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Abstract: Monocular depth estimation using a single remote sensing image has emerged as a focal
point in both remote sensing and computer vision research, proving crucial in tasks such as 3D
reconstruction and target instance segmentation. Monocular depth estimation does not require
multiple views as references, leading to significant improvements in both time and efficiency. Due
to the complexity, occlusion, and uneven depth distribution of remote sensing images, there are
currently few monocular depth estimation methods for remote sensing images. This paper proposes
an approach to remote sensing monocular depth estimation that integrates an attention mechanism
while considering global and local feature information. Leveraging a single remote sensing image as
input, the method outputs end-to-end depth estimation for the corresponding area. In the encoder,
the proposed method employs a dense neural network (DenseNet) feature extraction module with
efficient channel attention (ECA), enhancing the capture of local information and details in remote
sensing images. In the decoder stage, this paper proposes a dense atrous spatial pyramid pooling
(DenseASPP) module with channel and spatial attention modules, effectively mitigating information
loss and strengthening the relationship between the target’s position and the background in the
image. Additionally, weighted global guidance plane modules are introduced to fuse comprehensive
features from different scales and receptive fields, finally predicting monocular depth for remote
sensing images. Extensive experiments on the publicly available WHU-OMVS dataset demonstrate
that our method yields better depth results in both qualitative and quantitative metrics.

Keywords: remote sensing; depth estimation; monocular vision; attention

1. Introduction

With the continuous advancements in drone and satellite technology, there has been a
notable enhancement in the quality of remote sensing images. Despite these improvements,
a significant limitation persists, given that remote sensing images predominantly exist in a
2D format, lacking essential depth information about the depicted scenes or objects. The
integration of depth information is paramount for a comprehensive understanding of the
3D structure inherent in remote sensing scenes. This inclusion facilitates the determination
of object distances and the establishment of spatial relationships within the environment.
The indispensability of depth information is particularly evident in precise tasks such as
3D reconstruction [1,2], land-cover classification [3–5], and land-change detection [6,7].

Traditional geometry-based methods [8–14] and learning-based methods [12,15–17]
can predict depth from images but encounter formidable challenges in implementation.
Factors such as high computational costs, the limited availability of remote sensing images
for a specific area, and other constraints pose significant obstacles. Multi-view stereo
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vision, for example, demands the prediction of camera poses [14] and substantial data from
the same scene, which are often scarce in practical remote sensing scenes. Stereo vision
methods relying on feature point matching [18] encounter difficulties in low-texture areas
and regions with intense specular reflection, leading to compromised depth estimation and
3D reconstruction accuracy. Hence, the exploration of monocular vision depth estimation
tasks [19] is of paramount research significance. By deriving depth information from
a single view, these approaches offer a promising avenue to surmount the challenges
inherent in traditional methods, presenting a more effective solution for remote sensing
depth estimation.

Monocular depth estimation stands as a pivotal task in the realm of computer vision,
with the objective of deducing depth information for each pixel using a solitary image. To
date, several methods have been proposed for monocular depth estimation [20–29].

Nevertheless, it is noteworthy that these methods have predominantly undergone
extensive experimentation and validation on public datasets like the KITTI autonomous
driving dataset [30] or the NYU Depth V2 indoor scene dataset [31]. Yet, the direct appli-
cation of these methods to remote sensing scenes is challenging due to their substantial
differences. Remote sensing scenes, in contrast to autonomous driving or indoor datasets,
exhibit distinctive characteristics. They encompass significantly larger coverage areas than
indoor scenes, and the distribution of scenes in autonomous driving datasets tends to be
more uniform, featuring similar image structures and styles. In remote sensing scenes, how-
ever, the distribution of foreground and background is uncertain. Moreover, these scenes
present unique challenges, including occlusion and environmental complexity, which are
not easily captured through training on the aforementioned datasets. Additionally, in
remote sensing scenarios, there are typically extensive low-texture areas, within which
there exist some targets that are not easily distinguishable, among other characteristics.
Consequently, adapting existing monocular depth estimation methods for remote sensing
necessitates innovative approaches that account for these divergences and challenges.

