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Abstract: The goal of this study was to estimate the areas under willow cultivation by farmers, as
well as their growth and health status. Due to the extremely small patch size of land cover types in
the study area, Sentinel-2 data were used to conduct supervised classification based on the random
forest machine learning technique, and a large training dataset was produced from PlanetScope
satellite imagery. The results of image classification using Google Earth Engine indicated that the
Sentinel data were suitable for identifying willow-cultivated areas. It was found that these areas
declined from 875.32 ha in 2017 to 288.41 ha in 2022. The analysis of the growth and health conditions
of willow-cultivated plots also revealed that the temporal variations in the NDVI in these plots
decreased significantly in 2022 as compared to previous years (p < 0.05). An in-depth analysis
revealed a significant positive correlation between NDVI, precipitation, and temperature. It was
found that the most efficient components explaining the process of browning the vegetation in the
planted willow plots were the increasing temperature and decreasing precipitation. This research
may be used to document the national and global monitoring efforts for climate change adaptation.

Keywords: dot-grid approach; Google Earth Engine; NDVI variations; PlanetScope; random forest;
willow short-rotation crops

1. Introduction

Concerns about climate change, energy supply, growing greenhouse gas emissions,
and rising fossil fuel price have driven a significant effort in searching for clean and
renewable conventional fuel alternatives in recent years [1]. Bioenergy is one of the most
important resources available to help meet humanity’s energy demands and replace fossil
fuels, and interest in it has grown sharply in recent years [2]. Biomass is defined as any
organic substance that has absorbed sunlight and stored it as chemical energy, such as
wood, wood waste, straw, manure, sugar cane, and many other agricultural byproducts [3].
Therefore, energy from biomass is a very flexible energy source that can be rapidly scaled
to meet the demand, and as a result, it is a perfect complement to weather-dependent
renewable sources such as wind and solar energy.

Considering the European Union’s most significant aim of reducing greenhouse gas
emissions by a quarter and increasing energy efficiency and the use of renewable energy [4],
Romanian entrepreneurs have started to test and implement bioenergy projects, most of
which are based on the provision of fuels from short-rotation crops, including willow
(Salix spp.). Willow short-rotation crops (SRCs) have been tested and used to source
renewable raw materials for bioenergy production since 2008 [5]. Currently, they are an
important renewable energy source that is mostly turned into thermal energy utilizing
biomass processing technology; willow SRCs have contributed to the European Union’s
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renewable energy objectives since they are a cost-effective choice for locations with large
untapped biomass production potential [6].

Monitoring crop condition, phenology, and changes in land cover and land use and
allocating agricultural land to these crops [7,8] provide critical information for the develop-
ment and implementation of sustainable energy management policies and the reduction in
greenhouse gas emissions. While systematic and open-source remote sensing provides a
wealth of data and imagery with high spatial and temporal resolutions on land-use change
and bioenergy use [9], what happens to the land once it is allocated to these activities differs
by region [10]. This has opened up the possibility of conducting complete bioenergy and
biomass production studies over a longer time frame using multi-source remote sensing
data. In addition, there is no worldwide product that gives information useful for the local
classification of land use for bioenergy purposes.

There are several ways for estimating and evaluating the condition and the area of
various land cover types. These approaches range from agricultural national census to
other forms of remote sensing and GIS techniques. For area estimates, the most often-
used approach is wall-to-wall or sample-based mapping [11–14]. However, landscape
classification might be problematic nowadays because the average plot size has been
decreasing. Also, acquiring multi-source feature sets with high quality is difficult due
to diverse imaging techniques and spatiotemporal resolution [15,16]. In Southeast Asia,
for example, the average size of agricultural fields declined from 2.5 hectares to 1 hectare
between 1950 and 2000 due to farm fragmentation caused by population expansion [17]. To
overcome these challenges, a combination of medium spatial resolution satellite images,
such as those provided by the European Space Agency (ESA) Sentinel-2 (with a spatial
resolution of 10 m), with high spatial resolution satellite images, such as those provided
by PlanetScope satellites (with a higher spatial resolution of 3 m), can be used. This
combination, which uses various spectral bands, increases the capacity to discern land cover
types and agricultural crops and allows the human eye to distinguish characteristics better.
As a result, the object-based classification algorithms used provide a precise representation
of land surface classification [18].

