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Abstract: This paper presents a method for predicting atmospheric duct conditions from a clutter
power spectrum using deep learning. To accurately predict the duct conditions, deep learning with
a binary classification is applied to the proposed refractivity from the clutter (RFC) method. The
input data set is the artificial clutter data that are generated via the Advanced Refractive Prediction
System (AREPS) simulation software Ver. 3.6 in conjunction with random atmospheric refractive
indices. The output of the RFC method is then predicted via binary classification, indicating whether
the atmospheric conditions are duct or non-duct. For the cross-validation, the clutter power spectrum
data are generated based on real atmospheric refractivity data. The results show that the DNN trained
with 5600 pieces of data (validation accuracy of 95.99%) exhibits a binary classification accuracy of
98.36%. The deep neural network (DNN) trained with 28,000 pieces of data (validation accuracy of
98.20%) achieves a binary classification accuracy of 99.06% with an F1-score of 0.9921.

Keywords: radio propagation; radar; deep learning; RFC; binary classification; clutter power

1. Introduction

In long-range radar applications, detecting targets earlier at a longer distance has been
a primary concern, and extensive research has been conducted to achieve this ultimate
goal [1–6]. This is because the detection accuracy of long-range radar systems often
degrades due to the atmospheric refractivity since the electromagnetic waves emitted
from radars propagate along a bent path rather than a straight path. With regard to
the atmospheric refractivity, atmospheric conditions are classified as normal, super, sub,
and duct [7–10]. Among these, the duct conditions have been reported to cause a fatal
degradation in the detection performance in the case of long-range targets because such
conditions increase the gradient of the atmospheric refractivity index above a certain
threshold, making it similar to a waveguide [11,12]. Therefore, it is important to monitor the
duct conditions in real time by measuring atmospheric refractivity in terms of the altitude.
However, these measurements are typically performed only twice a day at a limited number
of meteorological observatories using a radiosonde [13–15]. To resolve such problems, a
method estimating refractivity from clutter (RFC) has been proposed [16,17], which derives
the atmospheric refractivity index by utilizing radar sea-clutter images in conjunction
with various estimation techniques, such as the Kalman filter, the particle filter, and the
Bayesian approach [18,19]. Recently, attempts have been made to apply optimization
algorithms, such as the genetic algorithm (GA), particle swarm, and simulated annealing
(SA), to the RFC techniques [20–22], which allow the duct conditions to be more accurately
predicted through the observed clutter power spectrum. However, these methods using the
optimization algorithms have a significant drawback of requiring a considerable calculation
time to derive a solution, making it difficult to apply for actual radar systems that need
real-time calibration. In this context, deep learning methods can be an attractive solution
for the creation of an RFC that can be applied to real-time radar systems, and in fact, few
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studies of the prediction of atmospheric conditions using deep learning methods have
recently been reported [23–26].

In this paper, we propose a method for estimating duct conditions in real time from
the clutter power spectrum using deep learning techniques. To accurately estimate the duct
condition, the deep learning with the binary classification is applied to the proposed RFC
method. In radar operations, clutter power acts in the same way as noise, often degrading
target detection performance. In other words, radar performance generally improves as the
clutter power decreases. However, since the clutter power fluctuates in real time according
to the various atmospheric conditions, it can also be used as an efficient tool to predict
the presence of ducts in the direction toward which the radar is oriented. This clutter
power can not only be obtained by conducting actual measurements but also be artificially
generated using theoretical approaches. In this study, the input data set for the proposed
RFC method is the artificial clutter data generated via the Advanced Refractive Prediction
System (AREPS) simulation software Ver. 3.6 [27] in conjunction with random atmospheric
refractive indices. A simple bi-linear model is employed to generate as many random
atmospheric refractive indices as possible, where the slope and thickness of the model
are randomly varied through Monte Carlo simulations. Since this model can simply and
quickly generate a large amount of learning data, the estimation accuracy of the proposed
method can be improved. The output of the RFC method is then predicted, with the
binary classification indicating whether the atmospheric conditions are duct or non-duct.
In particular, for the training and validation of the RFC method, the input of the artificial
clutter data requires labeling to indicate whether the atmospheric conditions are the duct
or non-duct. In order to label the duct properly, the average clutter power spectrum is
calculated, and then labeling is carried out based on the specific threshold, considering
the actual radar system. Subsequently, the proposed deep neural network (DNN) system,
consisting of four hidden layers, is trained and validated using 28,000 samples of artificial
clutter data, from which the proposed RFC model is able to achieve a validation accuracy of
over 98%. Finally, the performance of the RFC model is cross-validated using more realistic
clutter power spectrum data, which are generated based on real atmospheric refractivity
data obtained from the Heuksando meteorological observatory between 2016 and 2022.
In this process, customized hyperparameters that can improve the estimation accuracy
are applied to the proposed DNN model. The resulting estimation accuracy is over 99%,
confirming that the proposed RFC method can be applied to a real-time radar system to
evaluate the presence of a duct within a short time.