Building upon the identified challenges and existing research, we present a novel
solution to address the complexities associated with remote sensing images. Our proposed
approach involves the development of an end-to-end monocular depth estimation method,
strategically considering both global and local information. In this framework, we introduce
multiple modules that integrate attention mechanisms, thereby showcasing the efficacy of
estimating depth from a single image in remote sensing scenes. Our key contributions can
be succinctly summarized as follows:

• We propose a monocular depth estimation method for remote sensing scenes, em-
ploying an encoder–decoder structure. To enhance depth estimation, we introduce
attention mechanisms in both the encoder and decoder, facilitating the improved
extraction and fusion of global and local information.

• In the encoder, we introduce a dense neural network with an efficient channel attention
mechanism as a feature extractor for remote sensing images, effectively enhancing the
efficiency of feature extraction.

• In the decoder, we introduce a dense atrous spatial pyramid pooling module with a
convolution block attention module and a global plane guidance module to extract
crucial contextual information. Furthermore, a weight allocation mechanism is imple-
mented for each global plane guidance module to enhance the learning of feature and
channel importance, contributing to more accurate depth estimation.

The rest of this paper is organized as follows. In Section 2, we introduce the related
work. Section 3 introduces the materials and methods in detail. The experimental data
and results are displayed in Section 4. Specific discussions are carried out in Section 5, and
Section 6 concludes the paper.

2. Related Work

Monocular depth estimation in remote sensing scenes stands as a pivotal research area
within the domains of computer vision and remote sensing. While the majority of studies
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on monocular depth estimation have been conducted on datasets tailored for outdoor
environments, such as the KITTI dataset for autonomous driving, and indoor scenes
like the NYU Depth V2 dataset, there remains a scarcity of methods explicitly designed
for remote sensing depth estimation. This section aims to offer a succinct overview of
traditional geometry-based methods and deep learning-based monocular stereo vision
methods, shedding light on techniques dedicated to addressing the unique challenges
posed by depth estimation in remote sensing scenes.

2.1. Traditional Geometry-Based Methods

Heiko et al. [9] proposed a semi-global matching method to obtain depth maps of images.
But this method is computationally intensive and slow in execution. Saxena et al. [11,12]
introduced a technique that employs Markov Random Fields to learn the mapping between
input images and output depth. Yet, this approach relies on artificial prior models and is
difficult to apply to real-world data. Depth can also be obtained from shadows [13] using
geometric relationships, but this method can lead to information loss and significant depth
errors in complex scenes. In Structure from Motion (SFM) [14] methods, feature points are
identified from multiple images, and then depth information is calculated. This approach
is susceptible to interference from moving objects in the scene and can result in substantial
depth estimation errors due to correspondences and occlusions.

The aforementioned traditional geometry-based methods, if applied to remote sensing
scenes, due to the larger and more complex nature of the scenes, bring about increased
computational and temporal costs. Moreover, poor depth results may be yielded due to the
complexity of the scenes or the inability to extract feature points in low-texture areas.

2.2. Deep Learning-Based Monocular Methods

Eigen et al. [20] pioneered the utilization of deep convolution neural networks for single-
image depth estimation, laying the groundwork for subsequent developments in monocular
depth estimation using neural networks. Subsequent refinements by Eigen et al. [21], involv-
ing a unified multi-scale network framework with a deeper structure, and Liu et al. [22],
introducing a deep convolution neural field to address depth probability optimization, en-
countered challenges like gradient explosion and vanishing gradients [32]. Laina et al. [23]
innovatively applied deep residual networks for depth estimation, inspiring the explo-
ration of DenseNet [33] in the same domain. However, the increased number of parameters
in these networks posed significant challenges. Dai et al. [27] introduced the fully con-
volutional network framework into depth estimation, while Hu et al. [29] proposed a
network structure with a multi-scale feature fusion strategy to enhance edge estimation.
Cao et al. [24] treated depth estimation as a pixel classification problem, resulting in some
information loss during image feature extraction and imprecise outcomes.

Addressing this limitation, Bhat et al. [26] integrated transformers into depth estimation,
incorporating attention mechanisms. Chen et al. [28] proposed a structure-aware residual
pyramid network and later introduced an improved version. Lee et al. [25] introduced a
multi-scale guidance plane method to integrate features at different scales. Shim et al. [34]
proposed a monocular depth estimation method employing a self-attention mechanism
that showed commendable results on an autonomous driving dataset with a limited depth
range. However, this method is not applicable to remote sensing scenes.

