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Abstract: The array interferometric synthetic aperture radar (Array InSAR) system resolves shadow
issues by employing two scans in opposite directions, facilitating the acquisition of a comprehensive
three-dimensional representation of the observed scene. The point clouds obtained from the two
scans need to be transformed into the same coordinate system using registration techniques to create
a more comprehensive visual representation. However, the two-point clouds lack corresponding
points and exhibit distinct geometric distortions, thereby preventing direct registration. This paper
analyzes the error characteristics of array InSAR point clouds and proposes a robust registration
method for array InSAR point clouds in urban scenes. It represents the 3D information of the point
clouds using images, with pixel positions corresponding to the azimuth and ground range directions.
Pixel intensity denotes the average height of points within the pixel. The KAZE algorithm and
enhanced matching approach are used to obtain the homonymous points of two images, subsequently
determining the transformation relationship between them. Experimental results with actual data
demonstrate that, for architectural elements within urban scenes, the relative angular differences of
registered facades are below 0.5◦. As for ground elements, the Root Mean Square Error (RMSE) after
registration is less than 1.5 m, thus validating the superiority of the proposed method.

Keywords: array interferometric synthetic aperture radar (Array InSAR); KAZE; point clouds registration;
flattened phase error; RANSAC

1. Introduction

Recently, 3D imaging techniques have witnessed rapid development. Compared
with 2D images, point clouds have the ability to capture the precise spatial structures
and geometric features of objects. By analyzing and processing point clouds, valuable
information such as distances, angles, and occlusion relationships between objects can be
extracted, making it of great significance in applications such as robot navigation [1], map
creation [2], environmental reconstruction [3], and virtual reality [4].

Laser scanning technology [5,6], photogrammetric stereo matching [7,8], and array
InSAR [9] are the primary methods for acquiring point clouds. In contrast to optical sensors,
SAR exhibits excellent imaging capabilities even under adverse weather conditions. By
deploying multiple antennas in the across-track direction, array InSAR enables multi-angle
observations of the target scene. It effectively addresses the problem of overlap between
targets and terrain in 2D images, significantly enhancing the capabilities of target detection,
identification, and detailed interpretation [10].

In urban scenes, microwaves emitted by radar are often obstructed by artificial fa-
cilities, leading to incomplete point clouds generated from a single scan. In practical
applications, point cloud registration techniques are typically required to match and fuse
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point clouds acquired from different scans. Figure 1 presents a schematic diagram illustrat-
ing the acquisition of complete 3D information of urban scenes through two scans.
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Figure 1. Airborne array InSAR acquires complete 3D information of an urban area through two
flight tests.

Two flight tests were conducted from opposing directions to image and generate point
clouds. Firstly, disparities in shadow positions and the anisotropy of scatterers result in a
lack of corresponding points between the two scans. Additionally, the SAR point cloud
contains a substantial number of outliers, attributed partly to multiple scattering effects
and partly originating from the super-resolution imaging algorithm. Subsequently, the SAR
point cloud requires a transformation from the azimuth-range-elevation coordinate system
to the azimuth-ground range-height coordinate system. Discrepancies in the selection of
reference heights lead to conspicuous vertical and ground range offsets in the point clouds,
as well as a stretching effect along the ground range direction [11], resulting, as illustrated in
Figure 2. Lastly, airborne array InSAR exhibits significant changes in local incidence angles
within the spatial domain, introducing supplementary geometric approximation errors [12].
In a word, the registration of array InSAR point clouds faces substantial challenges.
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Figure 2. Capture geometry of the two tracks.

Conventional point cloud registration typically follows a strategy of coarse registration
followed by fine registration [13]. The purpose of coarse registration is to find a suitable
initial transformation that serves as a foundation for subsequent fine registration. Fine
registration involves refining the initial transformation matrix through multiple iterative
optimization steps to achieve a global optimum.

Coarse registration of point clouds typically involves extracting geometric features
from the point cloud. These features can be categorized as point-based, line-based, and
surface-based. Barnea applied the Scale-Invariant Feature Transform (SIFT) to laser point
cloud registration [14]. Aiger introduced a method called Four-Point Congruent Sets (4PCS),
which utilized the invariant property of the ratio of lines formed by four coplanar points,
achieving global point cloud registration [15]. Compared to points, lines possess stronger
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geometric topological characteristics and are easier to extract. Jaw proposed a line-based
registration method, where the matching of 3D line features is constrained by angle and
distance [16]. Cheng Liang presented a hierarchical registration method based on 3D road
networks and building outlines [17]. Lee extracted line features by utilizing the intersection
points of adjacent planes and adjusted the differences between overlapping data using
these line features [18]. Surface features contain more information compared to point or
line features and are less affected by noise. Researchers generally use methods such as least
squares, random sample consensus (RANSAC), and principal component analysis (PCA)
for surface fitting. The minimum sum of squared Euclidean distances between surfaces is
taken for the objective function [19].