The calculation and use of vegetation indices (VIs) generated from remote sensing
imagery is a typical strategy in examining the condition and health of vegetation covers
for both agricultural crops and forests [19]. In particular, VIs have been developed to
assess a wide range of environmental and biological events [20,21] and may be used to
forecast plants’ biophysical characteristics [22]. Climate change, land-use change, and
natural disturbances such as wildfires and insect outbreaks can all have an impact on
vegetation greening and browning patterns [23–25], while VIs estimated from the red and
near-infrared (NIR) bands are still commonly used in this context [26]. The normalized
difference vegetation index (NDVI) [27] is commonly used to quantify vegetation changes
and to study the effects of environmental events. Several studies have used the NDVI
to characterize vegetation phenology [28,29] and to classify land cover [30,31], while the
NDVI has been used in a wide range of applications in ecology, economics, agriculture,
drought monitoring, and in characterizing climatic effects on plants [32,33].

As a result of the development of all of these instruments and indicators, researchers
and governmental and international organizations and institutions have used these data to
study adverse environmental occurrences, vegetation conditions, and even the performance
of agricultural products [34]. Several years of work in this field have demonstrated that
the use of satellite data, the combination of spectral bands in the identification of land uses
and land covers, and the use of vegetation indices (such as the NDVI), have great potential
in determining how external and environmental factors affect vegetation [35]. These
technologies have the potential to detect various agricultural products, tree plantations and
their health status, and material shortages induced by weather.

Despite the fact that the cultivation of willow (Salix spp.) for bioenergy purposes has
been performed in Romania for the last 15 years (since 2008), there are no publicly available
aggregated statistics on their condition, location, and size. Partly, this comes from the fact
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that such crops were typically established on small-sized areas, in dispersed locations [36],
at a well-sustained pace, making it difficult to keep track of them, monitor their condition,
and formulate and implement governmental bioenergy policies. The situation is similar
to other European countries, for which the characterization of such crops typically relies
on several data sources [37]. As a result, the main goal of this study was to check if
the combined use of medium- and high-resolution satellite images can help in detecting
and classifying the agricultural plots under willow SRC production. On the other hand,
field observations and time series extracted from satellite images may give evidence of
variations in terrestrial vegetation activity by detecting greening and browning cycles in
plants throughout time. As a second goal, this study looked at the NDVI trend changes in
planted willow plots for more detailed monitoring of vegetation conditions. Consequently,
the following were the objectives of this research: (1) detecting changes in the willow SRC
planting areas, and (2) tracking their growth and health status.

By using this research approach in Eastern Europe and Central Romania as an example,
we propose a simple, cost-effective, strategic, and transparent technique for mapping small
crops of willows in areas dominated by a mix of complex peri-urban agriculture and forest
environments. Understanding the distribution of planted willow plots and land covers in
the study area provides a good overview of the development of willow SRC production in
the entire region using the Google Earth Engine (GEE) platform and Sentinel-2 time-series
images from 2017 to 2022, as cultivation patterns are generally similar. However, the
approach may be used in other regions of the world where changes in landscape and land
use/cover are frequent.

2. Materials and Methods
2.1. Study Area

The area of study was selected in the central part of Romania, in Braşov and Covasna
counties, for which there was evidence of established willow crops. As a fact, location
data were available for several plots from a study carried out by the last two authors
with the aim to evaluate the productivity of willow planting operations [36]. Also, expert
information was obtained from a grower within the area, pointing the selection of the
study area to the possible extents of areas cultivated with willows in the region. As a third
criterion, the area was selected so as to maximize the coverage of some satellite datasets
which were provided on request to the first author of the study.

The study area covered 137,137 ha, being located in between 45◦38′27.63′′N to 46◦2′5.229′′N
and 25◦45′11.193′′E to 26◦13′0.841′′E, respectively (Figure 1); it is an intramountainous de-
pression characterized by a moist-temperate climate with strong continentalism. Generally,
the weather is colder compared to the surrounding regions.
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2.2. Datasets
2.2.1. Satellite Images for Classification

All Sentinel-2 bands with 10 and 20 m spatial resolution, including blue (B2); green
(B3); red (B4); red-edge 1, 2, and 3 (B5, B6, and B7); near-infrared (NIR, B8); SWIR 1; and
2 (B11 and B12), for the region were obtained in GEE as image collections from February to
August (2017 to 2022), which corresponds to the months when willows grow in the study
area. Bands B2, B3, B4, and B8, which had a resolution of 10 m, were extensively used for
image classification. The chlorophyll content of the crops was well represented by the B5 to
B7 bands [38,39]. B11 and B12 bands were connected to the water content of plants and
crops [40,41]. It has been established that these bands can distinguish between different
types of agricultural crops [42]. Sentinel-2 surface reflectance products that had a cloud
cover of less than 5% were used for all time points (2017 to 2022) (Table 1). This was made
feasible by the fact that during the study period, most of the region had clear images.

Table 1. Details of satellite images used for classification.

