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Abstract: In this paper, we propose a method for extracting the structure of an indoor environment
using radar. When using the radar in an indoor environment, ghost targets are observed through
the multipath propagation of radio waves. The presence of these ghost targets obstructs accurate
mapping in the indoor environment, consequently hindering the extraction of the indoor environment.
Therefore, we propose a deep learning-based method that uses image-to-image translation to extract
the structure of the indoor environment by removing ghost targets from the indoor environment
map. In this paper, the proposed method employs a conditional generative adversarial network
(CGAN), which includes a U-Net-based generator and a patch-generative adversarial network-based
discriminator. By repeating the process of determining whether the structure of the generated indoor
environment is real or fake, CGAN ultimately returns a structure similar to the real environment.
First, we generate a map of the indoor environment using radar, which includes ghost targets. Next,
the structure of the indoor environment is extracted from the map using the proposed method.
Then, we compare the proposed method, which is based on the structural similarity index and
structural content, with the k-nearest neighbors algorithm, Hough transform, and density-based
spatial clustering of applications with noise-based environment extraction method. When comparing
the methods, our proposed method offers the advantage of extracting a more accurate environment
without requiring parameter adjustments, even when the environment is changed.

Keywords: frequency-modulated continuous wave radar; generative adversarial network; ghost
target; indoor environment; radar-based mapping

1. Introduction

Recently, autonomous driving is gaining attention not only in the automotive field, but
also in the indoor robot field. The core technology for autonomous driving is to figure out
the environment around the automobile or robot using the camera, lidar, and radar sensor.
However, camera and lidar sensors do not exhibit consistent performance. For instance,
lidar encounters challenges when dealing with lengthy corridors and obstructions, such
as fog, smoke, dust, and debris [1]. Additionally, its relatively elevated cost can impose
restrictions on its applicability across various use cases. Also, while cameras can be used
for the extraction of indoor structures, it requires a light source, and there may be potential
privacy issues. On the other hand, radar sensors have the advantage of maintaining a
relatively stable detection performance even in such an environment [2].

Due to these advantages, several research works have been conducted to generate
environment maps using the radar sensor [3–7]. The authors of [3] demonstrate the use
of radar to localize and map the position of a robot even under foggy weather conditions.
Furthermore, the authors of [4] demonstrate the application of simultaneous localization
and mapping technology using frequency-modulated continuous wave (FMCW) radar in
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visually impaired environments. The authors of [5] showed that mapping of the indoor
environment is possible under smoky conditions using millimeter wave radar. In addition,
the authors of [6] mapped the indoor environment using multiple-input and multiple-
output (MIMO) FMCW radar, and the authors of [7] mapped a forest using synthetic
aperture radar.

When using radar sensors in indoor environments, there is a disadvantage of ghost
targets being generated by the multiple reflections of radio waves [8]. The presence of ghost
targets obstructs the accurate extraction of the indoor environment’s structure. Therefore,
it is necessary to remove ghost targets when using radar sensor in an indoor environment,
and various related researches are being conducted [9–11]. For instance, the authors of [9]
have proposed a method for removing ghost targets in indoor environments by comparing
the received signal with a threshold value. In [10], the authors propose a method for
removing ghost targets based on the Hough transform that uses the linear correlation
between the target and multipath within a range-Doppler map. The author of [11] classified
targets and noise using the alpha-extended Kalman filter in crowded indoor situations.

However, conventional ghost target removal methods require adjusting parameters to
achieve optimal results in varying experimental environments. Thus, there has been an
increasing focus on using deep learning to detect ghost targets in recent years [12–14]. For
example, the authors of [12] proposed a method for removing ghost targets using U-Net
and the authors of [13] identified targets in a cluttered environment using convolutional
neural networks. Additionally, in [14], the authors proposed a deep neural network-based
classifier that uses features such as distance, angle, and signal strength of the targets to
distinguish ghost targets. In this paper, we propose a method for extracting the structure
of the indoor environment with ghost targets removed using pix2pix [15] without the
requirement for parameter adjustment, even in various environments. First, we acquire
the detection results of targets in indoor environments using an FMCW radar. Next, using
the acquired information on distance, azimuth angle, and elevation angle, we generate an
indoor environment map that includes ghost targets. Then, using the proposed method, we
extract a structured indoor environment map by removing ghost targets and simultaneously
interpolating the unmeasured areas. The proposed method extracts indoor structures using
generative adversarial networks (GANs). The generator generates the image of an indoor
structure, and the discriminator evaluates the authenticity of the generated images. This
process generates the structure of an indoor environment that closely resembles the real
environment. Finally, we evaluate the performance of the proposed method using the
structural similarity index measure (SSIM) and structural content (SC). Also, we compare
the extracted result of the proposed method with the k-nearest neighbors (KNNs) algorithm,
the Hough transform, and density-based spatial clustering of applications with noise
(DBSCAN)-based structure extraction method.

