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Abstract: Currently, massive Synthetic Aperture Radar (SAR) images acquired from numerous SAR
satellites have been widely utilized in various fields, and image mosaicking technology provides
important support and assistance for these applications. The traditional mosaic method selects
specific SAR images that can cover the region of interest (ROI) from redundant data to produce “One
Map”. However, an SAR image suffers from severe geometric distortion, especially in mountainous
areas, which inevitably reduces the utilization of mosaic image. Therefore, a multi-view data-based
layover information compensation (MDLIC) method for SAR image mosaic is proposed, aiming to
take full advantage of multi-view data to compensate for the missing information in the layover area
of the SAR image. This is performed to improve the information content of the mosaic image and
realize efficient thematic information extraction and analysis. First, the calculation of the object-space
extent of all images and the division of object-space grid are completed on the basis of geometric
and radiometric preprocessing. Then, according to the transformation relationship between the
object-space and the image-space, the sampling rate image of each image corresponding to the object-
space grid is generated, which determines the layover area and the layover degree in each image.
Finally, the information compensation strategy is implemented in accordance with the sampling rate
image to realize the compensation of the layover information. The feasibility and effectiveness of the
MDLIC method are verified by using multiple SAR images from the Chinese Gaofen-3 01 satellite
as datasets for experiments. The experimental results indicate that the MDLIC method can obtain
mosaic images with richer information compared with the traditional method, while still providing
satisfactory results.

Keywords: Synthetic Aperture Radar (SAR); mosaic; layover; information compensation;
multi-view data

1. Introduction

Synthetic Aperture Radar (SAR) is an active Earth observation imaging radar system
that can be utilized for all-day and all-weather Earth observation. SAR possesses unique
advantages in applications such as resource exploration [1], environmental monitoring [2],
disaster assessment [3], ocean monitoring [4], and mapping [5]. It has now become a crucial
tool in high-resolution Earth observation and global resource management. In recent years,
the number of in-orbit SAR remote sensing satellites has significantly increased. Currently,
massive SAR images acquired from numerous SAR satellites are continuously stored in
historical databases, providing ample, and sometimes highly redundant, coverage of the
region of interest (ROI).
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Generally, the coverage of a single SAR image is relatively limited due to the limi-
tations of the SAR sensor design [6], especially when dealing with high-resolution SAR
images where the coverage is often smaller. Meeting the diverse needs of various research
and applications is increasingly challenging. Consequently, the acquisition of a large-range
SAR image can be achieved by mosaicking multiple SAR images. Traditional mosaicking
consists of four aspects [7]: SAR image registration, radiometric normalization, seamline
generation, and image blending. SAR image registration ensures that multiple SAR images
to be mosaicked maintain consistent geometry, which is a fundamental requirement for
mosaicking. Radiometric normalization minimizes the radiometric inconsistencies between
images in SAR images mosaic, ensuring visually satisfactory mosaic results. To achieve
a seamless mosaic, seamline generation is employed to find the optimal seamline loca-
tion among the images. Based on the generated seamlines, image blending is applied to
eliminate slight radiometric differences near the seamlines, further enhancing the visual
performance. Image mosaicking is often an essential task for various applications, includ-
ing geographical mapping, resource monitoring, environmental assessment, and disaster
monitoring. Traditional mosaic method selects those specific SAR images covering the ROI
from redundant data to produce a unified map, following the aforementioned four steps.

However, due to the terrain undulation and the side-looking and range imaging char-
acteristics of SAR, geometric distortions, including foreshortening, layover, and shadow,
are prevalent in an SAR image, especially in mountainous areas [8]. The foreshortening
phenomenon can be mitigated by radiometric terrain correction and ortho-rectification
methods, while the layover and shadow phenomena cannot be eliminated by conventional
processing methods based on a single SAR image. The presence of layover and shadow
areas in radar image results in the loss of valuable information. Both layover and shadow
can compromise the quality and accuracy of SAR images, impacting their subsequent
applications and the overall effectiveness of SAR mosaic images. This, in turn, diminishes
the utility of mosaic images.

In recent decades, many scholars have explored methods for detecting layover and
shadow areas, including the wavenumber shift method [9], the threshold segmentation
method [10,11], the edge sharpening method [12], geometric models combined with the
morphological method [13], and the multi-stages detection method [14]. These methods are
designed to identify layover and shadow areas, followed by masking, and aim to prevent
or minimize errors in the geocoding or interpretation of SAR images. However, they do
not address the problem of information loss and also impose limitations on the subsequent
application of SAR image.