Year Image Collection Sensor Number of Images

2022

COPERNICUS/S2_SR Sentinel-2

27
2021 26
2020 29
2019 18
2018 26
2017 10

2.2.2. Ground Reference Data

Extensive fieldwork and high-resolution Google Map satellite imagery were used
to collect reference data for training and validation in 2022. The borders of all willow-
planted plots found by the field survey were taken using GPS in 2022 and integrated
into the available willow-plot dataset. According to the primary goal of this study, the
data were collected according to two classes of land use: willow and non-willow areas
(e.g., agricultural lands, forest, residential areas, water bodies, etc.). Willow crops and other
different types of agricultural plots in the region were visited from February to August
2022 in order to understand the land-use types.

For the years before 2022, PlanetScope satellite imagery [43] was used to identify the
willow plots. Planet, one of the most prominent private earth imaging companies, presently
operates more than 200 PlanetScope satellites capable of mapping the entire earth’s land
surface virtually every day [44]. PlanetScope images calibrated to the top of atmospheric
radiance and with four spectral bands, including R.G.B. and NIR, were used in this study
for the period of 2017 to 2021, with a 3 m ground sample distance [44]. These images have
been accessible for the study area since 2016. Figure 2 shows an example of reference data
collected for willow plots in 2018.

Procedurally, the reference data were collected from Google satellite and PlanetScope
images using the dot-grid photo interpretation technique [45,46]. Absence of subjectivity,
the methodical approach, and quick sample collection are some benefits of the dot-grid
approach [47]. In order to have a balanced distribution of points over the whole region and
to provide reference data for the non-willow class, square cells with an area of 2 square
kilometers (km2) were created at intervals of 5 km (from the cell center). The dots were
then systematically created at 7 m intervals inside these cells and willow plots at random
(Figure 3). In addition, we avoided gathering samples of various classes (i.e., willow and
non-willow) which were too close to each other in order to avoid mixed samples within
20 × 20 m areas by building 20 m buffers inside and outside the willow plots. If the willow
plot was found inside the 2 km2 cells, the dots that were placed on it were considered as
willow class.



Remote Sens. 2024, 16, 595 5 of 19Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 2. Example of reference data collected for willow plots in 2018 using PlanetScope satellite 
imagery. 

Procedurally, the reference data were collected from Google satellite and PlanetScope 
images using the dot-grid photo interpretation technique [45,46]. Absence of subjectivity, 
the methodical approach, and quick sample collection are some benefits of the dot-grid 
approach [47]. In order to have a balanced distribution of points over the whole region 
and to provide reference data for the non-willow class, square cells with an area of 2 
square kilometers (km2) were created at intervals of 5 km (from the cell center). The dots 
were then systematically created at 7 m intervals inside these cells and willow plots at 
random (Figure 3). In addition, we avoided gathering samples of various classes (i.e., wil-
low and non-willow) which were too close to each other in order to avoid mixed samples 
within 20 × 20 m areas by building 20 m buffers inside and outside the willow plots. If the 
willow plot was found inside the 2 km2 cells, the dots that were placed on it were consid-
ered as willow class. 

Figure 2. Example of reference data collected for willow plots in 2018 using PlanetScope
satellite imagery.

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. An example of generated reference data. 

Table 2 lists the characteristics of the multi-temporal reference datasets for the stud-
ied years. The subsets for training (50%) and validation (50%) were randomly selected 
from the reference datasets. 

Table 2. The characteristics of the multi-temporal reference datasets. 

Land-Use Class Definition 
Total Number of Reference Points (at 7 m Intervals) 

2017 2018 2019 2020 2021 2022 
Willow Willow crops 6431 4127 5967 6043 6929 7022 

Non-willow Other land uses 1 7661 7662 7664 7654 7656 7666 
1 Croplands, built-up areas, forests, and other natural areas are all included. 

2.3. Image Classification 
To effectively identify the willow and non-willow classes, the GEE cloud computing 

platform was used to provide image collections, preprocess, extract features, classify, and 
check the accuracy of produced maps [48]. This stage entailed a number of procedures, 
including image collecting and filtering, cloud-cover masking, calculation of spectral in-
dices, extraction of spectral–temporal information, and classification [49,50]. For image 
classification and the training samples, a nonparametric random forest (RF) classifier was 
used. Using this method in the GEE cloud platform, 70% of the sample data were ran-
domly picked for classifier training and image classification, while the remaining 30% 
were used for verifying and evaluating classification results. Multi-classifier (tree-type) 
ensemble techniques are used in RF classification [50]. Regarding the hyperparameter tun-
ing, only the number of trees (ntree) and the number of predictors (mtry) were tuned, and 
for the rest, the default values were used. Hyperparameter tuning was based on the earli-
est dataset (2022), and the optimal values (ntree = 500, mtry = 10) were used to generate 
land-use maps for the rest of the datasets. Sentinel-2 surface reflectance products (from 
2017 to 2022) were used for this purpose in this study. 