In summary, the major contributions of our study can be summarized as follows:

• The proposed method removes the ghost targets generated by the multiple reflections
of radio waves and extracts the structure of the indoor environment.

• The proposed method not only removes general ghost targets, but also performs
partial interpolation of the unmeasured areas, resulting in an extracted structure of
the indoor environment that closely resembles the actual environment.

• Unlike conventional methods for structure extraction, the proposed method does not
require parameter adjustments in different environments and can extract the structure
of an indoor environment using the same parameter settings.

The remainder of this paper is organized as follows. First, in Section 2, we introduce
the process of detecting a target and estimating its distance, velocity, and angle in an FMCW
radar system. In Section 3, we describe the experimental environment and demonstrate
the detection results of the target in indoor environments. Then, in Section 4, we describe
the image-to-image translation model architecture used in this paper and evaluate the
performance of the proposed method. Finally, we conclude this paper in Section 6.
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2. Radar Signal Analysis
2.1. Distance and Velocity Estimation Using FMCW Radar Signal

The FMCW radar system transmits radio waves that have frequencies changing
linearly over time, as shown in Figure 1. In this figure, ∆t, ∆ f , and fc denote the duration,
bandwidth, and center frequency of the q-th chirp, respectively. The transmitted signal for
the q-th chirp can be expressed as

st(t) = At,q exp
[

j2π

{
fct +

∆ fq

2∆t
t2
}]

((q− 1)∆t) ≤ t ≤ q∆t).
(1)

Figure 1. Transmitted signal of FMCW radar system.

The transmitted signal is reflected off the target, which is then received through the
receiving antenna. The received signal includes Doppler shift caused by the relative velocity
of the target, time delay caused by distance to the target, and signal attenuation. When vk
represents the relative velocity and Rk represents the distance to the k-th target, the received
signal for the q-th chirp can be expressed as

sr(t) = Ar,q exp
[

j2π

{
( fc +

2 fcvk
c

)(t− 2Rk
c

) +
∆ fq

2∆t
(t− 2Rk

c
)2
}]

(
(q− 1)∆t +

2Rk
c

) ≤ t ≤ q∆t +
2Rk

c

)
,

(2)

where Ar,q denotes the attenuated signal amplitude.
As shown in Figure 2, the received signal is down-converted to a baseband signal

through a frequency mixer and a low-pass filter. This baseband signal is subsequently
sampled in the time domain through an analog-to-digital converter. The sampled signal for
the q-th chirp can be expressed as

b[p, q] =
Nk

∑
k=1

Akexp
[

j2π

{(
2∆ f (Rk + vkq∆t)

c∆t
+

2vk fc

c

)
pTs

+
2 fc

c
(Rk + vkq∆t)

}]
,

(3)

where Nk is the number of targets, and p (p = 1, 2, . . . , Np) and q (q = 1, 2, . . . , Nq)
represent the index of time samples and chirps, respectively. In addition, Ak denotes the
amplitude of the signal, and Ts denotes the sampling time.
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Figure 2. Block diagram of the MIMO FMCW radar system.

The time-sampled signal can be arranged into a two-dimensional matrix as shown
in Figure 3. In addition, to estimate both the distance and velocity of the target, we apply
the Fourier transform along the sampling axis (p-axis) and the chirp axis (q-axis) of the
matrix, respectively, followed by peak detection. The result of the two-dimensional Fourier
transform of (3) can be expressed as

B[r, s] =
1

NpNq

Np

∑
p=1

Nq

∑
q=1

b[p, q]

× exp
(
−j2π

(
rp
Np

+
sq
Nq

))
,

(4)

where r (r = 1, 2, . . . , Np) and s (s = 1, 2, . . . , Nq) denote the index in frequency domain.