2. Calculation of Clutter Power Spectrums

Figure 1 illustrates the proposed RFC method, which used deep learning techniques
to predict the duct conditions in real time during the operation of shipborne radar systems.
As shown in Figure 1a, electromagnetic waves emitted from the radar were affected by
various atmospheric conditions, which could be classified based on the gradient of the
modified refractive index in terms of altitude. The modified refractive index M could be
calculated using the following equation [28]:

N =

(
77.6 × P

T
+ 72 × e

T
+ 3.75 × 105 × e

T2

)
(1)

M(h) = N(h) + 157 × h (2)

where P and e are the atmospheric pressure and the pressure of the water vapor, respectively.
T means the absolute temperature in K, and N is the radio refractivity, which can be
calculated using P, e, and T. The refractivity index M was used instead of N to compensate
for the Earth’s curvature for altitude h. Herein, the standard atmospheric condition occurred
when the gradient of the modified refractivity (∇M) was 117, and it was called the normal
atmospheric condition when ∇M was in the range of 78 ≤∇M ≤ 157. If ∇M > 157, it was in
a sub-atmospheric condition, while if 0 ≤∇M < 78, it was in a super-atmospheric condition.
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In particular, a ∇M less than 0 meant a duct condition, which could significantly affect
the propagation path of the electromagnetic waves. Thus, it was important to predict the
duct conditions in real time. Such predictions can be used in various fields, such as radar
systems, military operations, aviation safety, and wireless communications [29–33]. In the
duct condition, electromagnetic waves from a radar were trapped along the Earth’s surface,
which resulted in the radar receiving strong clutter power from the sea surface or terrain.
Therefore, the occurrence of a duct could be assumed when a stronger-than-usual clutter
power spectrum was observed. The proposed RFC method for predicting duct conditions
could be summarized in a three-step procedure, as shown in Figure 1b. Firstly, clutter
power spectrums, which could be artificially created or obtained from real radar, were
generated. Following this step, the clutter power spectrum was used as the input for the
proposed RFC method. The output of the RFC method was then a classification indicating
whether the condition was duct or non-duct for the input clutter power spectrum. Secondly,
the artificially created clutter power spectra (amounting to 28,000), labeled according to
the presence of ducts, were used to train and validate the DNN consisting of four hidden
layers. Finally, the proposed RFC method was cross-validated using more realistic clutter
power spectrum data generated based on real atmospheric refractivity data obtained from
the Heuksando meteorological observatory between 2016 and 2022.
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Figure 2 presents the bi-linear model employed in the proposed RFC method to derive
the various atmospheric refractive indices to obtain artificial clutter power spectrums. A bi-
linear model was employed for this purpose because it offered the simplest representation
of the four aforementioned atmospheric conditions. Such a model could be perceived
as dealing with two regions determined via two specific linear functions, expressed as
follows [34]:

M(h) = M(0) +
{

d1h
d2(h − h1) + d1h1

h < h1
h ≥ h1

(3)



Remote Sens. 2024, 16, 674 4 of 10

where M(0) is the modified refractivity at altitude 0 m, typically taken as 330 M-unit [34],
and h is the height from the sea surface. h1 indicates the height of the boundary dividing
the two regions. d1 and d2 denote the slopes of the line in the bottom and top regions,
respectively. This study primarily focused on predicting the refractive index in low-altitude
regions, since the propagation path of electromagnetic waves emanating from a shipborne
radar was mainly affected by the refractive index of the atmosphere close to the sea surface.
The height h1 and slope d1 represent the regions closest to the sea surface, which were also
the important variables for the bi-linear model. The slope d2 denotes the high-altitude
region, which was fixed at a standard atmospheric value of 117 M-unit/m in this study.
In the bi-linear model, h1 and d1 were randomly generated, characterized by a uniform
distribution ranging from 0 m to 300 m and −300 M-unit/m to 300 M-unit/m, respectively.
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Figure 2. Bi-linear model representing various atmospheric conditions.