One of the most classical methods for fine registration is the Iterative Closest Point
(ICP) algorithm [20]. Through iterative optimization, the ICP algorithm aims to align the
positions of two sets of point clouds as closely as possible. K. AL-Durgham combined the
RANSAC method with the SIFT operator, effectively addressing the registration problem
without local features [21]. Eijiro proposed the Normal Distribution Transform (NDT)
method [22], which converts point clouds in a 3D grid into probability distribution functions.
The probability distribution of each position measurement sample in the grid follows a
normal distribution. By optimizing the normal distribution probabilities of two point
clouds using the Hessian matrix method, fine registration is achieved. These methods
assume that one point set is a subset of the other. When this assumption is invalid, it leads
to false matches [23].

In recent years, the success of deep learning in advanced visual tasks has extended
to the domain of point cloud processing. PointNet [24] and PointNet++ [25] represent
two significant milestones. PointNet generates a descriptor for each point, while Point-
Net++ is a key technology for extracting local information from point clouds. The crucial
stage involves the set abstraction module, composed of sampling, grouping, and PointNet
components. Subsequently, numerous researchers have adopted learning-based tech-
niques [26–29] for point cloud registration. The objective of these techniques is to extract
features from 3D points and find accurate corresponding points, followed by the estimation
of transformations using these corresponding points.

The aforementioned methods are widely applied in the registration of laser point
clouds. However, for array InSAR point clouds, it is a challenge to extract matching
features from the 3D information of point clouds. Dr. Zhu proposed an approach to
extract the L-shaped structures of buildings in tomographic SAR point clouds and achieve
automatic registration of point clouds from different scans [30]. Dr. Tong from Tongji
University proposed a method that utilizes the constraint of parallel building facades to
match specific pairs of building facades [31]. However, the bottom scenes of buildings have
holes due to occlusion, and there is a large amount of noise below the building facades due
to third-order scattering [32]. The fitted building facades exhibit large errors. Additionally,
the stretching phenomenon within the ground range of the point clouds has not been taken
into account. To address these challenges, this paper proposes a novel method for the
registration of array InSAR point clouds.

In this study, we first correct the flattened phase error caused by the differences in
local incidence angles. For point clouds of large urban scenes, the ground range can be
several hundred meters or more, and the flattened phase error caused by the differences
in local incidence angles cannot be ignored. The height variation of the ground points is
relatively flat, which allows us to easily calculate the relationship between point cloud
height and ground range and correct the flattened phase error. Next, we project the
corrected point cloud onto the x–y plane and divide the plane into grids, which serve as
pixels for generating grayscale images. The pixel intensity is represented by the average
height of the points falling within each grid. The quality of the generated images is
subpar, and utilizing traditional image-matching methods makes it challenging to attain the
transformation relationship between the two images. We utilize the KAZE [33] algorithm
to extract feature points from both the original and blurred images. The stable feature
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point refers to a feature point in the original image for which there exists a feature point
in the blurred image that is sufficiently close to it. Next, we filter matching point pairs
from the stable feature points in the images. The transformation relationship between point
clouds in the azimuth and ground range directions is calculated based on the positional
relationship of the matching points. The height offset between point clouds is represented
by the average intensity difference of the matching points. In summary, this method makes
two main contributions:

1. An analysis was conducted on the height errors in airborne array InSAR point clouds
caused by local incidence angle variations, followed by their subsequent correction.

2. The KAZE algorithm was introduced into the point cloud registration problem, and a
method for selecting robust feature points was proposed to address the registration of
array InSAR point clouds.

2. Methods

The main challenge in effectively fusing array InSAR point clouds lies in the inability
to extract stable feature points and determine true corresponding matching points in the
3D information. The proposed workflow for point cloud registration is shown in Figure 3.
Firstly, the flattened phase error caused by local incidence angle differences is corrected.
Then, the point cloud is projected onto the ground to generate a grayscale image, where
the pixel intensity represents the average height of the points within the pixel. To obtain
stable feature points, the KAZE algorithm is employed to extract feature points from both
the grayscale image and the image with applied defocus blur, and a distance threshold
is set to select stable feature points. Subsequently, the nearest neighbor distance ratio
(NNDR) strategy and vector consistency are employed to determine the matching points
between the two images. The position of the matching points is used to determine the
transformation relationship in the azimuth and ground range directions of the two flight
test point clouds. The pixel intensity of the matching points is utilized to determine the
height offset between the two point clouds.
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Figure 3. Algorithm flow.

2.1. Flattened Phase Error Correction

The multi-channel images of the airborne array InSAR are obtained simultaneously,
so there is no temporal decoherence factor, and it is only sensitive to the target elevation.
The phase component of airborne array InSAR is composed of flat earth effect, height, and
system noise [12]. Figure 4a illustrates the geometric configuration of radar interferometry
in relation to the flattened phase. In the process of interferometry, a reference object is
essential to mitigate the impact of the flat earth effect. Due to the nature of radar imaging,
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it becomes challenging to distinguish scatterers that are equidistant from the radar. Thus,
considering a point p with a relative height of h, an equivalent point r is specified to
calculate the flattened phase, local incident angle, and perpendicular baseline. Then h can
be defined as follows:

h = R cos θr − R cos θp (1)

where R is the slant range and θp is the local incident angle. θr is the equivalent incident
angle for calculating flat earth effect.
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Figure 4. Calculate target height using local incidence angle of reference point. (a) InSAR system geometric
model. (b) Simulation of the relationship between the height error and ground range position.