(a)

Figure 3. Cont.
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(b)

Figure 3. Distance and velocity estimation: (a) apply the Fourier transform along the sampling axis
and then (b) apply the Fourier transform along the chirp axis.

2.2. Angle Estimation Using MIMO Antenna System

To accurately locate a target, it is essential to estimate not only the distance but also
the angle between the radar sensor and the target. We describe a method for estimating the
azimuth and elevation angle using a MIMO antenna array. If we assume that the elevation
and azimuth angles between the center of the antenna and the k-th target are denoted as
φk and θk, respectively, then (3), which represents the sampled baseband signal, can be
extended as

b[p, q, u, v] =
Nk

∑
k=1

Akexp
[

j2π

{(
2∆ f (Rk + vkq∆t)

c∆t
+

2vk fc

c

)
pTs

+
fcdt,a sin θk

c
(u− 1) +

fcdr,a sin θk
c

(v− 1)

+
fcdt,e sin φk

c
(u− 1) +

fcdr,e sin φk
c

(v− 1)

+
2 fc

c
(Rk + vkq∆t)

}]
,

(5)

where dt, e and dt, a denote the distance between elements of the transmitting antenna in
elevation and azimuth directions, respectively. Similarly, dr,e and dr,a denote the distance
between elements of the receiving antenna in the elevation and azimuth directions, respec-
tively. In addition, u (u = 1, 2, . . . , NT) and v (v = 1, 2, . . . , NR) represent the index of
the elements of the transmitting and receiving antenna. When NT and NR represent the
number of elements of the transmitting and receiving antenna, the total number of virtual
receiving channels can be increased up to NT × NR [16]. Therefore, when using the MIMO
antenna, the data cube can be expanded to a three-dimensional data cube with a size of
Np × Nq × (NT × NR).

To estimate the azimuth angle of the target, we need to select a subset of virtual
receiving channels aligned along the azimuth direction. The data cube is constructed with a
size of Np × Nq × NA, as shown in Figure 4a, with NA representing the number of channels
in azimuth direction. Then, if the index of the k-th target obtained through (4) is denoted as
rk and sk, it is possible to extract a total of NA sampling values, as shown in Figure 4b. The
signal vector consisting of the sampled values from channels NA can be represented as
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BA =


B1[rk, sk]
B2[rk, sk]

...
BNA [rk, sk]

. (6)

(a)

(b)

Figure 4. Data processing for azimuth angle estimation: (a) receiving channel selection for angle
estimation of the azimuth direction and (b) selection of the time sample index and chirp index
corresponding to the target.

Next, we generated the correlation matrix using the signal vector, which is represented as

RA =
1

Ns
BABH

A . (7)

In Equation (7), Ns denotes the number of snapshots, which is the number of indepen-
dent datasets collected over different time intervals. In addition, the symbol (·)H represents
the Hermitian operator, which is the form of conjugate transpose.

Finally, the angle estimation can be performed using digital beamforming techniques
(e.g., Bartlett, Capon) [17]. We used Bartlett’s method to estimate the angle, and the
normalized pseudospectrum of Bartlett’s beamformer can be represented as

PA(θ) =
aH

A (θ)RAaA(θ)

max(aH
A (θ)aA(θ))

, (8)

where aA(θ) is a steering vector that takes into account the distance in the azimuth direction,
and the estimated azimuth angle for the k-th target is the θ that maximizes the value of the
normalized pseudospectrum.

Estimating the elevation angle is similar to estimating the azimuth angle. When
estimating the elevation angle, the difference is that a subset of virtual receiving channels
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arranged in the elevation direction are selected and the steering vector takes into account
the distance in the elevation direction.