Figure 3 shows the path loss for two cases with different atmospheric refractive indices.
One of them is a surface duct case (h1 = 300 m, d1 = −200 M-unit/m), while the other is a
normal case (h1 = 300 m, d1 = 117 M-unit/m). The path loss for each cases was obtained
using the AREPS EM propagation simulator, with the atmospheric refractive indices used
as the input data for this simulator. The radar system considered here was an L-band ship
radar system with a high radiating power of 1.95 MW that could detect targets located
up to 360 km away [35]. The mounted height of the radar was 30 m, and its operating
frequency was 1.3 GHz. We then observed the path loss levels at a distance of 100 km
near the surface (altitude of 50 m). In Figure 3a, in the case of a surface duct condition,
radar wave propagation was trapped along the sea surface, resulting in a low path loss of
128.8 dB at the observation point. In contrast, under normal conditions, the trapped wave
moving along the sea surface could not be observed, as shown in Figure 3b, resulting in a
higher path loss of 179.8 dB at the observation point.

Figure 4 represents the clutter power spectrum for the two cases with different atmo-
spheric refractive indices, as calculated from the path loss using the following equation [36]:

Pc =
PtG2λ2σ

L4πr2 (4)

L =
(4πr)2

λ2 (5)

σ = Aσ0 (6)

where Pt and G are the transmitted power and the radar antenna gain, respectively. λ
is the wavelength, and L is the path loss in the free space. r is the distance from the
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radar [34], and A is the illumination surface area of the electromagnetic wave emitted
from the radar. In addition, σ0 represents the normalized radar cross-section of the sea
surface [37]. Under normal conditions, the average of the clutter power spectrums was
observed to be −344.5 dBm. In contrast, a strong average clutter power of −81.3 dBm was
observed in the case of the duct atmospheric condition.
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3. Estimation of an Atmospheric Refractivity Using Deep Learning

Figure 5 presents a detailed flow chart of the proposed RFC method using deep
learning techniques. To create the clutter power spectrum data set, the arbitrary bi-linear
model was first constructed through the Monte Carlo simulation (with d1 and h1 having
uniform distributions). The path loss according to the bi-linear model was calculated
using the AREPS simulator, and then the clutter power spectrums (amounting to 28,000)
were derived, as explained in Figure 4. After obtaining the clutter spectrum data set, each
piece of data was labeled to indicate whether the clutter spectrum was caused by duct or
non-duct conditions. We examined d1 and h1 via the bi-linear model, which resulted in an
average clutter spectrum greater than −115 dBm. This study used the specific threshold of
−115 dBm since it was the minimum sensitivity at which the radar system can recognize
signals above the noise level [35]. Therefore, samples from the clutter spectrum data set
with an average greater than −115 dBm were labeled duct (DNN output value of 1), while
all other clutter spectrums were labeled non-duct (DNN output value of 0). The labeled
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clutter power spectrums were then utilized as inputs for the four-layer DNN to train and
validate it. A total of 28,000 pieces of data were used in this process. Finally, the trained
DNN took the clutter power spectrum without labels as an input to produce a binary
classification output of either 1 or 0, indicating whether it represented duct or non-duct
conditions, respectively.
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Figure 6 illustrates a map of the average clutter power according to duct slope d1
and duct thickness h1. These results can help to identify the conditions for d1 and h1 that
produce the clutter power with an average greater than −115 dBm. As we mentioned
in Chapter 2, atmospheric duct conditions are defined when the value of d1 is negative.
However, a negative d1 may not generate strong clutter power that significantly degrades
the detection performance of the actual radar. Therefore, the conditions of d1 and h1 that
could cause critical issues for real radar systems were investigated. These criteria were
−115 dBm considering the sensitivity of the actual radar systems [35]. The dashed black
line in Figure 6 indicates the boundary, where the average clutter power is −115 dBm.
Based on the position of this dashed black line, the upper left area represents the duct
condition where strong clutter (labeled ‘1’) is generated, while the remaining area indicates
the non-duct condition that does not generate significant clutter (labeled ‘0’). Furthermore,
considering the entire data set, the ratio of labels ‘1’ and ‘0’ is found to be 28:72.