Currently, scholars have also delved into the compensation of layover and shadow to
recover or estimate missing information using other sources of data or prior knowledge.
These methods contribute to enhancing the visual quality and quantitative performance of
SAR images. One effective method is dual-aspect compensation, utilizing the pixel gray
values of normal areas in one image to compensate for layover and shadow areas in another
image based on SAR images of two view directions in the same area. TerraSAR-X already
provides value-added products such as the ascending and descending merge SAR [15].
This product reduces shadow and layover areas by merging ortho-rectified images from
ascending and descending orbit with the same observation angle or images from the same
orbit with different incidence angles. Wan et al. [16,17] carried out research on dual-aspect
geometric correction for data products like TerraSAR-X and RadarSat-2, and they completed
layover compensation experiments. Wang et al. [18] proposed and established a selection
strategy and technical process for the optimal combination of incidence angles for dual-
aspect compensation, providing the optimal combination of incidence angles for three terrain
conditions: gentle, moderate, and steep. Liu et al. [19] also achieved dual-aspect compensation
for a Chinese SAR satellite and obtained preliminary results. Wang et al. [8] proposed a layover
compensation method for regional spaceborne SAR image without ground control points,
which is essentially a dual-aspect compensation method.
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The key to realizing dual-aspect compensation for SAR images is to generate layover
mask image and shadow mask image based on range-Doppler (RD) model. The RD model,
as a rigorous geometric calibration model, demands orbit, altitude, or other information
from the satellite platform for its establishment, making formulation of the RD model
complex. In contrast, the rational function model (RFM), as a general model, is widely
employed in photogrammetric processing of remote sensing images due to its simplicity of
implementation and standardization [20]. Despite the advantages of RFM, there are only a
few methods for generating layover and shadow mask images. Guindon and Adair [21]
calculated the image corresponding digital elevation model (DEM) sampling points and
the size of the SAR look angle and slant range to detect the layover area. Chen [22] judged
whether each DEM resolution cell belongs to the layover and shadow area to produce the
corresponding mask image. Wei [23] proposed a layover mask image and shadow mask
image determination method based on the relationship between the look angle and the
slant angle in the distance direction. However, the above methods require satellite imaging
parameters (including orbit parameters, resolution, slope distance, Doppler frequency, etc.)
and are influenced by DEM errors. Some scholars Soergel et al. [10], Ren et al. [11], Han
et al. [24] utilized amplitude threshold segmentation as a judgment method for layover
mask image and shadow mask image. Due to the random speckle noise inherent in SAR
images, it is difficult to extract shadow and layover accurately by threshold segmentation
or digital image processing. Wang et al. [8] implemented geometric calibration using RFM
instead of the RD model and proposed the RFM-based layover mask area localization
method to complete dual-aspect layover compensation. This method required specifying
the the master image data and slave image data during the processing, setting the layover
threshold, and also taking into account the overlapping rate between images, thus making
it less advantageous. The process of dual-aspect information compensation based on the
RD model to generate the mask image is complicated and requires the imaging parameter
information of an SAR sensor [16,18]. However, the imaging parameters of different SAR
sensors vary and obtaining SAR sensor imaging parameter information is challenging,
limiting the widespread use of this processing method. The extracted layover mask cannot
distinguish the degree of information loss in the layover area. In the area where both master
image data and slave image data have layover, optimization is not possible. Dual-aspect
information compensation requires filtering the data to achieve the best combination of
incidence angles. Even after the dual-aspect information compensation, some missing
information areas still exist in the mosaic image [18]. This is because the adopted dual-
aspect SAR images have limited information acquisition capacity and are unable to fully
compensate for the missing information caused by layover and shadow. Additionally,
specifying the master and slave images [8] in this process may result in the wastage of other
image information. In general, the application of SAR mosaic images with dual-aspect
compensation is also constrained.

The focus of this paper is on the production of SAR mosaic images with rich in-
formation using multi-view data. Specifically, the rich information is the information
compensated into the layover areas, which restores the information lost in the mosaic due
to layover. To achieve this, a multi-view data-based layover information compensation
(MDLIC) method for SAR image mosaic is processed. For multiple SAR ascending and
descending orbits images of the ROI, the SAR image registration based on RFM and ra-
diometric normalization processing are first completed. Then, a multi-view information
compensation model is constructed on the basis of sampling analysis of the SAR multi-view
data. The information-compensated SAR images are subjected to seamline generation
processing and image blending to finally obtain a mosaic image with rich information.

The main contributions are as follows:

1. A MDLIC method is introduced to eliminate the distortions in the layover area and
restore the information in SAR mosaic images.
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2. The method initiates from the essence of the layover phenomenon, which is not
affected by speckle noise or pixel gray values, so that the layover area and the degree
of layover can be detected quickly according to the sampling rate image.

3. The proposed method is independent of terrain parameters and does not necessitate
consideration of the overlapping relationships between multi-view data. This charac-
teristic enhances the efficiency and utilization of multi-view data, contributing to the
robustness and versatility of the MDLIC method.

The remainder of this paper is organized as follows. The relevant theories and pro-
posed framework are introduced in Section 2. The experimental results are demonstrated
and analyzed in Section 3. Conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Overview

The workflow of this paper is shown in Figure 1.

Figure 1. Framework diagram of the proposed method.

First, registration and radiometric normalization are performed for multiple single
look complex (SLC) images of ascending and descending orbits, which can be regarded
as the radiometric and geometric preprocessing stage and the necessary step of mosaic.
Subsequently, the projection extent of all images in the object-space is computed based on
the refined rational function coefficients (RPCs). Following this, utilizing DEM data and the
transformation relationship between object-space and image-space, sampling rate images
are generated in both image-space and object-space, corresponding to the object-space
grids for each image. These images play a crucial role in determining the layover area
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and its degree in each image. Concurrently, the establishment of the object-space grid
size is essential, aligning with the resolution of the SAR image. Subsequent to the grid
size determination, the optimal SAR image corresponding to each pixel of every image
is identified based on the sampling rate in object-space. The pixel from the optimal SAR
image is then considered as the corresponding position in the compensated image. Fol-
lowing these steps, the layover information compensation is completed for each image
post-ortho-rectification. Finally, the compensated images undergo seamline generation and
image blending processes, culminating in the creation of a mosaic image. This comprehen-
sive approach significantly enhances the information content within the mosaic images,
providing considerable advantages for subsequent photogrammetric applications.

2.2. Geometric and Radiometric Preprocessing of SAR Image

The fundamental task of mosaicking, image registration, involves aligning images
acquired at different times and under varying imaging conditions. In this paper, a geometry-
aware image registration method [25] is employed. This method extracts inherent orienta-
tion features and focuses on geometry-invariant areas to ensure consistent geometry among
multiple SAR images to be mosaicked.

Ideally, the radiometric intensity in overlapping areas of adjacent images should be
consistent after radiometric calibration [26,27]. However, several factors such as radar wave
signal attenuation, antenna pattern change, transmission or receiving power gain errors,
and imaging processor gain error [26] introduce radiometric differences between images,
especially for data from different orbits. Radiometric normalization is implemented to
eliminate the differences between images.