In fact, the actual local incident angle θp cannot be obtained. In conventional pro-
cessing, the local incident angle is substituted for the equivalent incident angle θr on the
reference body. At this time, h can be expressed as

h =
λR sin θr

4πB cos(θr − α)
(ϕp − ϕr) (2)

where ϕp and ϕr are the interference phases of point p and point r, respectively, and B
denotes the length of baseline. The following can be obtained through the combined
calculation of Equations (1) and (2):

∆h = R cos θr − R cos θp −
λR sin θr

4πB cos(θr − α)
(ϕp − ϕr) (3)

And according to the geometric relationship shown in Figure 4a, ϕp and ϕr can be
represented as

ϕp =
4π(R −

√
B2 + R2 − 2BR sin(θp − α))

λ
(4)

ϕr =
4π(R −

√
B2 + R2 − 2BR sin(θr − α))

λ
(5)

The ground range position of the point p is y, according to geometric relationships, y
can be represented by R and ϕp.

y = R· sin θp (6)

By substituting Equations (4)–(6) into Equation (3), setting the baseline inclination
angle α to 0, the relationship between ∆h and y can be obtained as follows:

∆h = h −

√
(H − h)2 + y2·

(√
B2 − 2B

√
h2 − 2Hh + y2 + (H − h)2 + y2 −

√
B2 − 2By + (H − h)2 + y2

)
·
√

h2 − 2Hh + y2

H
(7)
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The ∆h is related to the radar platform height H, target height h, and local incidence
angle θp (corresponding to y). For a point cloud generated from a single flight, the height
of the radar platform remains constant, thereby exerting an equal influence on the measure-
ment errors. The error impact caused by the height factor of the same target is equivalent
between two flights. Hence, we solely consider the influence of the local incidence angle
on height errors and aim to establish the relationship between height errors and ground
range positions. Based on Equation (3) and the simulation parameters from Table 1, the
relationship between height error and ground range position is simulated, as shown in
Figure 4b.

Table 1. Simulation parameters.

H/(m) λ/(cm) h/(m) B/(m) θP/(◦)

4000 2 100 2 20–45

Expanding Equation (7) in a Taylor series, where the series is finite, and the highest
power term is a 5th-order term. The magnitudes of the third, fourth, and fifth-order terms
are 10−8, 10−11 and 10−14, respectively. In this paper, we can neglect terms of the third
order and higher. In response to the ∆h, we assume that the urban terrain is a flat plane. The
plan is to extract the ground portion and fit a quadratic function to model the relationship
between height and ground distance. According to the analysis in [34], among the various
filtering algorithms, morphology-based filters have demonstrated the best performance
in extracting the ground in urban scenes. Morphology-based filters primarily rely on two
fundamental operations: dilation and erosion. These operations, in combination, give
rise to opening and closing operations, which are employed for point cloud filtering. The
method rasterizes the original point cloud based on the lowest points within a given
window size and subsequently processes it using an opening operation. Points for which
the height difference before and after the operation is less than a specified tolerance are
labeled as ground points. It is evident that the performance of this filtering technique is
greatly influenced by the choice of window size, making it challenging to strike a balance
between removing large-sized objects and retaining detailed ground features. As shown
in Figure 5, the progressive morphological filters proposed in [35,36] address this issue by
gradually increasing the window size and height threshold.

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 21 
 

 

  
(a) (b) 

Figure 4. Calculate target height using local incidence angle of reference point. (a) InSAR system 
geometric model. (b) Simulation of the relationship between the height error and ground range po-
sition. 

Table 1. Simulation parameters. 

/ (m)H  / (cm)λ  / (m)h  / (m)B  °/ ( )Pθ  

4000 2 100 2 20–45 

Expanding Equation (7) in a Taylor series, where the series is finite, and the highest 
power term is a 5th-order term. The magnitudes of the third, fourth, and fifth-order terms 
are 810− , 1110−  and 1410− , respectively. In this paper, we can neglect terms of the third or-
der and higher. In response to the h∆ , we assume that the urban terrain is a flat plane. 
The plan is to extract the ground portion and fit a quadratic function to model the rela-
tionship between height and ground distance. According to the analysis in [34], among 
the various filtering algorithms, morphology-based filters have demonstrated the best 
performance in extracting the ground in urban scenes. Morphology-based filters primarily 
rely on two fundamental operations: dilation and erosion. These operations, in combina-
tion, give rise to opening and closing operations, which are employed for point cloud fil-
tering. The method rasterizes the original point cloud based on the lowest points within a 
given window size and subsequently processes it using an opening operation. Points for 
which the height difference before and after the operation is less than a specified tolerance 
are labeled as ground points. It is evident that the performance of this filtering technique 
is greatly influenced by the choice of window size, making it challenging to strike a bal-
ance between removing large-sized objects and retaining detailed ground features. As 
shown in Figure 5, the progressive morphological filters proposed in [35,36] address this 
issue by gradually increasing the window size and height threshold. 

 
Figure 5. SMRF flow. 