Several studies [47,51–54] have shown that spectral bands are critical for classification 
and that using more spectral bands enhances the accuracy for applications like crop map-
ping up to a certain threshold. As a result, spectral vegetation indices (SVIs) and all bands 
from Sentinel-2 images were used in GEE classification algorithms. The NDVI (normal-
ized difference vegetation index), std NDVI (standard deviation of NDVI), GNDVI (green 
normalized difference vegetation index), MSAVI (modified soil-adjusted vegetation 

Figure 3. An example of generated reference data.



Remote Sens. 2024, 16, 595 6 of 19

Table 2 lists the characteristics of the multi-temporal reference datasets for the studied
years. The subsets for training (50%) and validation (50%) were randomly selected from
the reference datasets.

Table 2. The characteristics of the multi-temporal reference datasets.

Land-Use Class Definition
Total Number of Reference Points (at 7 m Intervals)

2017 2018 2019 2020 2021 2022

Willow Willow crops 6431 4127 5967 6043 6929 7022
Non-willow Other land uses 1 7661 7662 7664 7654 7656 7666

1 Croplands, built-up areas, forests, and other natural areas are all included.

2.3. Image Classification

To effectively identify the willow and non-willow classes, the GEE cloud computing
platform was used to provide image collections, preprocess, extract features, classify, and
check the accuracy of produced maps [48]. This stage entailed a number of procedures,
including image collecting and filtering, cloud-cover masking, calculation of spectral
indices, extraction of spectral–temporal information, and classification [49,50]. For image
classification and the training samples, a nonparametric random forest (RF) classifier was
used. Using this method in the GEE cloud platform, 70% of the sample data were randomly
picked for classifier training and image classification, while the remaining 30% were used
for verifying and evaluating classification results. Multi-classifier (tree-type) ensemble
techniques are used in RF classification [50]. Regarding the hyperparameter tuning, only
the number of trees (ntree) and the number of predictors (mtry) were tuned, and for the rest,
the default values were used. Hyperparameter tuning was based on the earliest dataset
(2022), and the optimal values (ntree = 500, mtry = 10) were used to generate land-use maps
for the rest of the datasets. Sentinel-2 surface reflectance products (from 2017 to 2022) were
used for this purpose in this study.

Several studies [47,51–54] have shown that spectral bands are critical for classifica-
tion and that using more spectral bands enhances the accuracy for applications like crop
mapping up to a certain threshold. As a result, spectral vegetation indices (SVIs) and
all bands from Sentinel-2 images were used in GEE classification algorithms. The NDVI
(normalized difference vegetation index), std NDVI (standard deviation of NDVI), GNDVI
(green normalized difference vegetation index), MSAVI (modified soil-adjusted vegetation
index), and EVI (enhanced vegetation index) are five vegetation indices (Table 3) that are
often used in studies [55].

Table 3. Spectral vegetation indices (SVIs) used for detecting willow crops.

SVI 1 Definition Formula Reference

NDVI Normalized difference vegetation index (BNIR − BRED)/(BNIR + BRED) [56]
std NDVI Standard deviation of NDVI σNDVI [57]

GNDVI Green normalized difference
vegetation index (BNIR − BGREEN)/(BNIR + BGREEN) [58]

MSAVI Modified soil-adjusted vegetation index 2BNIR + 1 −
√
(2BNIR + 1)2 − 8(BNIR − BRED)

2
[59]

EVI Enhanced vegetation index 2.5 × BNIR − BRED
1 + BNIR + 6×BRED − 7.5 × BBLUE

[60]

1 SVI: spectral vegetation index.

The spectral–temporal metrics (STMs) were derived using per-pixel statistics, such
as minimum, maximum, mean, standard deviation, and 25th, 50th, and 75th percentiles
(Table 4). In addition to STMs, elevation data from the Shuttle Radar Topography Mission
(SRTM) were used to create elevation and slope layers [61].
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Table 4. Multi-temporal satellite images and STMs used for image classification.