The level-1A products of Gaofen-3 01 satellite are SLC images. The radiometric
calibration equation for obtaining the backscattering coefficient from the SLC image is as
follows [28]:

σ0 = 10 log10[P × (Qv/32767)2]− KdB (1)

where σ0 is the backscattering coefficient in dB; P is power of complex image and
P = I2 + Q2, I represents real channel of image, and Q as the imaginary channel;
Qv is the maximum value before image quantification, and KdB is the calibration con-
stant. Qv and KdB can be retrieved from the metadata file in Extensible Markup Language
(XML) format of Gaofen-3 01 satellite. In Equation (1), the value of Qv reflects radiometric
characteristic of Gaofen-3 01 satellite.

In accordance with Equation (1), a radiometric principle-based radiometric normaliza-
tion method [29] is employed to eliminate the radiometric differences between images by
analyzing the radiometric principle of SAR.

2.3. Geometric Distortions in SAR Image

Due to the terrain undulation and the side-looking and range imaging characteristic of
SAR, SAR images suffer from geometric distortions that differ from optical images [30–33],
such as foreshortening, layover, and shadow, especially in mountainous areas. As shown in
Figure 2, the undulating terrain can lead to geometric distortion in slant range SAR image.

For slopes oriented towards the SAR sensor, when the local terrain slope angle is
smaller than the local incidence angle, the length of such slopes in the SAR image is shorter
than that of flat terrain, which means that the range resolution on such slopes becomes
worse. Conversely, for the slopes facing away from the SAR sensor, when the local terrain
slope angle is smaller than the complementary angle of the local incidence angle, the range
resolution on such slopes becomes better in the SAR images than the flat terrain [34]. This
phenomenon is known as foreshortening, and the degree of foreshortening is related to the
slope and the incidence angle. Foreshortening is most pronounced when the local terrain
slope angle is equal to the local incidence angle. As illustrated in Figure 2, the imaging
plane distance (slant range) between d′ and e′ is smaller than the distance on the actual
slope surface from d to e.
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When the local terrain slope angle surpasses the local incidence angle, the bottom and
the top of such slopes are reverse imaged, which is known as the layover phenomenon.
In Figure 2, specifically in area b′′ − a − b − a′′, the local terrain slope is larger than the
incidence angle and the top of the mountain is closer to the sensor than the bottom,
so layover occurs. The result is that multiple signals with the same range and Doppler
frequency are integrated within a single resolution cell of SAR image [8,35]. In object-space,
the layover area can be classified into active layover area and passive layover area [30,31].
In the range direction, each active layover area corresponds to two passive layover areas.
In Figure 2, area a− b is termed the active layover area and area b′′ − a and b− a′′ are called
the passive layover areas, where area b′′ − a is near range passive layover area, and area
b − a′′ is far range passive layover area. The near range passive layover area is closer
to SAR sensor than the far range passive layover area. Active layover area is the source
for layover, and the positions of two passive layover areas in SAR image are completely
covered by the active layover area, while active layover areas and passive layover areas
can be distinguished in object-space, they cannot be differentiated in SAR image-space.
Generally, layover areas appear significantly brighter than the rest of the SAR image.

Figure 2. Schematic of geometric distortion in slant SAR image due to undulating terrain.

Nevertheless, when the local terrain slope angle surpasses the complementary angle
of the local incidence angle, such steep slopes are completely prevented from receiving the
SAR signal by the mountain itself. This gives rise to the shadow phenomenon, resulting in
a dark area in the SAR image. The shadow area can be classified into active shadow area
and passive shadow area. In contrast to the two passive areas in the layover, each active
shadow area has only one passive shadow area located at the end of the active shadow area,
unreachable by the radar beam since it is blanked by the active shadow area. As depicted
in Figure 2, when the SAR signal cannot reach the Earth’s surface, a shadow occurs, where
area b − c is the active shadow area and area c − d is the passive shadow area. The active
shadow area and passive shadow area in SAR image-space correspond to different areas
in object-space, which differs from the image characteristics of the layover area. This
distinction arises because active layover area and passive layover area in object-space
correspond to the same image area.
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Generally, radiometric and geometric effects resulting from foreshortening phenomenon
can be mitigated through radiometric terrain correction and ortho-rectification. However,
the challenge lies in the difficulty of extracting meaningful information from layover and
shadow areas. This limitation is a critical factor hindering the effective application of SAR
in mountainous regions and significantly constrains the usability of mosaic images. It is
important to note that traditional single-image-based methods are insufficient in eliminating
the adverse effects of layover and shadow.

Wang et al. [18] have utilized DEM data to simulate the impact of different incidence
angles on the proportion of layover areas and shadow areas under different topographic con-
ditions. Their findings indicate that when the incidence angle is less than 42◦, and layover
is the main factor causing information loss. Presently, a multitude of SAR satellites in
orbit, such as Gaofen-3 series satellites, TerraSAR-X, COSMO-SkyMed, and RadarSat-2,
with incidence angles typically falling within the range of 10◦–60◦, [36]. Particularly in the
high-resolution imaging mode, the incidence angle often falls within the range of 20◦–50◦.
This implies that for high-resolution SAR images, the layover phenomenon tends to be
more pronounced and visually impactful than the shadow phenomenon in most scenes.
Consequently, the focus of the proposed method in this paper is on accomplishing the
compensation of layover information.

2.4. Multi-View Information Compensation Model
2.4.1. Projection Extent in Object-Space

The single look SAR images with radiometric consistency and refined RPCs are ob-
tained after geometric and radiometric preprocessing. Utilizing the image size and position-
ing parameter file, the projection extent of each image in object-space can be calculated. As-
suming that the original size of image i is Wi columns and Hi rows, the quadrangle vertices
coordinates in image-space are (0, 0), (Wi, 0), (0, Hi), and (Wi, Hi), then the corresponding
coordinates in object-space can be obtained as (Lon1, Lat1)i, (Lon2, Lat2)i, (Lon3, Lat3)i,
and (Lon4, Lat4)i based on the positioning parameter information, as illustrated in Figure 3.