In this paper, the ground extraction is performed using the simple morphological 
filter (SMRF) proposed in [35]. Subsequently, we divide the ground range from the 

𝜽𝒓

𝜽𝑷

𝑯

𝒉
𝒚

𝒔𝟏
𝒔𝟐
𝜶

𝑷

𝒓

𝑹

𝑹

1000 1500 2000 2500 3000 3500 4000

Ground range position (m)

2

4

6

8

10

12

14

H
ei

gh
t e

rr
or

 (m
)

Open the
point cloud

Remove points based
on a threshold

Open the point cloud with
a bigger windows

Remove points based
on a threshold

Iteration 1

……

Iteration 2

Figure 5. SMRF flow.

In this paper, the ground extraction is performed using the simple morphological filter
(SMRF) proposed in [35]. Subsequently, we divide the ground range from the original point
cloud into sub-intervals, project the ground points onto each sub-interval, and calculate
the average height of the points within each sub-interval. The RANSAC method is then
employed to fit a quadratic function that models the relationship between the average
height and the position of the ground range. For a single flight-acquired point cloud, using
the center position along the ground distance axis as a reference, we calculate the required
upward or downward adjustment in height for each point based on its distance from the
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center along the ground distance axis and its relationship with the fitted quadratic curve.
This allows us to correct the overall height of the point cloud, ensuring that each point
is adjusted appropriately to align with the desired height. The flowchart of point cloud
height correction is shown in Figure 6.
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2.2. Obtain Matching Points with KAZE
2.2.1. Generate Grayscale Image

In this study, the point cloud is projected onto the x–y plane, where the x-axis represents
the azimuth direction and the y-axis represents the ground range direction. A 2D matrix
is created by dividing the x–y plane into grids with a specified step size along the x and y
axes, with a step size of 0.8 m. The average height of the points that fall within each grid
cell is computed and assigned as the corresponding element of the matrix.

2.2.2. Feature Point Extraction

Traditional feature detection methods employ Gaussian linear scale-space downsam-
pling to detect feature points. Visually, the matching points between two images are
typically found along the edges and certain details within the scene. However, Gaussian
filtering can cause edge blurring and loss of fine details. As a result, using linear scale-space
feature detection algorithms for image registration in this study yielded unsatisfactory
results. The KAZE algorithm uses nonlinear diffusion filtering to construct a scale space,
which effectively reduces image edge blur and detail loss [33]. It retains higher local ac-
curacy and distinguishability while maintaining scale invariance. The KAZE algorithm
mainly includes the following steps:

1. Constructing Nonlinear Scale Space:

The KAZE algorithm constructs a nonlinear scale space through the utilization of
nonlinear diffusion filtering and the Additive Operator Splitting (AOS) algorithm. The
nonlinear diffusion filtering method interprets the variations in image brightness at different
scales as the divergence of a certain form of flow function, which can be described by
nonlinear partial differential equations:

∂L
∂t

= div(c(x, y, t)·∇L) (8)

where L represents the image brightness, c denotes the conductivity function, and t repre-
sents the scale parameter. The conductivity function determines the extent to which the
diffusion process in an image adapts to its local structure. The expression for c is as follows:

c(x, y, t) = g(|∇Lσ(x, y, t)|) (9)

where Lσ is the gradient of the image after Gaussian smoothing. In this study, we adopt the
g2 function as proposed in [33].

g2 =
1

1 + |∇Lσ |2
k2

(10)
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Due to the lack of specific analytical solutions for the partial differential equation of
nonlinear diffusion filtering, numerical methods are required to estimate the solution of the
differential equation. The linear implicit scheme is a feasible discretization method, and
the equation is as follows:

Li+1 − Li

τ
= ∑m

l=1 Al(Li)Li+1 (11)

Al represents the matrix representation of the image in different dimensions. The
solution Li+1 of the equation is represented as follows:

Li+1 = (I − τ∑m
l=1 Al(Li))

−1
Li (12)

The aforementioned steps constitute the fundamental construction scheme for nonlin-
ear scale space.

2. Feature point detection:

Since nonlinear diffusion filtering is based on the theory of heat conduction, its model is
formulated in terms of time units. Therefore, it is necessary to perform a conversion between
image pixel units and time units. This conversion can be represented by Equation (13),
where ti is referred to as the evolution time.

ti =
1
2

σ2
i (13)

Using the AOS scheme, the nonlinear scale space can be represented as follows:

Li+1 = (I − (ti+1 − ti)∑m
l=1 Al(Li))

−1
Li (14)

The feature point detection in KAZE is achieved by searching for local maxima using
the Hessian matrix:

LHessian = σ2(LxxLyy − L2
xy) (15)

Each pixel is compared with the pixels in a 3 × 3 neighborhood window at its current
scale as well as the scales above and below. If the pixel value is greater than all the pixels in
the neighborhood window, it is considered a feature point. Subpixel-level localization of
feature points is achieved by employing a Taylor expansion in the scale space.

3. Feature descriptor:

For feature points with a scale parameter of σi, a window of size 24σi × 24σi is taken
on the gradient image, centered at the feature point. The window is divided into a grid of
4 × 4 sub-scenes, each with a size of 9σi × 9σi. Adjacent sub-scenes have an overlap strip of
width 2σi. Each sub-scene is weighted using a Gaussian kernel with a standard deviation
of σ1 = 2.5σi. A sub-scene descriptor vector of length 4 is computed for each sub-scene.
These sub-scene descriptors are then weighted using another Gaussian window of size
4 × 4 with a standard deviation of σ2 = 1.5σi. Finally, the descriptors are normalized to
obtain a 64-dimensional descriptor vector.