Figure 7 provides examples of the four types of atmospheric refractivity collected
from the Heuksando meteorological observatory between 2016 and 2022. The Heuksando
meteorological observatory is one of seven observatories in the Republic of Korea. The
data are provided at 100-meter intervals, resulting in a total of 4902 pieces of data. The
measurement data are utilized to evaluate the performance of the proposed RFC method,
trained using the artificially constructed bi-linear model. This work was carried out to
evaluate the performance of the proposed RFC method using more realistic clutter power
data. Similar to the previous estimations, the AREPS simulation software Ver. 3.6 was
employed to calculate the clutter power spectrum data obtained from the Heuksando
meteorological observatory to generate the clutter power spectrum, which was then used
for cross-validation of the trained DNN.



Remote Sens. 2024, 16, 674 7 of 10

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 11 
 

 

condition that does not generate significant clutter (labeled ‘0’). Furthermore, considering 
the entire data set, the ratio of labels ‘1’ and ‘0’ is found to be 28:72. 

 
Figure 6. Clutter power map considering d1 and h1 in the bi-linear model. 

Figure 7 provides examples of the four types of atmospheric refractivity collected 
from the Heuksando meteorological observatory between 2016 and 2022. The Heuksando 
meteorological observatory is one of seven observatories in the Republic of Korea. The 
data are provided at 100-meter intervals, resulting in a total of 4902 pieces of data. The 
measurement data are utilized to evaluate the performance of the proposed RFC method, 
trained using the artificially constructed bi-linear model. This work was carried out to 
evaluate the performance of the proposed RFC method using more realistic clutter power 
data. Similar to the previous estimations, the AREPS simulation software Ver. 3.6 was em-
ployed to calculate the clutter power spectrum data obtained from the Heuksando mete-
orological observatory to generate the clutter power spectrum, which was then used for 
cross-validation of the trained DNN. 

 
Figure 7. Four examples of atmospheric refractivities collected from the Heuksando meteorological 
observatory from 2016 to 2022. 

Table 1 shows the hyperparameters and number of neurons used in the DNN archi-
tecture. The epochs, a minibatch size, a learning rate, and an optimizer are set to 30, 128, 

Figure 6. Clutter power map considering d1 and h1 in the bi-linear model.

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 11 
 

 

condition that does not generate significant clutter (labeled ‘0’). Furthermore, considering 
the entire data set, the ratio of labels ‘1’ and ‘0’ is found to be 28:72. 

 
Figure 6. Clutter power map considering d1 and h1 in the bi-linear model. 

Figure 7 provides examples of the four types of atmospheric refractivity collected 
from the Heuksando meteorological observatory between 2016 and 2022. The Heuksando 
meteorological observatory is one of seven observatories in the Republic of Korea. The 
data are provided at 100-meter intervals, resulting in a total of 4902 pieces of data. The 
measurement data are utilized to evaluate the performance of the proposed RFC method, 
trained using the artificially constructed bi-linear model. This work was carried out to 
evaluate the performance of the proposed RFC method using more realistic clutter power 
data. Similar to the previous estimations, the AREPS simulation software Ver. 3.6 was em-
ployed to calculate the clutter power spectrum data obtained from the Heuksando mete-
orological observatory to generate the clutter power spectrum, which was then used for 
cross-validation of the trained DNN. 

 
Figure 7. Four examples of atmospheric refractivities collected from the Heuksando meteorological 
observatory from 2016 to 2022. 

Table 1 shows the hyperparameters and number of neurons used in the DNN archi-
tecture. The epochs, a minibatch size, a learning rate, and an optimizer are set to 30, 128, 

Figure 7. Four examples of atmospheric refractivities collected from the Heuksando meteorological
observatory from 2016 to 2022.

Table 1 shows the hyperparameters and number of neurons used in the DNN ar-
chitecture. The epochs, a minibatch size, a learning rate, and an optimizer are set to 30,
128, 0.01, and Adam [38], respectively. The proposed DNN model consists of four layers,
and each layer is connected by a ReLU (Rectified Linear Unit) function. After layer 4, a
softmax function is connected to classify the atmospheric conditions, and the loss function
is cross-entropy [39]. The numbers of neurons used in the layers (Layer 1, . . ., 4) are 128, 64,
32, and 8, respectively. The clutter power spectrums, labeled based on the presence of a
duct, are employed for the training and validation of the DNN.