Figure 3. The relationship between images in image-space and in object-space.

The maximum and minimum values of coordinates in object-space are calculated to
obtain the object-space extent of image i as ([Lonmin, Lonmax]i, [Latmin, Latmax]i). The object-
space extent of all multi-view images to be processed is calculated and merged to obtain
the extent of the final mosaic image as ([Lonmin, Lonmax], [Latmin, Latmax]), illustrated in
Figure 4. This extent also represents the coverage of the ROI.
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Figure 4. Illustration of merge operation. (a) The object-space extent of different images. (b) The
projection extent in object-space.

2.4.2. Generation of Sampling Rate Image

As previously discussed, the side-looking imaging mechanism of SAR introduces
distinctive geometric distortions since SAR measures range from space. This leads to
pronounced geometric distortions, including bright layovers caused by multiple scatterers
from different parts of the terrain. In the layover area, the value of a specific image pixel is
evidently the sum of the backscattered energy from multiple ground units. Conventional
correction methods based on a single radar image are unable to eliminate this phenomenon,
but it can be addressed effectively by utilizing multiple images. Particularly, images
captured from ascending and descending orbits or from left-looking and right-looking
directions (referred to as the opposite side) inherently reflect characteristics of opposite
aspects, presenting dissimilar yet complementary information, as illustrated in Figure 5.

Figure 5. The typical undulating terrain area and its appearance in SAR image from the opposite-side
view. (a) The descending orbit image. (b) The ascending orbit image.

Once the object-space extent of all images is determined, the object-space grid size is
assigned according to the image resolution, which is the basis for dividing the object-space
grid. Subsequently, leveraging the DEM data, the corresponding image-space coordinates
in different images are calculated grid by grid according to the object-space grids, and the
sampling times of the image coordinates are counted. The number of sampling times of
pixel at (x, y) of image i and j are Ni

(x,y) and N j
(x,y). Next, the image pixel sampling times
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are converted to the image sampling rate. The number of sampling times of pixel at (x, y)
of image i is Ni

(x,y), so the sampling rate can be denoted as

Li
(x,y) =

1
Ni
(x,y)

=
1

T{R(X, Y, Z)} (2)

where Ni
(x,y) ̸= 0; (X, Y, Z) are the latitude, longitude, and height of each object-space grid;

R(X, Y, Z) represents rational function model [25] that relates image coordinates (x, y) to
object coordinates (X, Y, Z); T{R(X, Y, Z)} is a function that counts the number of grids
corresponding to (x, y).

In Figure 6a, the three object-space grids marked as yellow are transformed into the
image-space coordinates of different images. In Figure 6b1, the three grids correspond to the
same image coordinates, resulting in Ni

(x,y) = 3 and Li
(x,y) = 1/3. However, in Figure 6b2,

the three grids correspond to different image coordinates. This implies that image i exhibits
layover phenomenon, while image j does not.

Figure 6b1,b2 represent sampling rate images corresponding the object-space grids
in the image-space. As for the sampling rate image in object-space, it can be obtained
by converting the sampling rate image from image-space to object-space. Based on the
sampling rate image, the extent of the layover area and the degree of layover can be quickly
acquired. In a sampling rate image, the area where the pixel value is greater than 0 and less
than 1 represents the layover area, with lower pixel values indicating more severe layover
phenomena. It is important to note that the proposed method does not distinguish between
active layover and passive layover in the sampling rate image; both are uniformly labeled
as layover.

Figure 6. Schematic diagram of the acquisition process of sampling rate image. (a) The object-space
grid. (b1,b2) The sampling rate images form different views.

Due to the limited precision of DEM data, errors may arise in the calculation of the
sampling rate. The layover mask extracted from the sampling rate image might exhibit
“islands”, “holes”, and “zigzags” phenomena. To mitigate these issues and prevent any
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adverse impact on the visual quality of the compensation results, morphological operations
like erosion, dilation, closing, and opening can be applied to these masks, as expressed
in Equation (3) [37]. The erosion operation minimizes the extent of the target area and
can be used to eliminate “islands” phenomena; the dilation operation increase the extent
of the target area and can be used to fill “holes” in the target area, and the opening and
closing operations can smooth the contour of the target area to achieve the elimination
of “zigzags”.

A ⊖ B = {z|(B)z ⊆ A}
A ⊕ B = {z|(B)z ∩ A ̸= ∅}
A ◦ B =

(
A ⊖ B

)
⊕ B

A • B = (A ⊕ B)⊖ B

(3)

where A represents the original image, B is the structure element, and z represents the
output pixel value. A ⊖ B, A ⊕ B, A ◦ B, and A • B are erosion, dilation, closing, and
opening operation, respectively.

In this paper, opening and closing operations are successively applied to accomplish
the morphological processing, as depicted in Equation (4) and illustrated in Figure 7.

M′ = (M ◦ B) • B (4)

where structure element B is a square of size 5; the definitions of M and M′ are shown in
Figure 7.

Figure 7. Schematic diagram of morphological processing. (a) The sampling rate image m. (b) The
layover mask M extracted from (a). (c) Morphological processing result M′. (d) The new sampling
rate image m′.

2.4.3. Layover Information Compensation Strategy

After ortho-rectification, a common mosaic strategy involves searching for an optimal
seamline between the overlapping areas of the images, and then complete the mosaic
processing according to the seamline, as shown in Figure 8a. In the overlapping area,
it is crucial to determine which image pixels will be utilized as the final mosaic image
pixels based on the seamline. For the non-overlapping area, the pixels of the area are used
directly as the pixels of the mosaic image. However, such a mosaic image suffers from the
loss of useful information due to layover phenomenon. Therefore, MDLIC processing is
conducted between the ortho-rectification processing and mosaic processing to enhance
the quality of the mosaic image.
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Figure 8. Schematic diagram of the image mosaicking and layover information compensation.
(a) Common method for searching seamline in overlapping areas of ortho-rectified images. (b) Pro-
posed method for information compensation based on sampling rate. (c1) The sampling rate image
corresponding to the overlapping area of image i in (b). (c2) The sampling rate image corresponding
to the overlapping area of image j in (b).