2.2.3. Feature Matching Method

Traditional feature point matching algorithms typically compute the Euclidean dis-
tance between feature vectors and utilize the NNDR strategy to determine whether two
feature points are a match. After applying the NNDR, RANSAC methods are often em-
ployed to determine the final set of matched point pairs.

The generated images from the point cloud exhibit a significant number of unstruc-
tured holes with an unordered distribution. The application of the KAZE algorithm leads
to the detection of numerous unstable feature points, and many of these feature points have
very similar descriptors. Increasing the threshold in the NNDR algorithm does not yield
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better matching results; instead, it may even result in the elimination of correctly matched
point pairs.

This study proposes the construction of a circular scene mean filter to perform filtering
on the original image. The filtering process aims to eliminate small holes present in the
original image while also resulting in increased blurring along the image boundaries.
Subsequently, the KAZE is employed to detect feature points separately in both the original
and filtered images. For a particular feature point p = (x, y) in the original image, if there
exists a feature point q = (x′, y′) in the filtered image and it satisfies condition |p − q| ≤ ε,
the point p is considered a stable feature point, where the size of ε is one pixel length.
Subsequently, we utilize the NNDR to find matching point pairs. In this study, there is no
rotation transformation between the two images. Only displacements exist in the azimuthal
and ground range directions, with a certain level of scaling in the ground range direction. To
further eliminate false matching points, the angle between the spatial vector of the matched
point pairs and the horizontal vector is computed. After applying the NNDR, let us denote
the set of feature points in the target image as A = {a1, a2, . . . , an}, with individual points
represented as an = (xn, yn), and the set of feature points in the registration image as
B = {b1, b2, . . . , bn}, with individual points represented as bn = (wn, kn). We can calculate
the angle between the distance vector and the horizontal vector (1,0).

θn = arccos(
wn − xn√

(wn − xn)
2 + (kn − yn)

2
) (16)

The probability distribution of θn is depicted in Figure 7. It can be observed that after
NNDR, θn is concentrated around a prominent peak, which exhibits a triangular shape. To
eliminate matching point pairs that deviate from the main peak, a threshold is set. The
purpose of this threshold is to select matching point pairs that satisfy the condition of θ
being within the triangular peak. The threshold is determined as follows:

δθ =
1

max(PDFθ)
(17)
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Figure 7. The probability distribution of θn.

2.3. Calculate 3D Transformations

The airborne array interferometric SAR system incorporates a high-precision position
and orientation system (POS), consequently yielding minimal errors in the azimuthal
direction between the point clouds obtained from two consecutive flights. In the ground
range direction, apart from a certain displacement, there was also scaling. In the vertical
direction, after the flattened phase error correction, only displacement was evident. The
positions of the feature points in the image correspond to the coordinates in the azimuth and
ground range directions of the point cloud, while the intensity of the feature point pixels
corresponds to the average height of the point cloud. We computed the angular deviation
between matching points and performed a statistical analysis to examine the probability
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distribution of these deviations, as illustrated in Figure 8a. We employed a quantile-quantile
(Q-Q) plot to assess the adherence of this dataset to a Gaussian distribution, aiming to
determine its normality.
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Figure 8. Statistics of azimuth offset between matching points. (a) Probability distribution of offset;
(b) Q-Q plot (sample data-standard normal).

Within the Q-Q plot, a significant number of points align along a straight line while
demonstrating some curvature on the tails. This curvature phenomenon can be attributed
to the existence of upper and lower limits in the actual data. Therefore, the deviation of
azimuthal orientations between point clouds can be confirmed as the offset corresponding
to the maximum probability density.

The directional offsets in ground distance and height corresponding to the matching
points of the two images are depicted in Figure 9a,b, respectively. In Figure 9a, the abscissa
represents the ground distance coordinates corresponding to the matching points in the
source image. By fitting these coordinates into a straight line using the least squares method,
the slope of the red line reflects the stretching effect in the ground distance direction between
the two acquired point clouds. For the source point cloud, the offset value is determined
based on the relationship between the ground distance coordinate of each point and the
fitted line. The intensity differences data between matched points of the two images is
divided into four segments. The value of 0 is observed when no point cloud falls into the
matched pixel in either of the two images. The outliers in the upper and lower sections are
caused by pixel intensities of 0 in only one of the two matched images. In this study, we
only consider the real values from the middle section, where the height offset fluctuations
within ±2 m, as shown in Figure 9b. The average value of these points is taken as the offset
in the height direction between point clouds.
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3. Results
3.1. Experimental Data

To conduct experimental validation in this study, we utilized point cloud data obtained
from actual flight tests. These flight tests were conducted in Sichuan Province in 2022.
The radar images are presented in Figures 10a and 10b, respectively. The flight-related
parameters are listed in Table 2, where Sa represents azimuth resolution, Sr represents
range resolution, and Sh represents elevation resolution.
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Figure 10. Intensity SAR images: (a) The SAR image obtained from the first flight (platform moving
from west to east); (b) Point clouds of the two scenes generated from the first flight; (c) The SAR
image obtained from the second flight (platform moving from east to west); (d) Point clouds of the
two scenes generated from the second flight.