For UAV images, Madhuanand et al. [35] proposed a 3D decoder that integrates depth
and pose estimation to predict depth. Hermann et al. [36] introduced a self-supervised
method for monocular depth prediction in UAV images. Additionally, Chang et al. [37]
presented an approach utilizing an encoder–decoder architecture for monocular depth
estimation in low-altitude UAV images. To adapt to the characteristics of remote sensing
images, Tao et al. [38] introduced a feature pyramid approach for smoke detection in
remote sensing scenes. Nonetheless, in the presence of smoke, it becomes challenging to
determine the depth of the scene beneath the smoke.
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3. Materials and Methods
3.1. Overall Architecture

This paper proposes a monocular depth estimation method for remote sensing images
that considers both global and local information. In this method, we introduce attention
mechanisms to enhance the learning and fusion of features. The overall architecture is
illustrated in Figure 1. The inputs are aerial remote sensing images captured from an
oblique perspective. Initially, the images are fed into the encoder, which primarily consists
of a dense feature extraction module with attention mechanisms. The dense neural network
in the encoder significantly reduces information loss during propagation, promotes feature
reuse, and enhances feature representation. The attention mechanism focuses on details
and regions of interest in remote sensing images during feature extraction. After feature
extraction, the features are input into the decoder, where an attention-enhanced dense
atrous spatial pyramid pooling (DenseASPP) module is employed. This module, utilizing
atrous convolutions, expands the effective receptive fields of feature maps, obtaining multi-
scale information beneficial for complex scenes in remote sensing images. It integrates
different-scale feature maps to enhance global scene understanding, ensuring that the
network focuses on both global and important local features. Finally, weighted plane
guidance modules are introduced to derive different plane guidance from features at
different scales. Each plane guidance contributes to the final depth prediction, providing
significant constraints. Since features from different scales have varying importance, the
network learns the weights for the plane guidance, resulting in monocular depth estimation
that closely approximates the true depth in a single-view remote sensing image.

Figure 1. The overall architecture of our work. This architecture comprises an encoder and a decoder,
with the input size of the remote sensing image set at 768 × 384. The encoder incorporates a dense
feature extraction module with an attention mechanism. In the decoder, the attention-enhanced
DenseASPP module and the weighted plane guidance module collaborate to predict the depth for
the input remote sensing image.

3.2. Dense Feature Extraction Module with Attention

In the encoder part, we have devised a dense neural network (DenseNet) with efficient
channel attention named ECA-DenseNet, as shown on the left side of Figure 2, specifically
tailored for feature extraction in remote sensing images.

DenseNet exhibits a densely connected neural network structure, where each layer
directly receives feature maps from the preceding layer. This design enhances the reuse
of feature maps at different positions, ensuring comprehensive information transfer in
each forward pass and the maximal preservation of global features. For remote sensing
images, which often contain numerous objects, rich semantic information, and extensive
spatial coverage, global features are crucial for the overall effectiveness. Therefore, we
chose DenseNet as the foundational network framework.
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Figure 2. The network architecture of ECA-DenseNet. The left side illustrates the overall structure
of the network, the top-right corner provides a schematic diagram outlining the internal connec-
tions within each network block, and the bottom-right corner presents a schematic diagram of the
ECA model.

While global features are essential, the significance of local information and focused
attention to specific details in remote sensing images cannot be understated. To address
this, we introduced an attention mechanism.

The efficient channel attention (ECA) mechanism enhances the attention of different
channels to features, as depicted in the bottom-right corner of Figure 2. It initially reduces
the spatial dimensions to provide each channel with a scalar representation, and the
channel weights are adaptively learned through the convolution kernel size and the number
of channels. Notably, an attention module has been inserted after each dense block in
the network structure, performing the channel attention calculation on the feature maps
outputted by each block. This facilitates the rapid and effective identification of noteworthy
positional features during each stage of feature extraction.

The design of ECA-DenseNet ensures that, during feature extraction in remote sensing
images, it not only emphasizes global features for overall information preservation but also
swiftly captures key details. Simultaneously considering both global and local attention
information enhances the expressive power for edge features of terrain and complex scenes
in remote sensing images. From a training perspective, the dense connection aids in
better gradient propagation, significantly alleviating issues such as gradient vanishing
and exploding. The ECA, requiring only global average pooling, proves computationally
efficient and less prone to overfitting.
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3.3. Attention-Enhanced DenseASPP

To better leverage the image features extracted by the feature extractor, we introduce a
DenseASPP module that integrates both channel attention and spatial attention, forming a
contextual information connection for feature extraction and depth estimation, as shown in
Figure 3.