In fact, in the overlapping area of sampling rate image, the boundary of the layover
area can then be considered as a seamline, forming a closed line. As shown in Figure 8b, for
the case of two images, red closed lines represent seamlines. Additionally, the seamline in
this case can even be nested, especially as the terrain becomes more complex; the contour
of the seamline becomes more complex. When multiple overlapping areas are present, the
seamlines can become extremely complex, as determined from the sampling rate images.

Therefore, layover information compensation is essentially a form of mosaicking, akin
to traditional mosaicking, aimed at enhancing the information content of SAR images. In
the context of SAR images, both information compensation and traditional mosaicking
together constitute a comprehensive mosaicking process.

The layover information compensation and traditional mosaicking are conducted
sequentially. For layover information compensation, the processing of non-overlapping
areas is consistent with the traditional mosaic method, while in the multiple overlapping
areas, the final pixels are determined according to each sampling rate image obtained
above, and the pixels with large sampling rate should be selected. As shown in Figure 6,
the three pixels marked yellow of image j should be used as the final mosaic image pixels,
instead of the pixels marked yellow in image i which are repeatedly assigned three times.

Assuming that there are two SAR ortho-rectified image i and image j in the ROI, the
determination of the image source for each pixel in the compensated image is based on the
sampling rate when performing layover information compensation in the overlapping area
of i and j, as expressed in Equation (5).

I(x′ ,y′) = f
(

Ii
(x′ ,y′), I j

(x′ ,y′)

)
=


Ii
(x′ ,y′), (Li

(x′ ,y′) > Lj
(x′ ,y′))

I j
(x′ ,y′), (Lj

(x′ ,y′) > Li
(x′ ,y′))

g
(

Ii
(x′ ,y′), I j

(x′ ,y′)

)
, (Li

(x′ ,y′) = Lj
(x′ ,y′))

g
(

Ii
(x′ ,y′), I j

(x′ ,y′)

)
=

{
Ii
(x′ ,y′), ( When compensating for image i)

I j
(x′ ,y′), ( When compensating for image j)

(5)
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where Ii
(x′ ,y′) and I j

(x′ ,y′) are the pixel values of two SAR images at the same spatial co-
ordinate (x′, y′). I(x′ ,y′) represents the pixel value at coordinate (x′, y′) in overlapping
area, which is also the pixel value with the optimal sampling rate at coordinate (x′, y′).
In addition, Li

(x′ ,y′), and Lj
(x′ ,y′) are the pixel sampling rates of two images at the same

spatial coordinate (x′, y′). Moreover, the two sampling rate images corresponding to image
i and j can also finish the mutual sampling rate update using Equation (5), as shown in
Figure 9. The sampling rates less than 1 are visibly reduced in Figure 9c,d, indicating the
compensation of layover information in the SAR images. This confirms the effectiveness of
Equation (5).

Figure 9. Schematic diagram of sampling rate update between two sampling rate images. (a,b) The
partially overlapping areas of two sampling rate images. (c,d) The partially overlapping area of two
sampling rate images after updating.

For two SAR images, Equation (5) can be applied with the purpose of selecting the pixel
with the maximum sampling rate and layover information compensation. Consequently,
for all multi-view data in ROI, layover information compensations of all SAR images can
be completed using this method, as depicted in Equation (6).

I(x′ ,y′) = f
(

I1
(x′ ,y′), I2

(x′ ,y′), . . . , In
(x′ ,y′)

)
(6)

where I(x′ ,y′) represents the pixel value in the overlapping area; In
(x′ ,y′) represents the pixel

value of the image n at the same spatial coordinate (x′, y′); and n is the number of images.
In this study, the compensated mosaic images primarily serve applications such as

visual interpretation, image fusion, and change detection, rather than quantitative inversion
of remote sensing. Although layover information compensation may alter the orientation
dependence of certain non-homogeneous scatterers, it is essential for the visual interpre-
tation of mosaic images. The presence of layover can significantly impact interpretation
results, making compensation crucial for accurate visual assessments.

3. Experimental Results and Analysis
3.1. Experimental Dataset

To validate the effectiveness of the proposed method, three sets of experiments were
conducted using several SAR images from Chinese Gaofen-3 01 satellite. The Gaofen-3 01
satellite is the first civil microwave remote sensing imaging satellite listed in the “National
High-resolution Earth Observation System Major Project” and is the first C-band multi-
polarization SAR satellite with a nominal resolution of 1 m to 500 m. The three datasets are
as follows:

(1) Dataset 1: The ROI is located between 29.41◦ and 30.28◦N latitude and 106.88◦ and
107.94◦E longitude. There are 8 ascending orbit images and 6 descending orbit images in
the area, totaling 14 images, which were collected from November 2019 to July 2022.

(2) Dataset 2: The ROI is located between 33.86◦ and 34.78◦N latitude and 108.59◦ and
109.60◦E longitude. There are 6 ascending orbit images and 6 descending orbit images in
the area, totaling 12 images, which were collected from November 2019 to June 2022.
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(3) Dataset 3: The ROI is located between 30.85◦ and 30.51◦N latitude and 111.96◦

and 112.61◦E longitude. There are three ascending orbit images and three descending
orbit images in the area, totaling six images, which were collected from October 2021 to
August 2022.