Table 2. Flight parameters.

H/(m) Band α/(◦) B/(m) Sa/(m) Sr/(m) Sh/(m)

4500 Ku 0 1.986 0.237 0.1875 1.357

The area of experimental scene 1 is 0.22 square kilometers, with a ground range length
of 0.31 km. The area of experimental scene 2 is 0.72 square kilometers, with a ground range
length of 0.83 km. Scene 2 has a larger area with more diverse elements, including clear
roads, bridges, and riverbanks. This contributes to the registration task for the image. Scene
1, on the other hand, has a smaller area, with only a prominent road on the left side. The
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generated images in this scene exhibit a simpler composition, primarily aimed at verifying
the applicability of the proposed method. Point clouds of both scenes depict urban scenes
adhering to the assumption of a level ground surface, as posited in this study.

3.2. Evaluation Criterion

Traditional evaluation metrics for point cloud registration methods include Root Mean
Square Error (RMSE), mutual information, entropy, and point cloud overlap. RMSE measures
the distance difference between point pairs in point clouds. It is calculated by computing the
distances between corresponding points in the point clouds, taking the square of each distance,
averaging them, and then taking the square root to obtain the RMSE value. Mutual information
is calculated to assess the similarity between two point clouds. Entropy is used to measure the
uncertainty of point distribution within a point cloud and can evaluate the consistency of its
structure. Point cloud overlap evaluates the registration quality by calculating the proportion of
the overlap scene between two point clouds.

Due to the low overlap between the SAR point clouds obtained from two flight
experiments, these metrics cannot directly evaluate the effectiveness of SAR point cloud
registration. Therefore, we adopt the metrics proposed by [31]. Ref. [31] utilizes the
constraint of parallel relative facades of the same building to extract the building facades
from the fused point cloud. For effective registration methods, the directions of the two
relative facades should be parallel. Hence, as illustrated in Figure 11, ref. [31] calculate the
angular difference θ between the two normal vectors of each facade pair.
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Figure 11. Evaluation index for registration results. (a) Two parallel facades; (b) The angle difference
of normal vector from the source façade center to the normal extension of the target façade.

The evaluation metrics proposed in [31] only capture the effectiveness of building point
registration. In this study, we manually selected certain road point clouds and considered them
to be overlapping between two point clouds. The RMSE between these road point clouds was
computed as an evaluation metric. The definition of RMSE is as follows:

RMSE =

√√√√ n

∑
i=1

(xi − yi)
2

n
(18)

where X and Y represent two point clouds, N represents the number of corresponding
points, xi is the i − th point in X, and yi is the corresponding point in Y for xi,

The locations of the road are illustrated in the red box in Figure 12. On the other hand,
we adopted the correntropy proposed in [37] as an additional evaluation metric. Correntropy
effectively alleviates the impact of outliers and noise, and its definition is as follows:

V(X, Y) =
1
N

N

∑
i=1

exp(
−|xi − yi|2

2σ2 ) (19)
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Figure 12. The positions of control points.

The definition of parameters is the same as Formula (18) and σ takes the value of 1 in
this paper. A larger correntropy indicates a better registration performance.

3.3. Experimental Results

To validate the claimed superiority, in this subsection, we apply our proposed method
alongside the approach outlined in [31] and the classical ICP algorithm to the point cloud
fusion task of two distinct scenes. In scene one, the two-point clouds consist of 1,672,216
and 1,682,162 points, respectively. After applying simple morphological filtering and outlier
removal using the RANSAC method, the ground points for scene 1 were obtained. The
relationship between the average height of ground points and ground distance for the two
corresponding point clouds in scene 1 is shown in Figure 13.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 21 
 

 

obtained. The relationship between the average height of ground points and ground dis-
tance for the two corresponding point clouds in scene 1 is shown in Figure 13. 

  
(a) (b) 

Figure 13. The average height of the ground as a function of the ground distance position. (a) Source 
point cloud; (b) Target point cloud. 

After height calibration of the point clouds, a two-dimensional image was generated 
using the method mentioned in Section 2.2.1. The KAZE algorithm was employed to ex-
tract key points from the image, and matching points were obtained using our proposed 
method, as illustrated in Figure 14. 

 
Figure 14. Results of image matching algorithms. 

In scene 1, the area is relatively small, with the majority of the scene being comprised 
of buildings. The left side of Figure 14 corresponds to a small area in Figure 10b. Due to 
occlusion caused by buildings, there are significant shadows present near the riverbank 
adjacent to the building area. As a result, the majority of the matching points are concen-
trated in the road area above the image and in the vicinity of the bridges spanning the 
river. 

The results of point cloud registration are depicted in Figure 15. The three fused re-
sults demonstrate the extraction of building facades using the density threshold filtering 
method. Excluding no corresponding facades, there are 22 pairs of building facades cor-
responding to each other. 