3. Indoor Environment Mapping Using Radar Sensor
3.1. Radar Sensor Used in Measurements

In this paper, we conducted indoor environment mapping using a dual-mode radar
sensor that offers both long-range and short-range detection capabilities using a single
radar sensor [18]. Figure 5 shows the time–frequency slope in each frame of the dual-mode
radar system. As shown in Figure 5, the radar system uses two waveforms with different
bandwidths within a single frame to perform long-range and short-range detection. In our
radar system, the long-range detection mode uses a narrow bandwidth to detect distant
targets with lower range resolution. Conversely, the short-range detection mode uses a
wide bandwidth to detect nearby targets with higher range resolution. The radar system
used in this study operates at a center frequency of 62 GHz, with a bandwidth of 1.5 GHz
used for long-range detection and a 3 GHz bandwidth used for short-range detection. In
addition, the radar system has a maximum detection range of 20 m and a range resolution
of 0.1 m in long-range detection mode. In short-range detection mode, the maximum
detection range is 10 m and a range resolution of 0.05 m. The system is configured with
128 chirps and 256 samples per chirp. Furthermore, the radar system is operated with
a 2-by-4 MIMO antenna system, enabling a high level of angular resolution despite its
compact size. The radar system operates within a field of view (FOV) ranging from −20◦

to 20◦ in long-range mode and −60◦ to 60◦ in short-range mode. The specifications of the
radar system are summarized in Table 1.

Figure 5. Transmitted signal of dual-mode FMCW radar system.

Table 1. Specifications of the radar sensor.

Detection Mode Long-Range Mode Short-Range Mode

Bandwidth, B (GHz) 1.5 3
The number of chirps, Nc 256 256

The number of time samples, Ns 128 128
Maximum detectable range (m) 20 10

Range resolution (m) 0.1 0.05
FOV (◦) −20 ∼ 20 −60 ∼ 60

3.2. Measurement Environment

In this paper, the experiment was conducted in three different environments, as shown in
Figure 6: The Electronics Engineering Building at Korea Aerospace University (KAU) (i.e., E1);
7th floor, Business and Economics Building (i.e., E2) at Chung-Ang University (CAU); and
9th floor, Business and Economics Building (i.e., E3) at CAU. As shown in Figure 6, the
environment of E1 exhibits a 90◦ left-bent L-shaped structure, and the environment of E2
exhibits a 120◦ right-bent structure. The environment of E3 represents a T-shaped structure,
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with each hallway having a different width. Experimental data were collected by mounting
a radar on a cart and moving it at intervals of 0.4, 0.225, and 0.45m in each measurement
environment. Consequently, the experimental data were obtained at 68 points, 61 points,
and 53 points in the E1, E2, and E3 environments, respectively. Then, a map of the indoor
environment was generated by accumulating the obtained experimental data.

(a)

(b)

(c)

Figure 6. Measurement environments: (a) Electronics Engineering Building at KAU; (b) 7th floor,
Business and Economics Building at CAU; and (c) 9th floor, Business and Economics Building at CAU.

3.3. Target Detection Results

As mentioned in Section 2, information of the target (i.e., the distance, elevation angle,
and azimuth angle) can be obtained using radar. We can represent the position of the target
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on the xy plane using (xk, yk) = (dk cos φk sin θk, dk cos φk cos θk) about target information,
as shown in Figure 7. In Figure 8, the blue points represent the detected targets, and the
yellow line represents the location of the actual wall in indoor environments. As shown
in the figure, targets were commonly detected in positions that closely resembled the
actual walls in all three environments. However, some targets were detected in positions
where the actual wall was absent (i.e., in areas without physical structure). In indoor
environments, the radio waves in the millimeter wave band are reflected or scattered,
resulting in multipath reflections. As a result of these multipath reflections, ghost targets are
generated, which are non-existent targets. Consequently, maps generated using information
that includes these ghost targets do not accurately represent the structure of the actual
environment. Therefore, in Section 4, we introduce a method that uses image-to-image
translation to extract the structure of the indoor environment with ghost targets removed.

Figure 7. Estimated target information from the radar sensor data.

(a) (b) (c)

Figure 8. Detection results of the indoor environment with ghost targets: (a) Electronics Engineering
Building at KAU; (b) 7th floor, Business and Economics Building at CAU; and (c) 9th floor, Business
and Economics Building at CAU.

4. Proposed Environment Extraction Method

In this section, we describe the conditional GAN (CGAN), which is commonly used in
image-to-image translation tasks. Additionally, we provide an explanation of the structure
and parameters of the model used in this paper.