Table 1. Hyperparameters, number of neurons, and functions used in the DNN architecture.

Hyperparameter Number of Neurons Functions

Epochs 30 Layer 1 128 Activation ReLU
Minibatch size 128 Layer 2 64 Last

classification SoftmaxLearning rate 0.01 Layer 3 32
Optimizer Adam Layer 4 8 loss Cross-entropy
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Table 2 represents a summary of the estimation results obtained using deep learning.
The prepared data set for the DNN training comprises 28,000 pieces of data, with the ratio of
the training data to the validation data being 5:2. Under the conditions outlined in Table 1,
the training process takes approximately 70 s to complete, after which the output for a
single piece of input data is generated within milliseconds. The results presented in Table 2
show that a minimum of 5600 pieces of data are required to achieve a validation accuracy
of over 95% (for both duct and non-duct classification). To attain a validation accuracy of
over 98%, a minimum of 28,000 pieces of data are needed. In addition, further estimations
are conducted using actual observation data from the Heuksando observatory. The results
show that the DNN trained with 5600 pieces of data (validation accuracy of 95.99%) exhibits
a binary classification accuracy of 98.36%. The DNN trained with 28,000 pieces of data
(validation accuracy of 98.20%) achieves a binary classification accuracy of 99.06%, with an
F1-score of 0.9921.

Table 2. Summary of the estimation results obtained using deep learning.

Total Number of Data Items Validation Accuracy Prediction Accuracy with the
Heuksando Data

2800 94.35% 98.31%
5600 95.99% 98.36%
8400 96.63% 98.53%

11,200 97.43% 98.43%
14,000 97.77% 98.84%
28,000 98.20% 99.06%

Table 3 shows the comparisons with previous studies using DNN models for the RFC.
In Ref. [24], the slope and thickness of the ducts are estimated using the DNN model from
the sea clutter spectrum, but this study only used a small amount of training data, less
than 3000 samples. Refs. [25,26] used a large amount of data, more than 30,000 samples,
but cross-validation with the real data was not performed. On the other hand, our study
performed cross-validation using real atmospheric data. In addition, the proposed method
achieved a prediction accuracy of over 99% with a short estimation time of 160 milliseconds.
Furthermore, compared to the traditional methods for the RFC, such as the GA [20],
Kalman Filter [40], and look-up table matching [41], the proposed estimation method has
the advantages of being able to predict various atmospheric conditions in a short time
while using a relatively small number of preparation data items.

Table 3. Comparisons with previous studies using DNN models.

Proposed Method [24] [25] [26]

Training data set (max.) 28,000 3000 100,000 35,000
The number of layers 4 4 5 6

Total number of neurons 232 No specified 475 3000
Cross-validation data Real refractivity data - - -

4. Conclusions

We investigated the method for predicting atmospheric duct conditions from the
clutter power spectrum using deep learning. The input data set for the proposed RFC
method was the artificial clutter data, generated using the AREPS simulation software Ver.
3.6 in conjunction with random atmospheric refractive indices. The output of the RFC
method was then predicted via binary classification, indicating whether the atmospheric
conditions were duct or non-duct. The prepared data set for DNN training comprised
28,000 pieces of data, with the ratio of the training data to the validation data being 5:2.
The results showed that the proposed RFC methods required a minimum of 5600 pieces
of data to reach a validation accuracy of over 95%. A minimum of 28,000 data were
needed to reach a validation accuracy of over 98%. Furthermore, when using actual
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observation data from Heuksando, the DNN with 5600 pieces of data exhibited a binary
classification accuracy of 98.36%. The DNN with 28,000 pieces of data showed a binary
classification accuracy of 99.06%. These results demonstrated that the proposed RFC
method is suitable for application in real-time radar systems responsible for evaluating
the presence of a duct within a short time. The proposed method focused on classifying
the duct condition; thus, this method is not suitable for estimating the other atmospheric
conditions. Therefore, our future work will aim to predict all atmospheric conditions using
a multi-class classification method.
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