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Abstract: Cladophora qinghaiensis, an endemic species of Cladophora in saltwater lakes, was scientifically
named in 2021 (hereafter referred to as Cladophora). Cladophora exists in different morphologies,
including attached submerged Cladophora (AC), grown floating Cladophora (GFC), and death floating
Cladophora (DFC). Previous satellite remote sensing has mainly focused on identifying floating algae.
In this study, Qinghai Lake served as a case study, and a classification decision tree model (CDTM) was
proposed. The model employed the chlorophyll spectral index (CSI) and the normalized difference
vegetation index (NDVI) to differentiate AC, Floating Cladophora (FC), and water. Additionally, the
floating Cladophora index (FCI) was introduced to further distinguish GFC and DFC within FC. The
method was applicable to Sentinel-2 images from 2016–2023. Visual interpretation methods were
used for Landsat series images from the summer months (July to September) to obtain the AC and FC.
The results demonstrate that over the past 30 years, the areas inhabited by AC and FC have increased
gradually. The three morphologies of Cladophora also exhibited seasonal variations, with growth
observed annually in May–June, reaching peaks in August–September, and gradually declining
in October. In addition, by combining factors such as water surface area and climatic factors, we
analyzed the driving forces influencing the changes in Cladophora. In this research, AC and FC showed
significant correlations with the water surface area, with correlation coefficients (r) of approximately
0.9 and 0.7, respectively. These new findings provide valuable insights regarding the spatiotemporal
changes and underlying causes for different morphologies of Cladophora in global saline lakes.

Keywords: filamentous algae; Qinghai Lake; Sentinel-2; driving force; climatic factors

1. Introduction

Algal blooms are occurring frequently in numerous oceans and freshwaters world-
wide [1–11]. This phenomenon has certain economic and ecological impacts [12,13]. Tradi-
tional sampling methods are expensive, inefficient, and labor-intensive, yet fail to obtain
crucial information regarding the causes of these algal outbreaks. Satellite remote sensing
data can be used to mitigate these issues owing to their wide range, cost-effectiveness, and
periodicity [14]. At present, this type of data has been used to extract the area, degree,
and duration of algal outbreaks through spectral indices and classification methodolo-
gies [4,15–23]. Additionally, visual interpretation has been widely employed to obtain
increasingly precise information about algal blooms within a region [6,24–27].
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Cladophora qinghaiensis is an opportunistic and filamentous alga that thrives in saline
lakes [28]. Cladophora blooms are the most frequent in these lakes, particularly in Qinghai
Lake [29–33]. To adapt to the unique ecological environment of saline lakes like Qinghai
Lake, Cladophora exhibits different morphologies such as the attached and floating mor-
phologies [28,30,34]. Previous studies have focused mostly on remote sensing identification
of algae with singular morphologies [4,6,15–23]. Comparatively less attention has been
paid to algae with both floating and attached morphologies, owing to the high degree
of difficulty in identifying or distinguishing between them. Some scholars assume that
the spatial distribution of floating and attached algae does not overlap, and use the prior
knowledge of phenological differences among different morphological algae or aquatic
vegetation. These researchers have mapped the distribution areas of different morpho-
logical algae or aquatic vegetation [35,36]. However, this assumption largely relies on
prior knowledge and may not be applicable to identifying different morphological algae
in other lakes. Aquatic vegetation and algae share certain optical characteristics. Some
scholars have used trial and error, visual inspection, the classification decision tree model,
or spectral indices to identify different forms of aquatic vegetation [21,27,37–43]. Compared
with the remote sensing-based identification of the different morphologies of other algae
or aquatic vegetation, the remote sensing research of Cladophora has lagged. Moreover,
research has mainly focused on the remote sensing identification of floating Cladophora and
analyses of its influencing factors [32,33,44,45]. Knowledge of the recognition methods for
different morphologies of Cladophora is still lacking.

Based on previous field experimental data collection and document research, the
Cladophora morphologies include: attached submerged Cladophora (AC), grown floating
Cladophora (GFC), and death floating Cladophora (DFC) [46,47]. To comprehensively detail
the variations and growth causes of the different morphologies of Cladophora, we integrated
multi-source optical remote sensing images, constructed or utilized remote sensing identifi-
cation methods, obtained the distribution area of different morphologies of Cladophora from
1990 to 2023, and analyzed the spatiotemporal distribution characteristics of Cladophora in
different morphologies. Based on this approach, in conjunction with influencing factors
such as water surface area and climatic factors, we elucidate crucial concepts; examples
include the growing rule and the factors influencing Cladophora spread.