All the SAR images are SLC products from the Gaofen-3 01 satellite, and the imaging
mode of the image is ultra-fine stripe (UFS). Detailed information is presented in
Table 1 [36,38,39], where DEC means descending, and ASC is the abbreviation of ascending.
And the geometric distribution can be found in Figure 10. It is obvious that the dataset
contains various viewing conditions, including different incidence angles and different-side
views, which can be helpful for a comprehensive evaluation. The DEM data used in the
experiments is the public-available ALOS World 3D-30 m (AW3D30) with 30 m resolution
over the world, which is released by the Japan Aerospace Exploration Agency, Tokyo, Japan,
with a resolution of about 30 m and an accuracy of about 5 m [40].

Table 1. Detailed information of three datasets.

Dataset Orbit
(Direction) OrbitID Imaging

Mode
Nominal

Resolution
Incidence

Angle
Imaging

Date

1

ASC 019813 UFS 3 m 32.57◦ 15 May 2020
ASC 019813 UFS 3 m 32.57◦ 15 May 2020
ASC 029845 UFS 3 m 31.57◦ 11 April 2022
ASC 029845 UFS 3 m 31.57◦ 11 April 2022
ASC 024237 UFS 3 m 24.96◦ 18 March 2021
ASC 024237 UFS 3 m 24.96◦ 18 March 2021
ASC 031170 UFS 3 m 21.27◦ 12 July 2022
ASC 031170 UFS 3 m 21.27◦ 12 July 2022
DEC 017037 UFS 3 m 30.54◦ 4 November 2019
DEC 017037 UFS 3 m 30.54◦ 4 November 2019
DEC 022399 UFS 3 m 23.76◦ 10 November 2020
DEC 022399 UFS 3 m 23.76◦ 10 November 2020
DEC 023725 UFS 3 m 31.57◦ 10 February 2021
DEC 023725 UFS 3 m 31.57◦ 10 February 2021

2

ASC 022637 UFS 3 m 31.57◦ 27 November 2020
ASC 022637 UFS 3 m 31.57◦ 27 November 2020
ASC 026990 UFS 3 m 34.49◦ 25 September 2021
ASC 026990 UFS 3 m 34.49◦ 25 September 2021
ASC 030997 UFS 3 m 32.57◦ 30 June 2022
ASC 030997 UFS 3 m 32.57◦ 30 June 2022
DEC 017456 UFS 3 m 28.40◦ 3 December 2019
DEC 017456 UFS 3 m 28.40◦ 3 December 2019
DEC 017210 UFS 3 m 24.96◦ 16 November 2019
DEC 017210 UFS 3 m 24.96◦ 16 November 2019
DEC 023970 UFS 3 m 31.57◦ 27 February 2021
DEC 023970 UFS 3 m 31.57◦ 27 February 2021

3

ASC 030479 UFS 3 m 30.54◦ 25 May 2022
ASC 031661 UFS 3 m 38.81◦ 15 August 2022
ASC 027808 UFS 3 m 31.57◦ 28 March 2022
DEC 027808 UFS 3 m 19.99◦ 20 November 2021
DEC 027808 UFS 3 m 19.99◦ 20 November 2021
DEC 027285 UFS 3 m 34.49◦ 15 October 2021
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Figure 10. Geometric distribution of three datasets. The blue box and the red box represent the
ascending and descending images, respectively, corresponding to Table 1. (a) Dataset 1. (b) Dataset 2.
(c) Dataset 3.

3.2. Experimental Results and Visual Assessments

The above three datasets undergo identical preprocessing steps, followed by the
implementation of the MDLIC method. The results obtained from the proposed method
are then compared with those from Refs. [8,24]. In Ref. [24], the threshold for layover area
detection is set as several times the mean value of the image, with this paper choosing three
times the mean value as the threshold. Ref. [8] involves designating the master image data
and slave image data, with the descending orbit image designated as the master image
data for mosaicking.

Moreover, the proposed method does not necessitate specifying the master image data
and slave image data, and the descending orbit data is also mosaicked together for comparison
purposes. However, in practical applications, preference should be given to scenes with less
layover in the image. The experimental results are illustrated in Figures 11–13.

Figure 11. Comparison of results of Dataset 1. (a) Mosaic result compensated by MDLIC method.
(b1–b4) Uncompensated result, Ref. [24] method result, Ref. [8] method result and MDLIC method
result, respectively, corresponding to the red box area in (a). (c1–c4) Uncompensated result, Ref. [24]
method result, Ref. [8] method result and MDLIC method result, respectively, corresponding to the
blue box area in (a).
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Figure 12. Comparison of results of Dataset 2. (a) Mosaic result compensated by MDLIC method.
(b1–b4) Uncompensated result, Ref. [24] method result, Ref. [8] method result and MDLIC method
result, respectively, corresponding to the red box area in (a). (c1–c4) Uncompensated result, Ref. [24]
method result, Ref. [8] method result and MDLIC method result, respectively, corresponding to the
blue box area in (a).

Figure 13. Comparison of results of Dataset 3. (a) Mosaic result compensated by MDLIC method.
(b1–b4) Uncompensated result, Ref. [24] method result, Ref. [8] method result and MDLIC method
result, respectively, corresponding to the red box area in (a). (c1–c4) Uncompensated result, Ref. [24]
method result, Ref. [8] method result and MDLIC method result, respectively, corresponding to the
blue box area in (a).
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In these three datasets, the layover phenomenon of mosaic images is obvious, as shown
in Figures 11b1,c1–13b1,c1. It is apparent that different information compensation methods
can effectively eliminate the layover phenomenon to varying degrees.

To evaluate the performance of the proposed method, visual interpretation is per-
formed based on uncompensated SAR mosaic images of three datasets, in which layover
areas are labeled, and the final results are taken as the true value. Figures 14–16 show
the layover areas produced by MDLIC method, along with a detailed comparison of the
ground truth with the results of different methods. Non-layover areas are marked in green,
while the layover areas are marked in red. For comparison purposes, the different degrees
of layover areas produced by MDLIC method are also marked in red.