Time Period Mission No. of Images STMs No. of Features

2017 to 2022 Sentinel-2 136 Minimum, maximum, mean, standard
deviation, and 25th, 50th, and 75th percentiles 119

2.4. Post-Classification Processing

A 3 × 3 kernel-size filter with the majority vote was applied to eliminate misclassifi-
cation effects in the classified images [62]. An accuracy assessment was used to evaluate
the performance of the willow/non-willow classified maps by randomly selecting 50%
of the reference data. The overall accuracy (OA) (Equation (1)), kappa coefficient (K)
(Equation (2)), producer’s accuracy (PA) (Equation (3)), user’s accuracy (UA) (Equation (4)),
and F-score (F) (Equation (5)) were chosen in this study since these are often used in the field
of remote sensing to assess classification quality. The OA represents the proportion of pixels
that were successfully classified, with 85% or above being recognized as a satisfactory clas-
sification threshold. The PA represents map accuracy from the map producer’s perspective.
It indicates how frequently features on the ground are accurately depicted on the classified
map [63]. The UA is the accuracy from the perspective of a map user. It specifies how
frequently the features listed on the map will be present on the ground [64]. K measures
the degree of agreement between classifier output and reference data [65]. F is a per-class
metric computed as the harmonic mean of the user’s and producer’s accuracies [66].

OA =
∑r

i=1 Xii

N
(1)

K =
N∑r

i=1 Xii − ∑r
i=1(Xi+ × X+i)

N2 − ∑r
i=1(Xi+ × X+i)

(2)

PA% =
Number of correctly classified pixels of a particular class

Number of reference pixels of the same class
× 100 (3)

UA% =
Number of correctly classified pixels of a particular class

Number of classified pixels in the class
× 100 (4)

F = 2 × PA × UA
PA + UA

(5)

where r represents the number of rows in the confusion matrix, Xii represents the number
of observations in row i and column i, Xi+ represents the total number of observations in
row i, X+i represents the total number of observations in column i, and N represents the
total number of observations in the matrix.

2.5. NDVI Time Series

The NDVI is often used in modern specialized studies of changes and inter-annual
fluctuations in the quality of ecosystems, vegetation, or crops in general [67,68]. Also, the
NDVI is used in locations across the world where vegetation is vulnerable to changes in
extreme climatic conditions (thermal stress, lack of moisture, and decreasing rainfall) [69,70].
Sentinel-2 satellite data were used to generate NDVI time series (derived from the B4 and
B8 bands [58]) for willow crops in the studied area at a spatial resolution of 10 m in order
to quantify vegetation greenness (changes in plant health) [71]. The Sentinel-2 satellite
provides time-series global vegetation indices with an average revisit period of 5 days and
a spatial resolution of 10 m [72].

The GEE cloud computing platform was used to combine Sentinel-2 (‘COPERNI-
CUS/S2_SR’) vegetation index data from April 2017 to December 2022 to create a dense
NDVI time series with a temporal resolution of approximately 2 days. Annual and monthly
NDVI layers were generated using two filters: (1) choosing images with less than 20% cloud
cover and (2) selecting soil or vegetation pixels in the previously chosen images. The Scene
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Classification Layer (SCL) provided with Sentinel-2 data was used for this purpose [73]. In
addition, the Sentinel-2 QA [74] band or cloud scoring algorithm [75] was used to develop
a cloud-masking filter [76]. Then, seasonal NDVI time series for willow plots were created
using Sentinel-2 images from April 2017 to December 2022. In order to avoid obtaining
NDVI values for other land uses near the willow plots, a 20 m buffer was created inside
the willow plots. As a result, the 10 willow plots planted since 2017 with the largest area
were chosen for NDVI calculations following the detection of willow plots through image
classification. The NDVI of the willow plots was calculated by averaging the NDVI data of
these plots.

2.6. Climate Datasets

Over the study period (2017–2022), daily temperature and precipitation measurements
were collected from the Sfântu Gheorghe weather station, which belongs to the Romanian
National Meteorological Administration and is located in the depression of Sfântu Gheo-
rghe, which occupies the central-north part of the Brasov Depression, one of the largest in
the Carpathian Mountains.

2.7. Statistical Analysis

The average monthly and annual temperatures, precipitation, and NDVI changes in
the study area were evaluated using one-way analysis of variance (ANOVA). Additionally,
Duncan’s test was applied to compare the average of the investigated indicators across
various years and months. The correlation coefficient method was used to assess the
relationship between NDVI and meteorological parameters (such as temperature and
precipitation). This relationship was computed as follows:

r =
∑n

i=1 (xi − x)
(

NDVIi − NDVI
)√

∑n
i=1(xi − x)2

√
∑n

i=1
(

NDVIi − NDVI )2
(6)

where n is the number of observations, i is the time, xi is the climatic factor value, and
NDVIi is the NDVI value. This study used three levels of correlation coefficients: strong
correlation (±0.8 < r ≤ ±1), moderate correlation (±0.3 < r ≤ ±0.8), and insignificant
correlation (0 < r ≤ ±0.3).