Remote Sens. 2024, 16, 574 10 of 18

4.1. Conditional GAN for Environment Extraction
4.1.1. Basic Structure of Conditional GAN

The image-to-image translation is the task of transforming the domain or style of an
image, such as modifications to its appearance, characteristics, and visual style. Recently,
deep learning techniques, specifically GANs, have been widely used for image-to-image
translation [19]. The GAN consists of two separate networks: the generator, responsible for
generating synthetic images (i.e., fake images), and the discriminator, which distinguishes
between real and fake images. The generator and discriminator continually update their
parameters through training, improving their respective performance. In the training
process, the loss function of the GAN is designed to minimize the generator’s loss and
maximize the discriminator’s loss using a min–max strategy during the training process,
which can be represented as

G∗ = arg min
G

max
D

LGAN(G, D), (9)

where LGAN denotes the loss function of the GAN. The LGAN can be expressed as

LGAN(G, D) =EX, Z[log D(X, Z)]

+ EX[log(1− D(X, G(X)))],
(10)

where X and Z represent the real image and noise vector, respectively. At the beginning of
the training, the generator produces results that resemble noise. However, as the training
continues, the generator gradually produces synthetic images that become increasingly
indistinguishable from real images.

However, traditional GANs have a disadvantage in generating the desired types of
images or image styles. This is because traditional GANs learn how to generate images
from random noise vectors without any specific instructions or constraints on the type
of image being generated. As a result, while traditional GANs can generate a variety of
images, they lack the ability to consistently target a specific style or type. To overcome
this disadvantage, a recent focus has been on CGAN that receive conditional information
such as image class and style to generate images in the desired form [20]. In a CGAN, the
generator uses the received conditional information to produce a fake image. Moreover, the
discriminator uses conditional information to differentiate between real and fake images.
In other words, unlike traditional GANs, CGANs use conditional information in both the
generator and discriminator.

The loss function of the CGAN can be expressed as:

LCGAN(G, D) =EX, Y[log D(X, Y)]

+ EX, Y[log(1− D(X, G(Z, Y)))],
(11)

where Y represents the conditional information. In (11), CGAN uses conditional informa-
tion to apply a min–max strategy, when compared to (10). Finally, the training process
employs the L1 loss function, expressed as

LL1(G) = Xx, y, z[‖y− G(x, z)‖1], (12)

and the incorporated loss function can be expressed as

G∗ = arg min
G

max
D

LCGAN(G, D) + λLL1(G), (13)

where λ denotes the weight of the loss function. In this paper, we use pix2pix, a type of
CGAN, to extract the structure of an indoor environment with ghost targets removed.
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4.1.2. Structure of Proposed Method

The pix2pix is a type of CGAN that uses images as conditional information, and is
composed as shown in Figure 9. As shown in the figure, the proposed method takes images as
conditional information and trains the relationship between the transformed image (i.e., con-
ditional information) and the untransformed image (i.e., input information), as shown in
Figure 10. For the training of the deep learning network, we generated an image resembling
the indoor structure map, as shown in Figure 10a. Additionally, as a counterpart to this, in
Figure 10b, we added noise components to the generated image to represent ghost targets
and unmeasured points occurring when using radar. In other words, Figure 10a performs the
extracted indoor environment results (i.e., transformed image), and Figure 10b performs the
role of the actual radar measurement result (i.e., untransformed image).

(a)

(b)

(c)

Figure 9. Architecture of the proposed method: (a) generator, (b) discriminator, and (c) layers
indicated by arrow color.
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(a) (b)

Figure 10. Example of training image: (a) transformed and (b) untransformed images.

In this paper, the proposed method consists of a U-Net-based generator and a patch-
GAN-based discriminator. We chose a U-Net-based generator because U-Net is proficient
at eliminating unnecessary noise, extracting crucial features from images, and accurately
capturing the underlying structures. The generator comprises eight down-sampling layers
that perform as encoders, as well as seven up-sampling layers that perform as decoders. In
the encoder–decoder architecture of the generator, skip connections are applied between the
layers to recover lost information during the down-sampling operation. The discriminator
uses patch-GAN architecture, enabling it to distinguish between real and fake images
at a local patch level by learning the structure of specific patch scales. In our work, the
discriminator consists of four down-sampling layers performing as encoders. Our training
dataset consists of 5000 pairs of images, which are combinations of structure images with
ghost targets and structure images without ghost targets (i.e., conditional information).
When generating images that include ghost targets, we considered the multipath effects
that occur when measuring indoor structures through radar. The training process consisted
the number of 100 epochs, during which the generator and discriminator employed the
rectified linear unit (ReLU) as activation function. The parameters used in the training of
the proposed method are listed in Table 2.