2. Materials
2.1. Study Area

Qinghai Lake is the most extensive inland plateau closed lake with salty water in
China, in which the areas with more frequent Cladophora occurrences are predominantly
within the gray range of Figure 1 [30,32]. The study area (latitude 36◦35′–37◦20′N; longitude
99◦35′–100◦20′E) is shown in Figure 1. These lake bays and river inlets are represented by
the regions enclosed in blue rectangles. The regions of interest (ROI) are defined as follows:
ROI 1 is the Shaliu River inlet, ROI 2 is the Buha River inlet, ROI 3 is Tiebuka Bay, and
ROI 4 is the Heima River inlet. The island, known as Bird Island, is situated within the
boundaries of the ROI 2 rectangle.

2.2. Data Source
2.2.1. Measured Data

Field experiments were conducted during May, September, and October 2020, July
and August 2021, and June 2022, for a total of seven experiments. We sampled 106 field
points with 22, 32, 21, 2, 5, 9 and 15 field points in those experiments, respectively. At each
field point, we observed that the FC exists directly above the AC, FC including GFC or DFC.
The field reflectance spectra of related objects (AC, GFC, DFC, and water), and the data of
each site(GPS position and photos) were recorded. A Field-SpecR3 spectroradiometer and
ATP9100 spectroradiometer were used to measure in situ reflectance spectra.
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Figure 1. The locations of field investigation samples collected from 2020 to 2022.

The in situ reflectance spectral data for AC, GFC, DFC and water were obtained by
directly measuring the object reflectance R (Equation (1)).

R(λ) =
Eu(λ)

Ed(λ)
(1)

where Eu(λ) refers to the upward irradiance of the water surface. Ed(λ) refers to the
downward irradiance the water surface.

We analyzed 30 spectra at each sampling point, removed outliers, and averaged the
remaining spectral reflectance values to obtain the mean reflectance spectra for AC, GFC,
DFC, and water (Figure 2).
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Figure 2. The mean reflective spectra of AC, GFC, DFC, and water.

In addition, to investigate the climatic factors that affect Cladophora changes, daily
climatic factors from 1990 to 2022, including temperature, precipitation, sunshine duration,
and wind speed, were selected for Guncha and Gonghe counties.
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2.2.2. Remote Sensing Images

We collected 262 remote sensing images covering the study area during in non-glacial
and less cloudy periods. These primarily included Thematic Mapper (TM), Enhanced
Thematic Mapper (ETM), and Operational Land Imager (OLI) images from the Landsat
series during the summers of 1990–2021 (July to September). Additionally, Sentinel Multi-
Spectral Imager (MSI) images from April 2016 to October 2023 were incorporated (Figure 3).
We further validated and evaluated the accuracy of other satellite data in Cladophora
identification using high-resolution remote sensing images. High-resolution remote sensing
images were from the Chinese Gaofen-1 (GF 1) panchromatic multispectral sensor (PMS).
From 2016 to 2023, Sentinel-2, Landsat series images and GF PMS images provided effective
data, we selected all non-glacial Sentinel-2 images which are known for their higher spatial
and temporal resolution, to identify different morphologies of Cladophora, and then Landsat
series images and GF PMS images were used for validation. From 1990 to 2015, the Landsat
series images during the summer months (July to September) were selected to identify
different morphologies of Cladophora.
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3. Methods
3.1. Remote Sensing Data Preprocessing

To ensure the geographic accuracy and consistency of remote sensing images, pre-
processing remote sensing images wase necessary. Level-1C (L1C) Sentinel-2 images were
downloaded from the European Space Agency (ESA) data-sharing website. First, the L1C
data were atmospherically corrected using Sen2cor v2.9 software provided by the ESA
to obtain Level-2A (L2A) surface reflectance data. Second, because Qinghai Lake was
positioned at the junction of the four Sentinel-2 images, cloudless images on the same day
were resampled and mosaicked together using the Sentinel Application Platform (SNAP)
v9.0 as recommended by the ESA.

