumes are relatively stable. NLF and BLF logging residues together
account for 77% of the total residual biomass in the study area (Figure 9), indicating that
they are the primary contributors to the bioenergy production potential.
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In the present study, the estimations for transportable biomass were based on the
existing forest road network and ground slope. As a result, the calculated values for both
biomass and bioelectricity potential were significantly lower than potential utilization of the
abundant forest resources in the study area. One limitation of our study is the adoption of a
fixed road density and thinning/logging intensity to represent the entire study area, which
may not capture the variations in road network densities in individual sub-compartments
of forest. Estimating availability based on road density in each sub-compartment would
yield a more accurate biomass availability estimation and facilitate the investigation of
optimized strategies adapted to different availabilities and logistics.

According to Yoshioka et al. [22], the lowest costs for hauling, transporting, and chip-
ping residues range from USD 150/t to USD 227/t of dry biomass. Consequently, the total
cost for transporting residual biomass in our study area was calculated to range from USD
28,659,750 to USD 43,371,755. Compared to processing residues alongside forest roads or at
plants, processing them directly at thinning/logging sites using advanced machinery is
preferable for cost minimization. This is particularly challenging given the current state of
the Japanese forestry industry, which suffers from low-capacity forestry machines and a
lack of well-trained operators [96]. The shortage of well-trained operators is a multifaceted
issue, driven by an aging workforce, insufficient training and education, and the slow
adoption of technology in the forestry industry [24]. To achieve more efficient harvesting,
processing, and management of forest resources, thereby minimizing procurement costs
and increasing overall productivity, it is essential to have better machines and well-trained
operators skilled in the use of advanced forestry equipment and implementing sustainable
forest management practices [22,97]. Government initiatives that provide skill-building op-
portunities in forestry and revitalizing the forestry workforce is necessary [5]. Furthermore,
subsidies aimed at expanding current road density in woodland areas and supporting the
development of efficient forestry techniques are crucial for improving this situation. Such
measures would attract more forestry businesses and facilitate the conversion of forest
waste into energy.

Additionally, power generation based on residual biomass has the potential to reduce
CO2 emissions by replacing coal-fired power generation. To promote renewable energy use
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and reduce CO2 emissions, Japan has implemented policies and measures such as the feed-
in tariff (FIT) system and a carbon tax. However, the level of carbon tax in Japan is lower
than in many other countries. Therefore, the introduction of more robust measures such as
large-scale carbon pricing and emissions trading systems, is essential to further incentivize
the shift towards renewable energy sources and achieve more substantial reductions in
CO2 emissions.

Removing waste residual biomass has potential ecological impacts on soil nutrients,
biodiversity, and carbon cycling. Its removal could lead to soil nutrient depletion, reduced
habitat complexity, and altered forest dynamics [98]. Careful management is essential to
balance biomass removal with ecological sustainability.

5. Conclusions

The availability and potential of forest biomass and its energy utilization from logging
residues and thinned trees were discussed with the combination of BGC-ES sub-biomass
model, remote sensing, and GIS tools. Firstly, a distribution map of forest biomass map
was completed by combing Sentinel-2A-derived forest maps and tree trunk volume mod-
eling. Then, the transportable availability of residual biomass was estimated taking into
consideration thinning/logging intensities, road density, and wood collectable range. Fi-
nally, the corresponding bioelectricity generation potential and its CO2 reduction effects
was discussed.

As a result, NLF logging residue (the annual available amount was 74,453 t/y (dry
weight)) proved to be the primary biomass contributor to the bioelectricity potential
(2,717,366 GJ), followed by broad-leaved forests (72,523 t/y (dry weight)) and thinned
trees (44,089 t/y (dry weight)). The forests located within a 50 km radius of this power
plant can supply biomass (45,925 t/y (dry weight)) that equates to 1.6 times the facility’s
capacity, also fulfilling 2% of the energy demands of the region’s central city. By substituting
a coal-fired power generation system with a biomass-fired system, a reduction of CO2 emis-
sions of 677,983 tons/year can be achieved from the study area’s residual biomass, which
can potentially be contributed to a reduction of 1.84% of the Fukushima Prefecture’s yearly
CO2 emissions. The results highlight the bioelectricity potential and carbon-neutral capac-
ity of residual biomass. This encourages government initiatives and policy inclinations to
sustainably boost the production of bioenergy derived from residual biomass.

A significant challenge in harnessing this potential is the existing forest road network
as well as forestry machinery, which poses constraints on the forwarding and transportation
of usable residual wood biomass. This underscores the critical need to enhance the forest
road infrastructure and calls for both technical and financial support for the forestry
sector. Future studies could apply economic feasibility analyses to assess the collection
and transportation of residual forest biomass for supplying sustainable and low-carbon
bioenergy feedstocks.
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