Table 2. Specifications of parameters used in the training for proposed method.

Parameter Value

The size of generator input layer 3
The size of generator output layer 3
Activation function of generator ReLU

The size of discriminator input layer 3
The size of discriminator output layer 1
Activation function of discriminator ReLU

The number of training dataset 5000
The number of epochs 100

5. Performance Evaluation

In this section, we demonstrate and evaluate the extracted structure of the indoor
environment using the proposed method. In addition, we compare the extraction results of
the indoor environment using the conventional signal processing method with the results
obtained using the proposed method.
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5.1. Performance Evaluation of the Proposed Method

The extracted structure of the indoor environment using the proposed method is
shown in Figure 11. In this figure, each row represents the structure of the indoor envi-
ronment for different experimental environments. The first, second, and third rows are
the extracted indoor environment structures for E1, E2, and E3, respectively. In addition,
each column represents the result of adjusting the epoch of the proposed method. The
first, second, and third columns are the results at epochs 5, 10, and 100, respectively. When
comparing Figure 11c,f,i with Figure 8a–c, Figure 11c,f,i exhibit a closer resemblance to the
actual environment by removing ghost targets and interpolating the unmeasured areas.
Furthermore, as the number of epochs in the proposed method increases, the generated
results more closely resemble the actual environment. However, if the number of epochs in
deep learning is set too high, it can result in longer training times and increases the risk of
overfitting. Therefore, we compared the training time and extracted results, and set the
number of epochs to 100.

(a) (b) (c)

(d) (e) (f)

Figure 11. Cont.
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(g) (h) (i)

Figure 11. Structure extraction results of the indoor environment when the training epochs of
proposed method were changed to 5, 10, and 100: (a–c) for Electronics Engineering Building at
KAU; (d–f) for 7th floor, Business and Economics Building at CAU; (g–i) for 9th floor, Business and
Economics Building at CAU.

5.2. Comparison between the Proposed Method and Conventional Methods

In this section, we compared the extracted results of the indoor environment obtained
through our proposed method with those obtained using the KNN algorithm, Hough trans-
form, and the density-based spatial clustering of applications with noise (DBSCAN) algorithm.
In radar measurements, indoor structures such as walls are typically observed in close proxim-
ity to each other, while ghost targets manifest at significant distances from these structures or
adjacent ghost targets. The KNN algorithm is a non-parametric classification and regression
technique that classifies data based on the class of its nearest neighbors [21,22]. Therefore,
when applying the KNN algorithm to radar measurements, indoor structures tend to form
clusters among themselves, while ghost targets typically create clusters with adjacent ghost
targets. When the number of data in a cluster is less than a predefined threshold value, the
data from that cluster are classified as ghost targets and removed. Figure 12a–c show the
extracted results of the indoor environment using the KNN algorithm for environments E1, E2,
and E3, respectively. As shown in the figure, some of the ghost targets were removed using
the KNN algorithm, but the ghost target located around the actual wall was not removed.
In addition, unlike our proposed method, this method only performs the removal of ghost
targets and does not perform interpolation on unmeasured areas.

The Hough transform is an algorithm to detect geometric relationships, such as straight
lines and circles, from a given set of points [23–25]. We used the Hough transform to detect
linear components (e.g., walls) in the indoor environment and to extract the structure of the
indoor environment. The structure of the indoor environment extracted using the Hough
transform is shown in Figure 12d–f. As shown in the figure, the ghost targets are removed
using the Hough transform, and the unmeasured area is partially interpolated. However, the
extracted results have a problem: the indoor environment is represented by several overlapping
lines instead of a single line and the ghost target is also represented by a line.