In order to use Sentinel-2 to construct CDTM to identify the three forms of Cladophora,
we first need to simulate the reflectance Req of each band’s equivalent to those of the images
according to the measured reflectance spectra of AC, GFC, DFC, and water in the field, and
utilize the spectral response functions of Sentinel-2 MSI remote sensing images, as shown
in Equation (2):

Req =

∫
R(λ) fSRF(λ)F0(λ)d(λ)∫

fSRF(λ)F0(λ)d(λ)
(2)

where Req refers to the satellite band equivalent reflectance, R(λ) refers to the measured
remote sensing reflectance, f SRF(λ) refers to the spectral response function of the satellite,
and F0(λ) refers to the extra-atmospheric solar irradiance.

We subsequently obtained Level 1 Landsat series data, geometrically corrected and
radiometrically calibrated, from the U.S. Geological Survey website. The Landsat data
preprocessing steps included band combination and striping using ENVI 5.3 software.
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GF PMS image pre-processing involved image fusion and geometric and atmospheric
corrections [48].

3.2. Classification Decision Tree Model for Three Cladophora Morphologies Using Sentinel-2 Data
3.2.1. Spectral Characteristics and Indices Selection

As shown in Figure 4, the reflectance of water gradually approached zero near
0.665 µm. The reflectance spectra of the Cladophora in different morphologies resembled
those of vegetation at certain wavelengths because of the chlorophyll content. The spectrum
contained a reflection peak near 0.56 µm, a valley near 0.665 µm, and a “steep slope effect”
in 0.665–0.705 µm [49]. The chlorophyll spectral index (CSI) [50] was used to describe this
steep slope, Figure 4a red circles. Specifically, when CSI was below the threshold H, it was
considered water; otherwise, it was Cladophora. The CSI was calculated as follows:

CSI =
(Rrs(0.705)− Rrs(0.665))
(Rrs(0.705) + Rrs(0.665))

(3)
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distinguish Cladophora and water; (b) NDVI index used to distinguish AC and FC; (c) FCI index used
to identify GFC and DFC.

The reflectance spectrum of AC displayed spectral features of vegetation and water,
which resembled those of submerged plants [49]. Owing to the unique physicochemical
properties and geographical location of Qinghai Lake, aquatic plants were extremely
scarce [29]. When aquatic plants and AC coexist in the lake, they are identified along
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with the AC. AC exhibited a downward and an approximate flat trend between 0.665 and
0.842 µm (Figure 4b red circles), whereas the GFC and DFC showed an upward trend from
0.665 to 0.842 µm. The normalized difference vegetation index (NDVI) was used [51,52] to
identify AC and FC. If the NDVI was below threshold I, it was AC; otherwise, it was FC
(including GFC and DFC). NDVI was calculated as follows:

NDVI =
(Rrs(0.842)− Rrs(0.665))
(Rrs(0.842) + Rrs(0.665))

(4)

The GFC reflectance spectrum showed an upward steep slope from 0.665 to 0.74 µm
and formed a high reflectivity platform between 0.74 and 0.842 µm. The DFC reflectance
spectrum showed a low-reflectivity platform at approximately 0.783 µm. A floating
Cladophora index (FCI) was applied to separate the GFC and DFC, depending on the
difference in the near 0.783 µm. Geometrically, the FCI value can be described as the
distance of the red arrow in Figure 4c, which starts from the reflectance of 0.783 µm and
ends on the line connecting the reflectance of 0.665 µm and 0.843 µm. If the FCI was below
the threshold of J, Cladophora was considered DFC; otherwise, it was regarded as GFC. The
FCI was calculated as follows:

FCI = [Rrs(0.783)− Rrs(0.665)− ((Rrs(0.842)− Rrs(0.665)))× (0.783 − 0.665)/(0.842 − 0.665)] (5)

3.2.2. Classification Decision Tree Model and Threshold Selection

The CDTM based on Sentinel-2 images consists of four steps (Figure 5). Step 1: using
the remote sensing reflectance image generated by pre-processed Sentinel-2 images as the
input, the boundary containing Cladophora and water is obtained by visual interpretation
and image cropping. Step 2: the water and Cladophora regions are distinguished by CSI
with threshold H. Step 3: the NDVI and threshold I are used to identify Cladophora with
different morphologies obtaining the AC and FC regions. Step 4: the FCI and threshold J
are used to distinguish the GFC and DFC.