Figure 3. The architecture of attention-enhanced DenseASPP.

To account for global structures, we employ atrous convolution modules, which
expand the effective receptive field of the convolution kernel. This expansion enables each
kernel to capture information from a larger distance, ranging from a small to a large scale.
This approach proves beneficial for addressing long-range dependencies in the image,
particularly suited for remote sensing images. Simultaneously, the atrous convolution
maintains the resolution of the feature map, aiding subsequent tasks. By adjusting the
dilation rate, dilated convolution obtains feature representations with different receptive
field sizes, capturing multi-scale features that comprehensively represent the image and
provide rich information for the subsequent network. Importantly, dilated convolution
does not introduce additional parameters when enlarging the receptive field, avoiding an
increase in the training burden or difficulty compared to other architectures.

Similar to the feature extractor, we implement dense connections in this section
through DenseASPP. Dense connections facilitate efficient feature transfer and reuse by
directly transmitting features from the previous layers to subsequent layers. Additionally,
dense connections contribute to a more compact and efficient network structure. In contrast
to regular network propagation, DenseASPP enhances learning capabilities during training,
effectively addressing gradient-vanishing issues and enhancing the model’s expressive and
generalization capabilities.

Our approach involves a comprehensive consideration of both global and local struc-
tures, enhancing the learning of local features through the incorporation of channel and
spatial attention modules. In the channel attention module, we perform channel dimension
pooling within the feature block, followed by convolution and sigmoid layers to generate
weights for each channel. Simultaneously, employing spatial attention addresses the high
spatial complexity of remote sensing images, concentrating on significant spatial positions
by deriving weights for each position through channel pooling and sigmoid activation.
This strategic combination reinforces the representation of crucial positions in the image.

In summary, our proposed attention-enhanced DenseASPP effectively interprets and
infers complex scenes and targets in remote sensing images. It accomplishes this by
accurately expanding the global receptive field while intensifying attention toward key
image locations.

3.4. Weighted Plane Guidance Module

To enhance the accuracy of predictions in the final depth output, we introduce a
weighted plane guidance module to constrain the depth predictions before the ultimate
prediction, as illustrated in Figure 4. Each plane guidance module outputs features with
the same dimension H as the input image. Under the combined influence of the previous
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plane guidance module and the features of different scales, guidance planes with features
of varying scales are obtained. Prior to the final depth prediction, multiple guidance
planes are weighted and aggregated, contributing to the ultimate depth estimation, thereby
enhancing the accuracy of the results.

Figure 4. The architecture of the weighted plane guidance module.

The aforementioned module outputs a 4D vector (n1, n2, n3, n4). Utilizing ray-plane
intersection [39], we can construct the local depth corresponding to the 4D vector according
to Equation (1). Different scales correspond to distinct guiding planes, each encapsulating
information from various scales. Depth estimation under global information emphasizes
coarser scales, while depth estimation under local information primarily focuses on learning
at finer scales.

d̃i =
n4

√
u2

i + v2
i + 1

n1ui + n2vi + n3
, (1)

where d̃i is the local depth, and (ui, vi) are the normalized coordinates of the pixels.
To accommodate both global and local information within the features of remote

sensing images, we assign weights to the guidance planes from different scales. As the
network undergoes training, it learns the significance of various guidance planes for depth
estimation. Ultimately, the weighted guidance planes are concatenated and contribute to
the final depth prediction layer.

The incorporation of the weighted plane guidance module serves to effectively estab-
lish the relationship between internal features and the final depth estimation, providing a
robust constraint to the prediction process.

3.5. Loss Function

The scale-invariant error (SIE) is the proportional error between the depth estimation
error and the true depth value. Its definition is as follows:

SIE =
1
N ∑

i
(log D̂i − log Di)

2 − λ

N2

(
∑

i
log D̂i − log Di

)2

, (2)

where N represents the number of the images, Di is the ground truth of the depth, D̂i is
the predicted depth, and λ = 0.5. The SIE is often used as a loss function to address scale
uncertainty issues in depth estimation tasks. Because this function is independent of the
absolute scale of the depth values, even if the depth values are scaled proportionally, the
scale-invariant error remains consistent. This is particularly useful for handling diverse
scenes in remote sensing images and different datasets.