0 50 100 150 200 250 300

Geodetic grid

442

444

446

448

450

452

454

456

A
ve

ra
ge

 h
ei

gh
t (

m
)

0 50 100 150 200 250 300

Geodetic grid

470

475

480

485

490

495

500

A
ve

ra
ge

 h
ei

gh
t (

m
)

Figure 13. The average height of the ground as a function of the ground distance position. (a) Source
point cloud; (b) Target point cloud.

After height calibration of the point clouds, a two-dimensional image was generated
using the method mentioned in Section 2.2.1. The KAZE algorithm was employed to extract
key points from the image, and matching points were obtained using our proposed method,
as illustrated in Figure 14.
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Figure 14. Results of image matching algorithms.

In scene 1, the area is relatively small, with the majority of the scene being comprised
of buildings. The left side of Figure 14 corresponds to a small area in Figure 10b. Due to
occlusion caused by buildings, there are significant shadows present near the riverbank ad-
jacent to the building area. As a result, the majority of the matching points are concentrated
in the road area above the image and in the vicinity of the bridges spanning the river.

The results of point cloud registration are depicted in Figure 15. The three fused results
demonstrate the extraction of building facades using the density threshold filtering method.
Excluding no corresponding facades, there are 22 pairs of building facades corresponding
to each other.
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Figure 15. The effect of registration in scene 1 after using (a) our proposed method, (b) the method
of [31], and (c) ICP.

The ICP algorithm tends to maximize the alignment of two-point clouds. From the
extracted building facades, it can be observed that the two opposing building facades
almost completely overlap. The algorithm is essentially ineffective in the task of SAR
point cloud fusion. The method in [31] first extracts the building facade and calculates the
transformation relationship from the source point cloud to the target point cloud using
the constraint of two opposite facades of the same building being parallel to each other.
Visually, there is no significant difference between the two methods for extracting building
point clouds after registration. Table 3 presents the quantified results.
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Table 3. Evaluation of registration accuracy for scene 1.

Method RMSE (m) Correntropy Mean θ (deg) Time (s)

ICP 5.3275 0.1074 0.5372 74.56183
[25] 4.0469 0.2282 0.4263 250.6351

Proposed 1.4773 0.2640 0.4292 3.8633

From the third quantitative indicator in Table 3, it seems that our method does not
have superiority over the method proposed in [31]. However, the effect of SAR point cloud
registration should not be solely considered from the constraints of extracting parallel
building facades. The algorithm in [31] minimizes the angle between the planes fitted
by the building facade point cloud and the correspondence between the center points,
naturally resulting in better indicators. In the Euclidean distance metric of point-to-point,
our method is significantly superior to the method proposed in [31]. As shown in Figure 16,
our proposed approach exhibits superior accuracy. In our approach, 81.91% of the nearest
neighbor distances fall within the range of 0 to 5 m, whereas the corresponding value for
the comparative method is 76.05%.
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For scene 2, the number of points obtained during the two flights is 3,536,789 and
4,554,655, respectively. Some results of using our method to process the point cloud in
scene 2 have been shown in the second part. Figure 17 shows the matching point pairs.
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Scene 2 has a large area and rich contents, and more matching point pairs were
obtained using the KAZE algorithm compared to scene 1. When integrating the point
clouds of scene 2 using the algorithm proposed in [31], there was a significant difference
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in the extracted sets of building facade point clouds from the two point clouds. In some
cases, only one of the point clouds captured the facade corresponding to the same building,
and there were substantial disparities in the relative facades of most buildings. The coarse
registration method employed in [31] faced challenges in determining which facades
corresponded to each other. Consequently, we manually selected several facades with
better extraction results and used the algorithm in [31] to fuse them in order to compare
the registration performance of our proposed algorithm against that of [31].

The registration results are depicted in Figure 18. Observably, the results of the fusion
using the ICP algorithm display misaligned architectural structures, with considerable
fusion errors evident in ground-level roads. The method proposed in [31] exhibits poor
fusion results for the ground above the scene, where the two point clouds fail to align
adequately. Conversely, our proposed method demonstrates superior fusion outcomes for
both ground and architectural points in the SAR point cloud.
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Figure 18. The effect of registration in scene 2 after using (a) our proposed method, (b) the method
of [31], and (c) ICP.

For a more detailed analysis, we employed a density threshold method to extract the
buildings within the scene, as depicted in Figure 19. The results indicate that concerning
the reconstruction of architectural structures, there is no significant difference between our
proposed method and the approach outlined in [31]. However, the ICP algorithm merely
aligns the two point clouds without adequately reconstructing the architectural elements.
Table 4 presents the quantified results.

Table 4. Evaluation of registration accuracy for scene 2.