Specifically, at the same location directly above AC, another morphology of Cladophora,
such as GFC or DFC, may simultaneously exist. To avoid situations where Cladophora coex-
ists, we simultaneously evaluated the distribution areas of GFC and DFC when calculating
the distribution area of AC.

Appropriate thresholds for CDTM are essential for ensuring identification accuracy.
The CSI, NDVI, and FCI indices were calculated to distinguish water, AC, GFC, and DFC
with in situ reflectance spectral data collected on 87 AC, 106 GFC, 27 DFC, and 87 water in
2020–2022. All of these indices were calculated by in situ measured reflectance in simulated
Sentinel-2 bands (Figure 6).

The modelled Sentinel-2 bands of 0.665 µm and 0.705 µm were selected to calculate CSI,
and the value with no overlap between the water maximum and the Cladophora (AC, GFC,
DFC) minimum was chosen as threshold H, about 0,as shown in Figure 6a. Similarly, NDVI
and FCI were calculated based on simulated Sentinel-2 bands, with the corresponding
indices being selected thresholds I and J, about 0.05 and −0.1, respectively. The index
thresholds were effectively separating categories AC, GFC, and DFC (Figure 6b,c). This
study provides thresholds that are all estimates.
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3.3. Visual Interpretation for Two Cladophora Morphologies Using Landsat

The Landsat series satellite images are limited by the sensor’s lack of the two necessary
red-edged bands, making it difficult to distinguish the two morphological characteristics
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(GFC and DFC) of Floating Cladophora (FC). For Landsat series images, we chose not
to distinguish between GFC and DFC within the FC, so only floating Cladophora (FC)
and attached submerged Cladophora (AC) were identified. The area of two Cladophora
morphologies in Landsat satellite images was evaluated using a visual interpretation
method that can be used for validation.

We also established, by field experiments, that AC exists below FC in the vertical
direction. Therefore, for Landsat series satellite images, FC is included in the AC visual
interpretation results (Table 1).

Table 1. Criteria for the visual interpretation of Cladophora in different areas of Qinghai Lake.

Locations Floating Cladophora (FC) Attached Submerged Cladophora (AC)

Characteristics

Shape: Discontinuous distribution in
fragmented blocks
Spatial distribution: Near the water–land
interface of inflowing rivers and lake bays

Shape: Irregular distribution in
continuous patches
Spatial distribution: Near the water–land
interface of inflowing rivers and lake bays

Shaliu River inlet (ROI1)
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Table 1. Cont.

Locations Floating Cladophora (FC) Attached Submerged Cladophora (AC)

Heima River inlet (ROI4)
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where n represents the number of points; Ri and Rj are the predicted and true values,
respectively. Vx and Vy are the sensor I and sensor II, respectively.

4. Results
4.1. Interannual Variation Characteristics of Three Cladophora Morphologies

In this study, we counted the area distributed by Cladophora during the three mor-
phologies of the annual non-ice periods (April to October) from 2016 to 2023. The seasonal
variation in areas was similar for the AC, GFC and DFC, as shown in Figure 7. This began
annually in May and June, peaked in August and September, and then gradually decreased
in October. The AC showed an intra-annual maximum area of approximately 30 km2 in
2016–2017 and 60 km2 in 2018–2023. The AC area increased significantly from 2017 to 2018
and then became stable. Compared to the AC area, the GFC area was relatively small and
stable, with a maximum of approximately 15 km2 per year. In 2021, the maximum area
suddenly increased to 20 km2. Among the areas of the three types of Cladophora, the area of
DFC was minimal and the least variable. In 2023, the maximum area suddenly increases
to 4 km².
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Figure 7. AC, GFC, and DFC areas obtained by classification decision tree model using Sentinel-2.