This error equation can also be reformulated as follows:

SIE =
1
N ∑

i
(log D̂i − log Di)

2 − 1
N2

(
∑

i
log D̂i − log Di

)2

+ (1 − λ)

(
1
N
(∑

i
log D̂i − log Di)

)2

(3)

This equation offers a more transparent breakdown of the error components, encom-
passing the weighted square mean of the variance and the error in logarithmic space. The
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parameter λ provides flexibility in adjusting the emphasis on minimizing variance in the
error. In summary, our loss is expressed as follows:

LossSIE = Min(c
√

SIE), (4)

where λ is set to 0.85, and we use c = 10 as a constant.

4. Experiments and Results
4.1. Datasets

The WHU-OMVS dataset [40,41], developed by Wuhan University, serves as a dataset
for oblique aerial images tailored for city-scale 3D scene reconstruction tasks and monocular
depth estimation in remote sensing imagery. Captured at an approximate flight altitude
of 220 m above the ground, the dataset includes extensive urban remote sensing images,
along with the corresponding depths. The dataset comprises a total of 32,175 images
obtained by slicing large-scale remote sensing images, and each image has dimensions of
768 × 384 pixels and is subject to a certain amount of actual capture jitter. We divided these
images into training and testing sets with a ratio of 40:1, following the partitioning scheme
used in the KITTI and NYU datasets. We ensured that the scenes in the testing set did not
appear in the training set to maintain independent scenario settings.

The LEVIR-NVS dataset [42] is a newly proposed dataset for remote sensing images.
The dataset comprises 16 scenes, including mountains, cities, schools, stadiums, colleges,
and more, with each scene containing 21 multi-view images and corresponding depth
maps. The LEVIR-NVS dataset is used as the test dataset for our method.

4.2. Implementation Details

Our model underwent training and testing on an NVIDIA RTX 3090 GPU, utilizing the
PyTorch framework. Throughout the training process, the Adam optimizer was employed
with a learning rate set to 10−4, accompanied by a weight decay rate of 10−2, and a batch
size set to 8. Furthermore, epsilon ϵ = 10−3 was incorporated into the optimizer to mitigate
potential division by zero in the denominator, thereby enhancing stability in computations.
Both training and testing images were of the size 768 × 384. For testing, we employed
several quality assessment metrics, as outlined below.

4.3. Quality Assessment Metrics

Similar to various monocular depth estimation methods, we adopted metrics from
prior work [20] as our evaluation criteria for convenient comparison with other studies.

The Average Relative Error (Abs Rel) represents the average depth error. The Squared
Relative Error (Sq Rel) is utilized to measure the relative error of the depth estimation
model concerning the depth values. The Root-Mean-Squared Error (RMSE) gauges the
difference between predicted values and actual values. The RMSE accounts for the variance
of prediction errors and is more sensitive to large errors. The Root-Mean-Squared Error
in log space (RMSE log) is employed to assess the model’s performance by calculating
the square root in logarithmic space. The RMSE log is more sensitive to depth errors than
the RMSE.

Smaller values for these metrics indicate a more effective depth estimation by the
model. The metrics are specifically defined as follows:

Abs Rel =
1
N

N

∑
i=1

∣∣Di − D̂i
∣∣

Di
(5)

Sq Rel =
1
N

N

∑
i=1

(
Di − D̂i

Di

)2

(6)
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RMSE =

√√√√ 1
N

N

∑
i=1

(
Di − D̂i

)2 (7)

RMSE log =

√√√√ 1
N

N

∑
i=1

(
log(Di)− log

(
D̂i
))2 (8)

The Accuracy Threshold measures the accuracy for a certain threshold range and is
defined as follows:

Accuracy Threshold = % of Di s.t. Max
(

Di

D̂i
,

D̂i
Di

)
< thr, where thr = 1.25, 1.252, 1.253 (9)

In the equations above, N represents the number of images, Di is the ground truth of
depth, and D̂i is the predicted depth. In Equation (9), thr represents the threshold of the
measuring range.

4.4. Results
4.4.1. Quantitative and Qualitative Evaluation Compared with Other Methods

We assessed our method from qualitative and quantitative perspectives against other
monocular depth estimation methods, including Monodepth [17], BTS [25], and Adabins [26].