Figure 14. Comparison of layover results of Dataset 1. (a) Layover result detected by MDLIC method.
(b1–b4) Layover true value, Ref. [24] method result, Ref. [8] method result and MDLIC method result,
respectively, corresponding to the red box area in (a). (c1–c4) Layover true value, Ref. [24] method
result, Ref. [8] method result and MDLIC method result, respectively, corresponding to the blue box
area in (a).

Figure 15. Comparison of layover results of Dataset 2. (a) Layover result detected by MDLIC method.
(b1–b4) Layover true value, Ref. [24] method result, Ref. [8] method result and MDLIC method result,
respectively, corresponding to the red box area in (a). (c1–c4) Layover true value, Ref. [24] method
result, Ref. [8] method result and MDLIC method result, respectively, corresponding to the blue box
area in (a).
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Figure 16. Comparison of layover results of Dataset 3. (a) Layover result detected by MDLIC method.
(b1–b4) Layover true value, Ref. [24] method result, Ref. [8] method result and MDLIC method result,
respectively, corresponding to the red box area in (a). (c1–c4) Layover true value, Ref. [24] method
result, Ref. [8] method result and MDLIC method result, respectively, corresponding to the blue box
area in (a).

As can be seen that three methods have large differences in the results of layover
detection. The Ref. [24] method produces a large number of missed judgments, compared
to the true value of layover, and detected layover areas are highly discretized, as shown in
Figures 14c2, 15b2, and 16c2. Meanwhile, in Figure 15b2,c2, the building areas are identified
as the layover areas. The reason for the above phenomenon is that the method is based on
the threshold, which recognizes high brightness areas larger than the threshold as layover
areas. However, high brightness areas can also be caused by double-bounce when the radar
signal encounters smooth surfaces oriented at 90◦ angles to each other. More significantly,
inherent random scattering noise in SAR images makes it challenging to accurately detect
layover through threshold segmentation or digital image processing. Therefore, the Ref. [24]
method has limited effectiveness in layover information compensation.

In Figures 14b3 and 15c3, layover areas detected by Ref. [8] method are relatively small
compared to the actual layover areas. This method tends to produce fewer false positives
but can result in more misses, especially in areas with significant terrain undulation,
as shown in Figures 14c3 and 16b3.

Regarding MDLIC method, the detected layover areas are slightly larger compared to
the actual layover areas, as shown in Figures 16b4,c4. Moreover, in moderately undulating
terrain areas, the detection results may be misjudged, as illustrated in the left half of
Figure 14b4.

The focus of the research in this paper is to produce SAR mosaic images with rich
information content and not just to detect layover areas. The proposed method aims to
identify additional layover areas while maintaining fundamental consistency with actual
layover areas, leading to a more effective compensation effect in the resulting images after
compensation, as depicted in Figures 14c4 and 15b4. From a visual perspective, it is crucial
to identify more additional layover areas during layover compensation. Moreover, even if
some areas are misjudged, the MDLIC method utilizes data with diverse incidence angles
and viewing angles, leveraging the comparison of sampling rates to determine the best
information. This approach maximizes the utilization of information from each image,
mitigating the impact of misjudged areas on the compensated mosaic image.

The compensation effect of the MDLIC method surpasses that of the Ref. [24] method
in both overall and local details across all three datasets. Compared to the Ref. [8] method,
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the MDLIC method can detect more layover areas, significantly enhancing the compensation
effect. Additionally, MDLIC does not require specifying master and slave images or consider-
ing the overlapping rate between images, making it more versatile for multi-view data.

The proposed method is analyzed using DEM data with different accuracies and the
layover results are presented in Figure 17. In Figure 17b, it can be seen that when the DEM
data accuracy decreases, the main layover areas are unchanged, but significantly fewer
layover areas are detected as well as a “zigzags” phenomenon in areas with little terrain
undulation. Meanwhile, the edges of the layover areas become less smooth with 90 m DEM
data, as shown in Figure 17d. Therefore, the primary error of the MDLIC method originates
from the DEM, and the MDLIC method performs better with highly accurate DEM data.

Figure 17. Layover results comparison with different DEM data using MDLIC method. (a,c) The
layover results with 30 m DEM data, corresponding to (b4) and (c4) in Figure 14, respectively.
(b,d) The layover results with 90 m DEM data.

In summary, the proposed MDLIC method demonstrates effective detection of layover
areas and efficient compensation of missing information, resulting in the generation of
mosaic images with enriched information content.

3.3. Statistical Analysis

To further evaluate the performance of the proposed method, the indicators including
mean value, standard deviation, non-layover precision (NLP), layover precision (LP),
critical success index (CSI), and overall accuracy (OA) are selected to analyze the results
quantitatively. NLP, LP, CSI, and OA are derived in Equation (7) [41].

NLP =
TN

TN + FN

LP =
TP

TP + FP

CSI =
TP

TP + FP + FN

OA =
TP + TN

TP + TN + FP + FN

(7)

where TN, TP, FN, and FP are the number of correctly classified non-layover, the number
of correctly classified layover, the number of incorrectly classified non-layover, and the
number of incorrectly classified layover, respectively, as shown in Table 2. CSI, also called
the threat score, is a verification measure of categorical forecast performance equal to the
total number of correct event forecasts divided by the total number of storm forecasts plus
the number of misses, and it varies from 0 (bad) to 1 (good). OA is the ratio of the number
of correctly classified pixels to the number of all pixels, and is a commonly used measure
of classification results.



Remote Sens. 2024, 16, 564 19 of 22

Table 2. Confusion matrix for layover detection.