4.2. Interannual Spatiotemporal Characteristics of Two Morphologies Cladophora

To explore the long-term variation in the different morphologies of Cladophora, we
utilized various remote sensing data sources, including Sentinel-2 and Landsat series, to
obtain information on changes in the two morphologies of Cladophora (AC and FC) over an
extended period. Over the past 30 years, these morphologies have exhibited a gradual upward
trend, and both morphologies have a longstanding history, as shown in Figure 8. Spatially,
the two morphologies occurred in most of the shallow near-shore waters of the study area.
In particular, the inlet of the Buha River and the area surrounding Bird Island, where AC
and FC were aggregated, had the largest area of distribution, followed by the areas of Bay of
Tiebuka Lake, the Shaliu River inlet, and the Heima River inlet following. Around 1990, AC
and FC areas were approximately 20 km2 and 7 km2, respectively. These areas were lowest
during 2005–2011; AC and FC areas were approximately 10 km2 and 5 km2, respectively.
This finding matches with the results of previous research [53,54]. After 2011, the Cladophora
distribution gradually increased, and the AC and FC area increased approximately to 20 km2

and 10 km2, respectively. During 2015–2023, the Cladophora area increased annually, with the
annual maximum areas distributed by an AC and FC of approximately 60 km2 and 20 km2,
respectively. Similar conclusions were reported by Zhu et al. [32].
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Figure 8. The spatiotemporal distribution of AC and FC.

4.3. Comparison of Cladophora Classification from Different Remote Sensing Images
4.3.1. Validating the Identification Accuracy of Cladophora Using High Resolution Images

To validate the Cladophora identification areas of Sentinel-2 and Landsat OLI images,
two quantitative evaluation indicators, RMSE and MRE, were selected. This paper uses
the identification areas Cladophora in high-resolution remote sensing images GF PMS as
nearly the true areas, to describe quantitatively the Sentinel-2 CDTM in identifying three
morphologies Cladophora, and the Landsat OLI visual interpretation in identifying two
morphologies Cladophora.

First, to verify the accuracy of the Sentinel-2 CDTM in identifying AC, GFC, and DFC,
a total of two periods were selected for comparison of Sentinel-2 and GF PMS images.
Specifically, the respective selected dates were 28 August 2020, and 7 October 2020. Owing
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to the small number of synchronously collected images, we also selected regions of interest
(ROI) 1, 2, 3, and 4 for comparison while comparing the total area of Cladophora within
the study area (Figure 1). Figure 9 shows the areas obtained by visual interpretation and
CDTM, indicating that for the three types of Cladophora, the areas obtained by CDTM were
consistent with the ground truth data. Specifically, for AC, GFC, and DFC, the MREs
were 10.36, 17.17, and 18.97%, respectively, and the RMSEs were 2.06, 0.71, and 0.07 km2,
respectively. This demonstrates that the proposed CDTM had a high accuracy and could
effectively distinguish between AC, GFC, and DFC.
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Figure 9. Validation of Sentinel-2 MSI and Landsat OLI images for Cladophora identification accuracy
using high-resolution images (GF PMS). (a) AC area based on Sentinel-2 MSI and GF PMS images.
(b) GFC area based on Sentinel-2 MSI and GF PMS images. (c) DFC area based on Sentinel-2 MSI
and GF PMS images. (d) AC area based on Landsat OLI and GF PMS images. (e) FC area based on
Landsat OLI and GF PMS images.

Secondly, using GF PMS images as the reference data, Landsat images collected
on August 25, 2020 with a 30 m resolution were selected for comparison. The MREs
of the AC and FC areas were 24.31 and 55.23% and the RMSE values were 3.25 and
1.86 km2, respectively.

The distributions of the different morphologies of Cladophora were near-identical while
the areal differences were minor. This indicates that the two data sources, Sentinel-2 and
Landsat, were in close real situations.

4.3.2. Cross-Validating Landsat and Sentinel-2-Based Identification of Cladophora

To investigate the consistency of different sensors in identifying the area of Cladophora,
the AURE was selected as the evaluation indicator to verify the similarity in Cladophora
identification between different sensors. We cross-validated the following data from differ-
ent sensors that passed over the same area at nearly the same time: Landsat TM and ETM,
Sentinel-2 and Landsat OLI, and Sentinel-2 and ETM (Figure 10).



Remote Sens. 2024, 16, 602 13 of 20

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 20 
 

 

Figure 9. Validation of Sentinel-2 MSI and Landsat OLI images for Cladophora identification accuracy 
using high-resolution images (GF PMS). (a) AC area based on Sentinel-2 MSI and GF PMS images. 
(b) GFC area based on Sentinel-2 MSI and GF PMS images. (c) DFC area based on Sentinel-2 MSI 
and GF PMS images. (d) AC area based on Landsat OLI and GF PMS images. (e) FC area based on 
Landsat OLI and GF PMS images. 