In Table 1 above, we present the results of experiments conducted with these methods
on the WHU-OMVS dataset. We calculated depth estimation outcomes using the aforemen-
tioned metrics for quantitative analysis and comparison. Table 1 clearly indicates that our
method demonstrated superior quantitative performance.

Table 1. Quality assessment metrics comparison on WHU-OMVS dataset.

Model Name Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth 0.214 8.142 20.191 0.259 0.761 0.925 0.967
BTS 0.127 2.859 15.028 0.218 0.855 0.961 0.983

Adabins 0.130 2.719 13.881 0.184 0.867 0.965 0.985
Ours 0.085 1.427 9.605 0.134 0.928 0.981 0.991

The best results are highlighted in bold in the table.

Furthermore, we conducted qualitative visual comparisons among various methods
using the WHU-OMVS dataset, employing reference depth for evaluation.

Upon an overall assessment of the depth, each method exhibits satisfactory perfor-
mance. However, upon closer scrutiny, our results demonstrate superior estimates in terms
of details and edges as shown in Figure 5. For example, it is evident that our depth results
provide clearer and more refined delineation of object contours, as well as depth level
differentiation on surfaces of buildings or other targets. Notably, in the top row within the
red box, our method accurately detects and estimates the depth of the outermost trees along
the edges. In the middle-position boxes, our method successfully estimates the position
and depth of ground vehicles, a capability not matched by other methods. Additionally, in
the red box in the fourth row, a region with a hole in the remote sensing image results in
a deeper depth value, a nuanced detail captured only by our method. These qualitative
results affirm that our method not only effectively estimates the global depth of remote
sensing images but also excels in capturing the depth of endpoints and details within
the images.

Additionally, we conducted tests of our model on LEVIR-NVS remote sensing dataset.
Table 2 presents the quantitative metric results, and Figure 6 illustrates the qualitative
visual effects. Due to the poor generalization of other methods in remote sensing images,
we cannot obtain depth maps that can distinguish scenes. Therefore, we only present our
results compared with the ground truth. Based on the testing results obtained from the
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LEVIR-NVS dataset, it can be observed that our metrics surpass those of other methods,
indicating the effectiveness of our approach for improving remote sensing scenes. Visually,
our testing yields depth estimates for some of the important regional targets within the
scene, demonstrating that our attention mechanism is operational, hence validating the
efficacy and superiority of our method. However, it is also apparent that the generalization
of our approach requires further enhancement.

Figure 5. Qualitative comparison on WHU-OMVS dataset.

Figure 6. Qualitative comparison with models trained on WHU-OMVS dataset and tested on LEVIR-
NVS dataset.

Table 2. Quality assessment metrics comparison with models trained on WHU-OMVS dataset and
tested on LEVIR-NVS dataset.

Model Name Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth 0.710 0.695 10.978 0.351 0.539 0.831 0.924
BTS 0.649 0.630 10.357 0.282 0.588 0.874 0.936

Adabins 0.597 0.613 10.286 0.311 0.601 0.887 0.939
Ours 0.526 0.567 10.009 0.260 0.703 0.921 0.959

The best results are highlighted in bold in the table.
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In summary, the results establish that our method performs exceptionally well on com-
plex remote sensing images, validating the superiority and effectiveness of our approach.

4.4.2. Ablation Study

In the previously described methodology, we formulated a feature extractor using
DenseNet with an attention mechanism, a contextual connector employing DenseASPP
that integrates channel attention and spatial attention, and a depth estimation constraint
through a weighted plane guidance module. In this section, we present various ablation
experiments conducted to validate the efficacy of each module in depth estimation and
assess the corresponding improvements in metrics. Our approach was compared with
the baseline BTS, which lacks an attention mechanism. In this baseline configuration, we
utilized DenseNet161 without attention, standard ASPP, and unweighted plane guidance.

Table 3 encompasses various configurations involving the three modules within the
network. Through the examination of depth estimation metrics, it is evident that each
module makes a distinct contribution, resulting in improvements in the outcomes. This
observation underscores the effectiveness of our method in monocular depth estimation
for remote sensing images.

Table 3. Quality assessment metrics from ablation study of our method on WHU-OMVS dataset.