Method RMSE (m) Correntropy Mean θ (deg) Time (s)

ICP 8.357 0.0725 0.9382 453.3789
[31] 5.863 0.0910 0.3873 120.3572

Proposed 1.035 0.2239 0.3892 16.8694

As shown in Figure 20, compared to scene 1, the application of our approach in scene
2 demonstrates a more pronounced advantage. In our approach, 69.14% of the nearest
neighbor distances fall within the range of 0 to 5 m, whereas the corresponding value for
the comparative method is 44.71%.
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Figure 19. The registration effect on the buildings within scene 2 after using (a) our proposed method,
(b) the method of [31], and (c) ICP.
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3.4. Time Performance

To evaluate the efficiency of our proposed method, we computed the time cost for
each registration process. Our method was implemented using MATLAB 2021, and all
experiments were conducted on a computer with an AMD R7 5800H processor and 16 GB
of memory. The ICP algorithm requires multiple iterations to select the closest points
between two point clouds and calculate the transformation relationship. As the number
of points in the point cloud increases, the computation time also increases. The method
proposed in [31] involves extracting building facades from the point cloud and fitting these
facades to generate corresponding parameters. The processing time is related to the number
of buildings in the scene. However, in large-scale scenarios, significant differences might
exist between the extracted building facades from two-point clouds. This dissimilarity
sometimes prevents the automatic determination of which facades belong to the same
building, thereby limiting its application. The time required by our proposed method is
primarily dependent on the size of the scene. Our proposed method demonstrates clear
advantages in terms of efficiency.
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4. Discussion

In this study, a proposed approach is presented to address the point cloud registration
problem of array InSAR, which contains a large number of noisy points and exhibits
significant errors. The approach involves utilizing image registration methods to achieve
point cloud registration. The analysis focuses on the height errors along the ground
range direction in a single flight experiment and the scale variations in the ground range
direction between two consecutive flight experiments. Unlike traditional point cloud
registration tasks that compute a rotation matrix and translation vector as transformation
parameters, the registration of array InSAR point clouds primarily involves error correction
and computation of the displacement between the two point clouds.

The urban scenes under consideration predominantly consist of building areas, but
they also contain several features that are beneficial for point cloud registration tasks, such
as road lines, bridges, and structured artificial facilities. In a specific scenario, referred to as
scene 1, with a relatively small area, there are only noticeable common features on the left
side of the two point clouds. Although the number of computed matching point pairs is
limited, it does not affect the accuracy of point cloud registration, as these matching points
can be considered true correspondences.

To achieve high-precision point cloud registration, this study relies on subpixel-level
accurate image registration algorithms to calculate the offsets between the azimuth and
ground range directions of the point clouds. Additionally, the study reveals that the
majority of image-matching points are concentrated in the unobstructed ground scenes.
The building facade points directly beneath contain a significant amount of clutter caused
by triple scattering. Additionally, due to interference from high-angle sidelobes, the
unstructured ground scene also presents some artifacts in the vertical dimension. By
utilizing the average height of the point cloud to represent the pixel intensity of the image
and using the pixel intensity difference of the matching points as the offset in the height
direction, the registration accuracy in the height direction can be ensured to be lower than
the height resolution of the array InSAR point cloud.

In contrast to previous work, which innovatively utilized the angles between the
extracted normal vectors of building facades and the distances from the facade centers to
the extended normal vectors of opposing facades as evaluation metrics, this study found
that accurately extracting building facades from array InSAR point clouds is challenging.
The simple application of density threshold filtering methods tends to filter out low-rise
buildings, and some extracted facades are incomplete, resulting in significant differences
between opposing facades of the same building and making it difficult to fit the facades
correctly. Moreover, the presence of clutter generated by triple scattering at the bottom of
the buildings hinders the accurate correspondence of the fitted facade center heights. As
for the classic ICP algorithm, it is entirely unsuitable for SAR point cloud registration tasks
because the two point clouds lack matching points. The approach of manually annotating
control points and using the Euclidean distances between them as evaluation metrics also
has limitations, as the true correspondences of the manually annotated points cannot be
determined. Therefore, for the registration task of array InSAR point clouds, it is necessary
to define more comprehensive metrics to evaluate the accuracy of building facade extraction
and point cloud registration.

5. Conclusions

This paper proposes an automatic image-based registration method for array InSAR
point cloud registration. It analyzes the height errors present in array InSAR point clouds
and describes the entire process of point cloud registration.

According to the InSAR system model, an analysis of the relationship between the
height errors in point clouds and their ground range positions is conducted. Initially, the
SMRF algorithm is employed to extract the ground portion of the point cloud, which is
utilized for fitting the relationship between height errors and ground range. Subsequently,
the height-corrected point clouds are projected onto the azimuth-ground range plane to
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generate images, where the pixel intensity is represented by the average height of all points
falling within the pixel. Finally, the KAZE algorithm, along with an angular threshold, is
employed to extract matching points between two images. The transformation relationship
between the two point clouds is then calculated based on the positions and intensity
differences of the matching points.

Previous research on array InSAR point cloud registration is limited, and this paper
primarily compares the proposed method with the approach presented in [31]. Experimen-
tal results using real data demonstrate the high robustness of the proposed method in two
different scenarios. For the architectural elements within the scene, the average angular
difference between their respective facades is less than 0.5◦. As for the ground portions
within the scene, the RMSE after registration is less than 1.5 m. These results are considered
acceptable for SAR point clouds. Compared to previous methods that extract and fuse
building facades, our approach addresses point cloud registration from the perspective of
image registration. It involves fewer steps, is more efficient, and consumes only 14% of the
time required by the method proposed in [31].

In future work, for array InSAR point cloud registration, we consider utilizing deep
learning methods after obtaining a large dataset to achieve the task of point cloud registration.
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