4.3.2. Cross-Validating Landsat and Sentinel-2-Based Identification of Cladophora 
To investigate the consistency of different sensors in identifying the area of Clado-

phora, the AURE was selected as the evaluation indicator to verify the similarity in Clado-
phora identification between different sensors. We cross-validated the following data from 
different sensors that passed over the same area at nearly the same time: Landsat TM and 
ETM, Sentinel-2 and Landsat OLI, and Sentinel-2 and ETM (Figure 10). 

To compare the consistency of different sensors in identifying Cladophora algae area, 
Landsat TM and ETM were compared for four groups of images taken eight days apart. 
The AURE values of the AC and FC areas were 0.13 and 0.2%, respectively. While com-
paring the identification of AC and FC areas using six-period Sentinel-2 images and Land-
sat OLI images, the AURE values were 0.09 and 0.17%, respectively. In addition, seven 
groups of images of Sentinel-2 and Landsat ETM, which were taken within three days, 
were selected for comparison. The AUREs of AC and FC were 0.07 and 0.2%, respectively. 

Overall, there were some differences between various remote sensing data sources in 
the consistency of identifying algal areas. However, these differences likely did not impact 
the overall identification results of algae areas significantly. 

   
(a) (b) (c) 

Figure 10. Consistency comparison among different data sources: (a) AC and FC inhabited areas 
determined based on Landsat TM and ETM images. (b) AC and FC inhabited areas determined 
based on Sentinel-2 MSI and Landsat OLI images. (c) AC and FC inhabited areas determined based 
on Sentinel-2 MSI and Landsat ETM images. 

5. Discussion 
5.1. The Applicability of Classification Decision Tree Model to Other Spectral Indices 

In Step 3 of the proposed classification decision tree model, NDVI is used to distin-
guish AC and FC. To evaluate the applicability of the proposed CDTM when using other 
spectral indices, this section uses the enhanced vegetation index (EVI) [55], adjusted float-
ing algae index (AFAI) [56], floating algae index (FAI) [19], and virtual-baseline floating 
algae height (VB-FAH) [9] to identify Cladophora instead of NDVI. These indices are calcu-
lated as follows: 

( ) ( )= × − + × − × +rs rs rs rEVI / 1 2 3s rsG R R R C R C R C（0.842） （0.665） （0.842） （0.665） （0.490）
 

(9)

( )= − + − ×rs rs rs rsAFAI 0.5R R R R（0.842） （0.665） （1.610） （0.665）
 

(10)

Figure 10. Consistency comparison among different data sources: (a) AC and FC inhabited areas
determined based on Landsat TM and ETM images. (b) AC and FC inhabited areas determined based
on Sentinel-2 MSI and Landsat OLI images. (c) AC and FC inhabited areas determined based on
Sentinel-2 MSI and Landsat ETM images.

To compare the consistency of different sensors in identifying Cladophora algae area,
Landsat TM and ETM were compared for four groups of images taken eight days apart. The
AURE values of the AC and FC areas were 0.13 and 0.2%, respectively. While comparing
the identification of AC and FC areas using six-period Sentinel-2 images and Landsat OLI
images, the AURE values were 0.09 and 0.17%, respectively. In addition, seven groups of
images of Sentinel-2 and Landsat ETM, which were taken within three days, were selected
for comparison. The AUREs of AC and FC were 0.07 and 0.2%, respectively.

Overall, there were some differences between various remote sensing data sources in
the consistency of identifying algal areas. However, these differences likely did not impact
the overall identification results of algae areas significantly.

5. Discussion
5.1. The Applicability of Classification Decision Tree Model to Other Spectral Indices

In Step 3 of the proposed classification decision tree model, NDVI is used to distinguish
AC and FC. To evaluate the applicability of the proposed CDTM when using other spectral
indices, this section uses the enhanced vegetation index (EVI) [55], adjusted floating algae
index (AFAI) [56], floating algae index (FAI) [19], and virtual-baseline floating algae height
(VB-FAH) [9] to identify Cladophora instead of NDVI. These indices are calculated as follows:

EVI=G × (Rrs(0.842)− Rrs(0.665))/(Rrs(0.842) + C1 × Rrs(0.665)− C2 × Rrs(0.490) + C3) (9)