Model Name Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Baseline 0.127 2.859 15.028 0.218 0.855 0.961 0.983
Model with ED 0.107 1.937 11.925 0.157 0.899 0.973 0.989
Model with AD 0.108 2.035 11.958 0.161 0.897 0.972 0.987

Model with WPG 0.107 2.004 11.939 0.156 0.900 0.974 0.989
Model without ED 0.099 1.654 11.004 0.148 0.909 0.978 0.991
Model without AD 0.095 1.580 10.701 0.144 0.913 0.978 0.991

Model without WPG 0.097 1.622 10.962 0.147 0.911 0.978 0.991
Complete model 0.085 1.427 9.605 0.134 0.928 0.981 0.991

ED: ECA-DenseNet; AD: attention-enhanced DenseASPP; WPG: weighted plane guidance. The results of the
complete model are highlighted in bold in the table.

5. Discussion

This paper proposes a monocular depth estimation method for remote sensing images.
In order to achieve more accurate depth estimation results, we introduce several novel
modules: the ECA-DenseNet feature extraction module, the attention-based DenseASPP
contextual information fusion module, and the weighted plane guidance module. The
introduction of these modules follows the principle of simultaneously considering global
and local feature information.

Extensive experiments were conducted on the WHU-OMVS dataset, and quantitative
metrics and qualitative results were compared with those of the monocular depth estimation
methods MonoDepth [17], BTS [25], and Adabins [26]. As shown in the results, MonoDepth
produces decent results in some simple scenes but fails to distinguish the position and
depth in complex scenes. Although BTS performs well globally, it struggles with depth
discrimination in detailed locations, and the contours in the depth are not clear. Adabins
exhibits good performance in depth contours and certain objects, but it suffers from depth
loss, such as exceeding the applicable depth range, and fails to identify and predict depth
for specific small targets.

In contrast, our results are closest to the ground truth. Our method exhibits the
clearest depth hierarchy in the global structure, discerns depth changes at the edges, and
demonstrates excellent depth estimation in detail.

As observed from the visual results in Figure 5, our method is capable of feature
extraction and depth estimation even at the edges of remote sensing scenes, exhibiting
satisfactory global visual effects. We note that in remote sensing scenarios, such as rooftops
or large areas of uniform buildings, extensive low-texture regions are common. Within
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these regions, small targets that are difficult to detect can be found, as in the scenes from
the third and fifth rows. Our approach accurately identifies and estimates depths in low-
texture areas, showing notable improvements for remote sensing imagery compared to
other methods. This success can be attributed to the contributions of our method, which
continuously enhances global information throughout the process while also integrating at-
tention mechanisms into each module to give extra focus to important targets. Comparative
and ablation experiments indicate the effectiveness of the proposed modules, showcasing
their applicability to remote sensing images.

Furthermore, we have also employed the LEVIR-NVS dataset for testing. Overall, our
test results are able to generate corresponding depths at crucial locations, reflecting the role
of the attention mechanism. However, there is still substantial room for improvement in
the overall visual effects, and hence, we are considering how to enhance the generalization
performance of our model in future work.

In summary, our method provides a valuable solution for monocular depth estimation
in remote sensing images, offering potential applications in 3D reconstruction and aiding
tasks such as remote sensing target detection and segmentation.

In future work, we will consider improving remote sensing depth estimation in binoc-
ular or multi-view vision to enhance the accuracy in 3D reconstruction tasks. Additionally,
we will continue to delve into monocular remote sensing depth estimation to further
improve the method’s generalization performance.

6. Conclusions

This paper introduces an attention-based monocular depth estimation method for
remote sensing images, taking into account both global and local information. The input
image undergoes feature extraction through a dense neural network equipped with an
attention mechanism, effectively capturing both global and local details. The connector
of the dense atrous spatial pyramid pooling module efficiently conveys the global struc-
tural features of remote sensing images. By incorporating channel attention and spatial
attention, it enhances the focus on critical positions within complex remote sensing scenes.
The weighted plane guidance module integrates guidance planes from different scales,
providing depth constraints from various features and ultimately producing the depth
corresponding to a single remote sensing image. Comprehensive ablation experiments on
the WHU-OMVS public dataset validate the effectiveness of the proposed methodological
framework. The results compared with other methods also prove the superiority and
effectiveness of our method and its potential benefits for remote sensing 3D reconstruction
and target detection and segmentation tasks.
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