3. Results
3.1. RF Classification Accuracy

The capacity of Sentinel-2 multi-temporal images to detect and map willow crops
with different feature sets using RF was evaluated here. Using the reference samples from
Google Maps and PlanetScope satellite imagery as training data for the RF classifier in GEE,
Sentinel-2 data were able to classify willow/non-willow plots in the study area at OA rates
of 98% and higher for all of the six images produced for the period of 2017 to 2022 (Table 5
and Figure 4). These values reflect the percentage of the territory that has been effectively
classified as willow and non-willow for all time periods. Per-class accuracy rates were also
consistently high, with values over 98% for the UA, PA, and F metrics.

Table 5. Accuracy metrics by different input data feature sets.

Class
2017 2018 2019

UA 1 PA 2 F 3 UA PA F UA PA F

Willow 99.10 98.63 98.86 99.76 99.03 99.39 99.37 99.21 99.29
Non-willow 99.48 99.87 99.67 99.41 99.53 99.47 99.48 99.87 99.67

OA4 98.98 99.57 99.39
K 5 97.93 99.07 98.76
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Table 5. Cont.

Class
2020 2021 2022

UA PA F UA PA F UA PA F

Willow 99.67 98.71 99.19 99.70 99.01 99.35 99.76 99.63 99.74
Non-willow 98.95 99.74 99.34 99.14 99.74 99.44 99.65 99.78 99.75

OA 99.27 99.40 99.71
K 98.53 98.79 99.41

1 UA—user accuracy (%), 2 PA—producer accuracy (%), 3 F—F-score (%), 4 OA—overall accuracy (%),
5 K—Kappa coefficient.
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Figure 4. Classification findings from Sentinel-2 for two study area parts (a) in 2022 with Google
Maps satellite imagery in QGIS on the right, and (b) in 2018 with PlanetScope images on the right.
(The yellow polygons represent the boundary of willow-planted plots).

3.2. RF Classification Results

Willow planting patterns and inconsistencies with respect to yearly differences were
examined from 2016 to 2022. Figures 5 and 6 show the spatial patterns associated with the
willow and non-willow classes by the maps developed for the study area. As predicted by
the method, willow plots covered 0.64% of the area in 2017, but they declined to 0.21% in
2022. On the other hand, the non-willow lands increased from 99.36% to 99.79% during the
same time period. As shown in Figure 6, farmers planted most of the willows in 2016, and
after that the area cultivated has declined. In addition, the northern part of the region was
characterized by an increased interest in willow planting over these years.
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Figure 6. Area of the willow (left) and non-willow (right) classes in the period of 2017–2022.

3.3. NDVI Inter-Annual Fluctuation

According to the crop calendar, the resulting NDVI time series reveal a specific pheno-
logical peak connected to willow crop growth. From 2017 to 2022, the mean NDVI value
in the willow plots had distinct features (Figure 7). The multi-year average value of the
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NDVI was 0.557, with the lowest value of 0.098 in February 2022 and the maximum value
of 0.882 in June 2021. Every year, the NDVI fluctuated, with the highest values appearing
in summer (from June to August) and the lowest values appearing from December to
March. When compared to other months of the year, June, July, and August had the highest
NDVI values, according to Duncan’s test, and these differences were significant (at the 5%
level). The NDVI also reached its lowest point in February. The monthly average value of
the NDVI reached 0.82 in June, and willow growth was typically good, but the monthly
average value of the NDVI reached 0.18 in February, and willow growth was limited owing
to the winter season, fall leaves, and occasionally even yearly harvests. The NDVI value in
the region was relatively high from June to August, which is often considered the willow
growing season. The NDVI range in the area remained vast and constant from 2017 to 2021
(min ≈ 0.1, max ≈ 0.8); however, the peak value of the NDVI in 2022 was reduced from
about 0.9 in prior years to 0.663. The average yearly NDVI values also revealed that the
value of this index in 2022 was 0.359, a substantial variation from prior years.
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Figure 7. Changes in NDVI in the study area from 2017 to 2022: yearly average scale (top) and
seasonal and monthly average scale (bottom). (Different letters indicate statistically significant
differences (p ≤ 0.05)).

At the 5% probability level, the results from ANOVA revealed a statistically significant
difference between the seasonal, annual, and monthly NDVI values (Table 6). Figure 7
shows that 2017 and the summer season had the highest annual and seasonal average
NDVI values, respectively, while 2022 and the winter season had the lowest.
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Table 6. ANOVA results for NDVI values.

Sum of Squares df Mean Square F Sig.