AFAI = Rrs(0.842)− Rrs(0.665) + (Rrs(1.610)− Rrs(0.665))× 0.5 (10)

FAI = Rrs(0.842)− R′
rs(0.842)

R′
rs(0.842) = Rrs(0.665) + (Rrs(1.610)− Rrs(0.665))× (0.842 − 0.665)/(1.610 − 0.665)

(11)

VB − FAH = (Rrs(0.842)− Rrs(0.560)) + (Rrs(0.560)− Rrs(0.665))(0.842 − 0.560)/(2 × 0.842 − 0.665 − 0.560) (12)

where G is the gain coefficient, with a value of 2.5; C1, C2, and C3 are empirical coefficients
with values 2.5, 6, 7.5, and 1, respectively.

Additionally, Sentinel-2 images of 3 September 2020, are selected because of the lack
of images on the date of the field experiment (2 September 2020) (Figure 11a). The AC and
FC are first identified in steps 1 and 2 of CDTM using other indices. The AC and FC areas
obtained by visual interpretation are accurate.
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Figure 11. The identified AC and FC results by different spectral indices. (a) the field experiment on
2 September 2020, with true color background images from 2 September 2020 Sentinel-2 image; (b)
the FC results from NDVI; (c) the FC results from EVI; (d) the FC results from AFAI; (e) the FC results
from FAI; and (f) the FC results from VB-FAH.

The results are shown in Figure 11b–f. In comparison, the spectral indices of EVI,
AFAI, FAI, and VB-FAH are as effective as NDVI for distinguishing AC and FC. The
spatial distribution area obtained by using the above indices is similar to those obtained
by using NDVI and is in line with the actual survey. Therefore, all these indices can
replace NDVI in this study, and they have the potential to distinguish AC and FC using
the proposed CDTM. Using index thresholds to classify submerged macroalgae (AC in
this case) is challenging, and more robust models are necessary to improve the accuracy of
detection [57]. However, the well-quantified floating macroalgae (FC in this case) in surface
water with more reliability showed an increasing trend with the increase in water area of
Qinghai Lake (Figure 8).

5.2. Analysis of Driving Forces Affecting Changes in Cladophora
5.2.1. Water Surface Area

This study obtained different morphologies of Cladophora (AC and FC) in Qinghai
Lake from 1990 to 2023 using visual interpretation and CDTM remote sensing identification
methods. Simultaneously, the water surface area of the study region was obtained through
visual interpretation. We are surprised that the variation trends of AC and water surface
area are highly consistent, the correlation coefficient (r) is 0.9, as shown in Figure 12a; this
shows the primary factor in the AC variation is water level. FC also exhibited consistency
with the variation in water surface area, and r was 0.7, as shown in Figure 12b, which
indicated a certain correlation between FC and water surface area. The result was consistent
with those of Wang et al. [44] and Hao et al. [45], who also concluded that FC variations
were associated with nutrient inputs from livestock and wildlife drinking, feeding, and
defecating, in addition to water surface area factors.
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Spatially, we found the area with the most frequent occurrence of Cladophora in Bird
Island (the area circled in Figure 8) and the area with a large number of waterbirds [58,59].
Spatially, we found that the area of Bird Island (the boxed area in Figure 8), where Cladophora
frequently occur, greatly overlapped with the area where waterbirds were significantly
distributed in Qinghai Lake. Temporally, the seasonal migration time of waterbirds also
matches basically with the seasonal growth of Cladophora. Therefore, we have reason to
hypothesize that in addition to animal husbandry, waterbirds are also promoting the occur-
rence of Cladophora. Waterbirds feeding and inhabiting the site and it accumulates abundant
high-phosphorus bird guano. Phosphorus (P) is a nutrient produced by the decomposition
of excrements and its facilitation for Cladophora growth has been demonstrated in several
studies [58,59].

5.2.2. Climatic Factors

Climatic factors, including temperature, precipitation, sunshine hours, and wind
speed, constitute conditions influencing the regular seasonal variations in Cladophora. To
explore these influences, the areas of AC and FC were incorporated to determine their
correlations with climatic factors. As shown in Figures 7 and 8, large outbreaks of Cladophora
were observed in the summers (August–September) of 2015–2023. However, the outbreak of
Cladophora is a process that occurs in different stages, namely, formation, release, attachment,
and the death of zoospores [60], among which the formation of zoospores entails an
extended timeframe. Hence, data on temperature, precipitation, sunshine duration, and
wind speed within a given period (5 days, 7 days, 2 weeks, and 1 month) before the
Cladophora outbreak were selected. A high correlation was observed between climatic
factors and the area of the outbreak 1–5 d prior to the outbreak, which coincided with the
growth cycle and seasonal dynamics of the population.