Finally, we compared the results of applying DBSCAN, a typical approach for the elim-
ination of ghost targets. The DBSCAN algorithm classifies targets through density-based
clustering, which separates low-density points in the surrounding area by considering
them as ghost targets. Figure 12g–i show the extracted results of the indoor environment
using the DBSCAN algorithm for environments E1, E2 and E3, respectively. As shown in
the figure, some of the ghost targets were removed using the DBSCAN algorithm, but ghost
targets with high density were not removed. In the case of indoor environment mapping, it
is difficult to remove ghost targets through a density-based clustering method because the
results do not appear as clusters, but as continuous points. In addition, This method also
has the disadvantage of not performing interpolation on unmeasured areas.
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In addition, the three conventional methods (i.e., KNN algorithm, Hough transform,
and DBSCAN) have the disadvantage of requiring parameter adjustments according to the
environment for extracting the structure of the indoor environment. On the other hand,
our proposed method has the advantage that it can be widely used without additional
parameter adjustments in varying environments.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Extracted indoor environment map using conventional method: (a–c) for KNN algorithm,
(d–f) for Hough transform, (g–i) for DBSCAN.

Moreover, we used SSIM and SC to quantitatively evaluate the structural similarity
between the extracted result of the indoor environment and the actual environment. The
SSIM evaluates the similarity between two images by considering differences in luminance,
contrast, and structure [26]. The SSIM of the extracted results using each method are shown
in Table 3. The similarity between the structures extracted by the proposed method and the
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actual indoor environment was calculated using SSIM, resulting in values of 0.9530 for E1,
0.9562 for E2, and 0.9653 for E3. In comparison, when using the KNN algorithm in E1, E2,
and E3, the SSIM similarities were 0.9036, 0.9485, and 0.9361, respectively. Similarly, when
using the Hough transform, the SSIM similarities were 0.8711, 0.9388, and 9852, and when
using DBSCAN, the SSIM similarities were 0.8971, 0.9463, and 9359.

Table 3. SSIM calculation results when using each method.

Measurement Environment E1 E2 E3

Proposed method 0.9530 0.9562 0.9653
KNN algorithm 0.9036 0.9485 0.9361

Hough transform 0.8711 0.9388 0.9852
DBSCAN 0.8971 0.9463 0.9359

In addition, the SC is a metric used to assess the similarity between two images by
focusing on the differences in structural information [27]. SC is calculated by dividing the
sum of the squares of the pixel values of one image by the sum of the squares of the pixel
values of the other image. The results of evaluating the SC for our proposed method in E1, E2,
and E3 are 0.9935, 0.9987, and 1.0001, respectively. Additionally, the SC calculation results for
E1, E2, and E3 are as follows. k-NN: 0.9822, 0.9927, 0.9832; Hough transform: 0.9896, 0.9852,
0.9855; DBSCAN: 0.9836, 0.9930, 0.9833. These results can be found in Table 4.

Finally, when comparing our proposed method to the conventional method, the proposed
method demonstrated superiority in both the extraction process and the extracted result.

Table 4. SC calculation results when using each method.

Measurement Environment E1 E2 E3

Proposed method 0.9935 0.9987 1.0001
KNN algorithm 0.9822 0.9927 0.9832

Hough transform 0.9896 0.9852 0.9855
DBSCAN 0.9836 0.9930 0.9833

6. Conclusions

In this paper, we proposed a method of extracting the structure of the indoor envi-
ronment using image-to-image translation. When using radar in the indoor environment,
ghost targets are generated by the multipath of radio waves. The presence of ghost targets
causes a difference between the generated map and the actual environment. Therefore, we
used the proposed method to extract the structure of the indoor environment, where ghost
targets were removed and unmeasured areas were interpolated. We extracted the structure
of the indoor environment in three environments using the image-to-image translation,
obtaining results that resembled the actual environment. Moreover, as the number of
epochs in the proposed method increased, we obtained results that were more similar
to the actual environment. The similarity between the extracted structure of the indoor
environment and the actual environment was evaluated using the SSIM and SC, resulting
in an average similarity of 0.95 and 0.99, respectively. Finally, we compared our proposed
method with the KNN algorithm, Hough transform, and DBSCAN-based method of indoor
environment extraction. When compared with these conventional methods, our proposed
method has the advantage of extracting the indoor environment without requiring pa-
rameter adjustments in different environments. In addition, since the proposed method
interpolates the unmeasured area, extracted results were more similar to the actual indoor
environments. We hope that our research findings contribute to the extraction of indoor
environments using radar technology and are used for this purpose.
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