Yearly
Between Groups 26.067 5 5.213 92.518 0.000
Within Groups 126.956 2253 0.056

Total 153.023 2258

Monthly
Between Groups 102.18 11 9.289 410.537 0.000
Within Groups 50.842 2247 0.023

Total 153.023 2258

Seasonal
Between Groups 71.523 3 23.841 659.645 0.000
Within Groups 81.5 2255 0.036

Total 153.023 2258

3.4. Climatic Variable Changes

By comparing the mean precipitation from 2017 to 2022, it was found that the amount
of monthly precipitation in June, which represents the start of the peak growth season
of vegetation, was reduced significantly in 2022 (at the 5% level) (Figure 8). The highest
amount of precipitation was in June 2018, following which a downward trend was found. In
the studied time period (2017–2022), there were no significant changes in the daily amount
of precipitation in other months of the vegetation growth period (May to September).
Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 8. The average daily precipitation changes by month from 2017 to 2022. (Different letters 
indicate statistically significant differences (p ≤ 0.05)). 

The findings revealed that the temperature in June 2022 increased significantly (at 
the 5% level) when compared to 2021 and 2020. In addition, when the average tempera-
tures of different months were compared from 2017 to 2022, it was found that it signifi-
cantly decreased (at the 5% level) in the first month of autumn (September) in 2021 (Figure 
9). Early autumn is the time for terminal bud formation and nutrient storage for the fol-
lowing year’s growth. 

0.42

1.33

0.58

0.14

1.02

0.44

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

2017 2018 2019 2020 2021 2022

ab

ab

b

ab

a

ab

Jan

0.76
0.64

0.97

1.22

0.55

0.23

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

2017 2018 2019 2020 2021 2022

Feb

0.84

2.77

0.77 0.84

1.41

0.29

0.0
0.5
1.0
1.5
2.0
2.5
3.0

2017 2018 2019 2020 2021 2022

Mara

ab

bb b
b

1.75

0.27

1.54

0.74

1.50

2.20

0.0

0.5

1.0

1.5

2.0

2.5

2017 2018 2019 2020 2021 2022

Apr

2.11

0.97

3.15
2.78

1.96 2.11

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

2017 2018 2019 2020 2021 2022

May

2.21

6.15

1.97

3.45
2.50

0.86

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

2017 2018 2019 2020 2021 2022

Juna

ab
b

b
bb

2.97 2.90
2.21

2.93

2.00

4.15

0.0

1.0

2.0

3.0

4.0

5.0

2017 2018 2019 2020 2021 2022

Jul

0.55

1.41
1.67 1.73

3.22

1.79

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

2017 2018 2019 2020 2021 2022

Aug

1.93

0.79
1.01

2.49

1.05

2.21

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2017 2018 2019 2020 2021 2022

Sep

1.27

0.31

1.47

2.35

0.82
0.43

0.0

0.5

1.0

1.5

2.0

2.5

2017 2018 2019 2020 2021 2022

Octa

abab

b
bb

1.22
1.02

0.50 0.46

0.85

1.17

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

2017 2018 2019 2020 2021 2022

Nov

1.21

0.38 0.28

0.79

1.45

0.79

0.0

0.5

1.0

1.5

2.0

2017 2018 2019 2020 2021 2022

Dec

Figure 8. The average daily precipitation changes by month from 2017 to 2022. (Different letters
indicate statistically significant differences (p ≤ 0.05)).
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The findings revealed that the temperature in June 2022 increased significantly (at the
5% level) when compared to 2021 and 2020. In addition, when the average temperatures
of different months were compared from 2017 to 2022, it was found that it significantly
decreased (at the 5% level) in the first month of autumn (September) in 2021 (Figure 9).
Early autumn is the time for terminal bud formation and nutrient storage for the following
year’s growth.
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Figure 9. The average daily temperature changes by month from 2017 to 2022. (Different letters
indicate statistically significant differences (p ≤ 0.05)).

The results of correlation analysis, which depict the monthly variations in NDVI,
precipitation, and temperature, are shown in Figure 10. According to the findings, there is
a strong and significant (at the 1% level) positive correlation between NDVI, precipitation
(r = 0.527), and temperature (r = 0.883), respectively.
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Figure 10. Pearson correlation (r) results between NDVI, rainfall, and temperature from 2017 to 2022.
(**: statistically significant at the 1% level).