Non-Layover (Result) Layover (Result)

Non-layover (True) True Negative (TN) False Positive (FP)

Layover (True) False Negative (FN) True Positive (TP)

The mean and standard deviation of the uncompensated mosaic image of Dataset 1 are
104.48 and 140.87, respectively. The uncompensated mosaic image of Dataset 2 has a mean
of 45.95 and a standard deviation of 73.66. As for the Dataset 3, the mean of uncompensated
mosaic image is 97.10, with a standard deviation of 137.12. Table 3 shows the statistical
results of mean and standard deviation using different methods.

Table 3. Statistical results of different methods.

Dataset Indicator Ref. [24]
Method Ref. [8] Method Proposed

Method

1

Mean 95.35 103.58 102.30
Std 113.74 139.72 137.59

Layover pixels 32,142,854 37,103,771 119,057,743
TN 496,015,280 512,703,490 491,201,894
TP 9,110,946 30,760,073 91,212,449
FN 84,272,170 62,623,043 2,170,667
FP 23,031,908 6,343,698 27,845,294

NLP 85.48% 89.12% 99.56%
LP 28.35% 82.90% 76.61%
CSI 7.83% 30.85% 75.24%
OA 82.48% 88.74% 95.09%

2

Mean 42.43 45.26 44.68
Std 57.59 73.09 72.93

Layover pixels 20,310,410 12,301,361 26,539,520
TN 503,340,284 518,276,633 517,273,328
TP 4,410,273 11,337,573 24,572,427
FN 20,228,625 13,301,325 66,471
FP 15,900,137 963,788 1,967,093

NLP 96.14% 97.50% 99.98%
LP 21.71% 92.17% 92.59%
CSI 10.88% 44.29% 92.35%
OA 93.36% 97.38% 99.62%

3

Mean 93.82 95.99 94.80
Std 120.60 135.36 135.63

Layover pixels 6,738,977 6,830,917 46,875,098
TN 269,271,163 271,988,665 263,931,258
TP 2,262,882 5,072,324 37,059,098
FN 1,967,093 32,567,194 580,420
FP 4,476,095 1,758,593 9,816,000

NLP 88.39% 89.31% 99.78%
LP 33.58% 74.26% 79.05%
CSI 5.38% 12.88% 78.09%
OA 87.20% 88.98% 96.66%

For mean and standard deviation, the lowest values are observed in all three datasets
after applying the Ref. [24] method, suggesting compensation for a relatively large number
of high-brightness pixels. However, high-brightness areas may not exclusively represent
layover but could include double-bounce areas. In comparison to the Ref. [8] method,
the MDLIC method shows slightly smaller mean and standard deviation, indicating com-
pensation for slightly more high-brightness pixels than the Ref. [8] method. It is important
to note that the lowest mean and standard deviation do not necessarily imply optimal
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processing; these metrics reflect high-brightness pixels before and after compensation
without directly reflecting the compensation effectiveness. The assessment based on these
metrics aligns with the visual assessment results.

To provide a more intuitive comparison of the effectiveness of different methods, NLP,
LP, CSI, and OA are calculated for different methods, as shown in Table 3.

In Dataset 1, the Ref. [8] method detects more layover pixels than the Ref. [24] method,
while the MDLIC method outperforms both, detecting about three times as many layover
pixels as the Ref. [8] method. Dataset 1 presents challenging terrain undulation areas,
impacting layover detection. The LP value for the Ref. [24] method is the lowest, indicating
the worst performance. Although the LP value of the Ref. [8] method is higher than that
of the MDLIC method, the NLP value is lower, implying that the Ref. [8] method detects
fewer layover pixels than the MDLIC method. In terms of CSI and OA values, the MDLIC
method performs better than the other two methods.

For Dataset 2, the Ref. [24] method detects more layover pixels than the Ref. [8] method
due to urban areas, but the MDLIC method still outperforms both by detecting the most
layover pixels. With fewer undulating terrains in Dataset 2, NLP values are high for
different methods. The performance of the Ref. [8] method and MDLIC method is closer,
but the MDLIC method is slightly better. Additionally, the Ref. [24] method shows the
lowest LP due to the presence of urban areas.

Dataset 3 exhibits undulating terrain and flat areas, favoring the performance of the
Ref. [24] method slightly better than the other two methods. However, the MDLIC method
achieves the highest LP and NLP in this dataset, indicating optimal
compensation effectiveness.

Table 3 reveals that the NLP of the MDLIC method is the highest in the three datasets.
Different terrains influence the LP value of the method, but OA is the highest, demon-
strating the effectiveness of the MDLIC method. Furthermore, in the three datasets,
the proposed method has the highest CSI, confirming its superior performance.

In summary, the experimental results indicate that the MDLIC method effectively
compensates for missing information due to layover in SAR images, enhancing their visual
quality and quantitative performance.

4. Conclusions

In this study, a MDLIC method is proposed for SAR image mosaicking to enhance the
information content in layover areas. The method leverages multi-view data to effectively
compensate for missing information caused by the layover phenomenon. By establishing a
multi-view information compensation model that considers geometrical distortions in SAR
images, the sampling rate image of each SAR image is generated based on object-space
projection relationships. This sampling rate image reveals the extent and degree of layover
in each image. Together with a layover information compensation strategy, the MDLIC
method significantly enhances texture information in SAR images captured from multiple
ascending and descending orbits. The proposed method integrates layover information
compensation with traditional mosaicking, creating a comprehensive mosaicking approach
for SAR images. Experimental results demonstrate that the MDLIC method effectively and
consistently mitigates the impact of layover phenomenon, yielding improved visual quality
and quantitative performance in SAR mosaic images. However, it is noted that the accuracy
of DEM data in urban areas, influenced by urban noise and human-made objects, may limit
the performance of the MDLIC method in such regions. Moreover, the proposed method
provides robust support for SAR mosaic image interpretation. When fused with optical
imagery, it can offer valuable information for subsequent tasks such as target identification,
feature classification, and other interpretation endeavors.
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