Figure 13 displays the correlation of the selected climatic factors with the respective
areas of AC and FC. Both precipitation and sunshine duration had an r of approximately
0.02–0.27, as shown in Figure 13a,c, demonstrating that precipitation and sunshine duration
may not be the primary factors contributing to Cladophora outbreaks. In Figure 13b, the
temperature, generally correlates with the areas of AC and FC, with r values of 0.37 and
0.26, respectively. The direct impact of temperature on algal growth and reproduction
is determined by the water temperature. Heat from the atmosphere enters the water
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body through processes such as convection, conduction, or radiation, influencing water
temperature changes, and thus indirectly affecting algal growth [61].
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Furthermore, as shown in Figure 13d, the wind speed is positively correlated with the
distribution area of the FC, with an r value of 0.6. A feasible explanation for this result is as
follows: When the wind speed is high, the increased impact force of water flow encourages
the expansion of the Cladophora, and under the continuous action of wind and waves, the
Cladophora plants break and float, thereby accelerating the formation of FC.

5.3. CDTM Applicability Analysis

When factors such as suspended material, lake bottom substrate, and cloud shadow
coincide with Cladophora in the shallow waters of Qinghai Lake, the CDTM model demon-
strates high applicability. In this study, we extracted reflectance values from Sentinel-2
remote sensing images for various features, including water, AC, areas with high sus-
pended material concentration at river–lake confluence (ROI 1,2), sparse Cladophora (ROI 3),
and cloud shadows (ROI 4), as shown in Figure 14.
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The Qinghai Lake has as a whole clear water, with a transparency ranging from
1.5 to 9.5 m, and a maximum of 10.0 m. The water quality of the lake is very clear. The water
reflectance was unaffected by the suspended material. In some specific areas, particularly
at the river–lake confluence (ROI 1) and (ROI 2), the influence of inflowing river currents
‘plume’ results in slightly lower transparency in these shallow water compared to the overall
of Qinghai Lake. The aforementioned conditions do not affect the CDTM identification of
Cladophora. The strong hydrodynamics at the river–lake confluence prevent the attachment
and growth of Cladophora.

Due to the spectral similarity between sparse Cladophora (ROI 3) and cloud shadows
(ROI 4) with water, this study utilizes the CSI index to directly eliminate features with
water-like reflectance characteristics.

6. Conclusions

Combining the characteristics of various remote sensing data in identifying Cladophora,
two sets of remote sensing methods were constructed and utilized to recognize these
morphologies. These methods were then applied to long-term remote sensing images to
analyze the spatiotemporal distribution and influencing factors of different morphologies
of Cladophora.

We propose a new classification tree method based on Sentinel-2 images for remote
sensing identification of AC, GFC, and DFC areas. The study revealed a seasonal growth
pattern for the three morphologies of Cladophora, with peak growth in May and June,
maximum areas in August and September, and a gradual decline in October.

Furthermore, this study combined Landsat and Sentinel-2 images to analyze the
areal changes in two morphologies of Cladophora from 1990 to 2023; both showed an
increasing trend during this period, thereby demonstrating their longstanding existence. A
comparison of Cladophora area identification among different sensors, including GF PMS,



Remote Sens. 2024, 16, 602 18 of 20

Sentinel-2, Landsat TM, ETM, and OLI, revealed minor differences that did not significantly
impact the overall results.

Additionally, we analyzed the influence of factors such as water surface area and
meteorological elements on the areal changes in different morphologies of Cladophora. The
results indicate positive correlations between the areas of FC and AC with water surface
area, with correlation coefficients (r) of 0.7 and 0.9, respectively. The water surface area
appeared to be a primary factor influencing Cladophora area changes. Furthermore, climatic
factors except wind speed had no influence on the growth of Cladophora.

In this article, we provide the morphological characteristics of Cladophora and its
spatio-temporal variations in saltwater lakes, which provides a scientific foundation for
further exploring driving factors influencing the different morphologies of Cladophora.
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