4. Discussion

Mapping agricultural use is important for identifying crops, analyzing crops and
cropping systems’ spatial distribution, and recording land cover trends in different areas.
As the world’s climate changes, this becomes increasingly important [66]. In this context, it
is critical to develop proper procedures for accelerating ssuch investigations. The simultane-
ous use of Google Maps and PlanetScope satellite images, as well as Sentinel-2 images and
multispectral instruments with 13 bands for image classification, to prepare ground-truth
samples was an appropriate strategy for identifying and detecting willow crops in the study
area, with high accuracy (more than 98%) demonstrated for all six maps created between
2017 and 2022. In fact, the rate of accuracy achieved in this study exceeds the average
rates obtained with hyperspace images using object-based classification algorithms [77,78].
Kpienbaareh et al. [79] found that using Sentinel-2 and PlanetScope data to produce maps
of agricultural regions in Sub-Saharan Africa improved the accuracy of land cover maps by
more than 85%. Mercie et al. [63] and Gašparović and Jogun [80] reported similar findings
and indicated that production maps are very accurate when Sentinel-2 is integrated with
PlanetScope for vegetation mapping and monitoring. Nomura and Mitchard’s [47] research
also used Sentinel-2 data to classify a complex mosaic of different land uses in a forest
ecosystem, as well as using WorldView-3 and UAV images to create ground-truth samples.
The classification of 13 Sentinel-2 bands using the random forest classification approach
yielded an overall accuracy of more than 95%. Due to a lack of data and information
regarding the willow-farmed land in Romania, as well as the relatively small ownership of
such agricultural systems, the use of such techniques in the research area may provide a
good opportunity for future studies.

The NDVI was used to evaluate the health of willow crops. The application of the
NDVI has aided remote sensing applications since it is connected to the state of a wide
variety of plant properties. Remote sensing has transformed how humans see, use, and
manage Earth’s resources [81]. The same is true for how the NDVI is associated with
vegetation characteristics (e.g., health, patterns, and status). Coops and Stone [82] and
McVeagh et al. [83] have shown that for local-scale vegetation management, the NDVI is
employed as a direct measure of vegetation health and growth. The findings of this study
indicated that the value for this index in 2022 was much lower than in previous years (i.e.,
2017 to 2021). Since the NDVI mostly varies due to changes in environmental conditions
(precipitation and temperature) [69], meteorological data on temperature and precipitation
were used to assess the cause of this index’s decline in 2022. The plant growth season in
Europe begins at the end of May and lasts until the end of October. Precipitation data
analysis found that the rainfall in June had decreased substantially in 2022. The decrease in
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rainfall of this month appears to have resulted in a decrease in mass growth for a plant like
a willow, which is a hydrophile. According to these findings, NDVI index data derived
from Sentinel-2 satellite images offer a high potential for precise monitoring of agricultural
stages based on the crop calendar. Liberacki et al. [84] studied willow demands for water
during their vegetation season in western Poland and found that this species needed 402 to
408 mm of water on average throughout the growth season. In this regard, June’s 0.85 cm
(=8.5 mm) of precipitation was too low to support plant development.

The analysis of average temperature changes from 2017 to 2022, on the other hand,
shows that the average temperature has risen in recent years. This increase in temperature
across the growing seasons creates short-term droughts, which have a direct impact on
crop growth [85]. Hao et al. [86] reported that the NDVI reacted more strongly at higher
temperatures. According to global forecasts, temperatures will continue to increase and
precipitation will decrease, requiring preventative actions in Romania to deal with the
negative implications of water shortages during the growing season [87]. Willows do not
require strict cultivation conditions, according to researchers [88]. Mirck and Volk [89]
report that willows can resist irrigation with water containing 1625 mg of chlorine. In
addition, they reported that willows are only modestly salt tolerant. Based on these findings,
it is possible to conclude that the willow can adapt to some extent. It should be noted
that proper watering of willows is required for their best growth. According to Gage and
Cooper [90], one of the decisive factors for willow development in mountain and coastal
communities in the United States of America is the availability of water in the soil.

Decisions on what crops can be used in place of fossil fuels should be made in such a
way that they do not considerably increase water demand [91]. Research is increasingly
being conducted to simulate agricultural water demands and the amount of irrigation
water required under various climate change scenarios [92,93]. According to previous
estimations, climate change has an impact on the amount of water required for irrigation.
Climate change will also increase the need for irrigation for several crops [94].

5. Conclusions

This study focused on mapping the extent of willow-cultivated land in a complex
agricultural area using a combination of medium and high spatial resolution satellite images.
The approach to mapping was generally robust throughout the study area, with the capacity
to map willow and non-willow plots with varying features. Sentinel-2 and PlanetScope
images provided important data, while the dot-grid photo interpretation approach, based
on the random forest classification method, was well translated throughout the region,
allowing willow-cultivated plots to be accurately identified. However, the classification
of satellite images in the study area revealed a decreasing trend in willow cultivation.
In addition to the spatiotemporal changes in willow crops, understanding their health
status is critical for the proper management of these systems. The NDVI was used in this
study to assess the health status of the willow crops, and it experienced a decreasing trend.
Most likely, this is due to the changing patterns in the quantity of precipitation and the
temperature in the area of study. The use of additional remote sensing vegetation indices
and climate variables will need to be studied more in the future so as to improve our ability
to accurately classify willow plots and to understand the changes that are occurring in
these agricultural systems.
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