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Abstract: Earth observation satellites offer vast opportunities for quantifying landscapes and regional
land cover composition and changes. The integration of artificial intelligence in remote sensing is
essential for monitoring significant land cover types like forests, demanding a substantial volume of
labeled data for effective AI model development and validation. The Wald5Dplus project introduces a
distinctive open benchmark dataset for mid-European forests, labeling Sentinel-1/2 time series using
data from airborne laser scanning and multi-spectral imagery. The freely accessible satellite images
are fused in polarimetric, spectral, and temporal domains, resulting in analysis-ready data cubes with
512 channels per year on a 10 m UTM grid. The dataset encompasses labels, including tree count,
crown area, tree types (deciduous, coniferous, dead), mean crown volume, base height, tree height,
and forested area proportion per pixel. The labels are based on an individual tree characterization
from high-resolution airborne LiDAR data using a specialized segmentation algorithm. Covering
three test sites (Bavarian Forest National Park, Steigerwald, and Kranzberg Forest) and encompassing
around six million trees, it generates over two million labeled samples. Comprehensive validation,
including metrics like mean absolute error, median deviation, and standard deviation, in the random
forest regression confirms the high quality of this dataset, which is made freely available.

Keywords: forest parameters; artificial intelligence; analysis-ready data; data cube; labeled dataset;
benchmark; Sentinel missions; hyper-complex bases

1. Introduction

Amidst the growing recognition of the immense value of forest ecosystems in com-
bating climate change and supporting biodiversity, the demand for rapid, precise, and
robust methods to monitor these vital ecosystems is on the rise [1]. Forests, which shelter
the majority of terrestrial biodiversity, span approximately 4.06 billion hectares, covering
31% of the world’s land surface. They function as crucial carbon reservoirs and play an
indispensable role in climate regulation [2]. To effectively track the progress toward these
goals, as well as to monitor deforestation, degradation, and forest responses to climate
change, there is an increasing need for large-scale, cost-effective monitoring, ideally with
automated data collection and processing up to the final information product. In the last
decade, there has been a notable increase in the accessibility and application of remote
sensing (RS) technologies, providing data with resolutions sufficiently fine to discern indi-
vidual trees, as demonstrated in various references employing high-resolution data [3–11].
While this presents opportunities for enhancing our understanding of forests, it also poses
challenges in data interpretation [12,13].

The field’s expansion has resulted in an influx of intricate datasets, demanding the
development of innovative data science approaches to efficiently extract ecologically sig-
nificant information. Additionally, the lack of universally acknowledged benchmarking
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datasets has impeded methodological advancement and posed difficulties in comparing
different studies [14]. This perspective underscores the advantages of establishing and
applying benchmarking datasets while outlining the key attributes that can optimize their
value for the wider scientific community.

The collaboration between remote sensing (RS) and forestry practices is gaining promi-
nence in the field of forest management, highlighting the interdependence of these do-
mains [15–17]. This dynamic interaction harnesses the capabilities of machine learning (ML)
and deep learning (DL) to effectively handle the extensive and diverse datasets inherent in
RS images. ML and DL techniques play a crucial role in simplifying complex image infor-
mation, such as discerning a single pixel as a coniferous tree through intricate time-series
analysis. Despite their prowess, these techniques require careful hyperparameterization to
address data variability and imperfections. While offering optimal adaptation to specific
challenges, this adaptability introduces considerations such as the risk of overfitting [18],
thereby necessitating a substantial number of training samples, akin to the layers of a deep
neural network.

Three primary approaches are prevalent for acquiring a substantial number of train-
ing samples: (1) crafting comprehensive training datasets, often indispensable for DL
approaches that require extensive training data. In contrast, some ML methods can work ef-
fectively with smaller datasets. (2) Employing data augmentation to introduce artificial data
variations [19]. (3) Utilizing pre-trained networks with supplementary adaptation layers.

Ongoing research explores capitalizing on symmetries and commonalities within
network layers to enhance decision making and model robustness. However, methods (2)
and (3) entail manual, non-standardized alterations to either the training data or the
network architecture, making them suitable for specific applications but unsuitable for
benchmarking ML and DL algorithms.

Therefore, extensive training datasets (1) are indispensable, enabling the training of
new algorithms, potentially even without prior knowledge, similar to pre-trained networks.
Several benchmark datasets are available to facilitate advancements in the field. Further re-
search endeavors to leverage symmetries and similarities within network layers to enhance
or simplify decision making through the analysis of model zoos [20]. While predomi-
nantly applied in DL, these techniques are less common in conventional ML, highlighting
a key difference between the two: the flexibility and depth of DL networks, enabling the
exploitation of symmetries and commonalities.

As both (2) and (3) require manual and non-standardized modifications of the training
data (2) and/or the network (3), they are well suited for specific applications but not for
ranking ML and DL algorithms. This underscores the need for standardized and extensive
training datasets, particularly when benchmarking the performance of various ML and DL
models in forest management.

1.1. Related Benchmark Datasets

Back in 2018, the International Society for Photogrammetry and Remote Sensing
(ISPRS) published true orthophotos and surface models together with semantic labels
describing the apparent land cover class like impervious surface, building, low vegetation,
tree, car [21]. These datasets have already been widely used for the testing and ranking of
machine learning algorithms.

Recently, a new multimodal benchmark dataset for RS (MDAS) was added to the
ML4Earth platform that comprises SAR, multi-spectral, and hyper-spectral imagery, as
well as a surface model [22]. The annotation provides pavement, low vegetation, soil, tree,
roof, and water as labels. This dataset is dedicated to the use of satellite data by Sentinel-1
and -2 and EnMAP [23].

The focus of all benchmark datasets so far—to the best of our knowledge—lies on the
semantic interpretation, i.e., distinct classes in a nominal scale are assigned.

Contrastingly, high-resolution remote sensing imagery (HR-RSI) benchmark datasets
released in recent years, including WHU-RS19 [24], UC Merced [25,26], PatternNet [13],
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and RESISC-45 [27], focus on object classes and have proven successful for classification
tasks. The diversity in structure and design of these datasets presents a unique opportunity
to explore the utility of combining them into a larger meta-dataset (MDS) [28], addressing
challenges such as heterogeneous image sizes within class and varied spatial resolution
within class.

Adding to this landscape, several new benchmark datasets complement these ef-
forts: ReforesTree [1] focuses on forest carbon stock estimation within carbon offsetting
certification standards, outperforming satellite-based estimates. Addressing tree species
classification in central Europe, TreeSatAI [29] leverages multi-sensor data. Designed for
training deep neural networks, Barknet 1.0 [30] comprises over 23,000 high-resolution bark
images from 23 different tree species in eastern seaboard forests of Canada. NeonTreeEval-
uation Benchmark Data [31] assess crown detection in the United States using RGB, LiDAR,
and hyper-spectral data. LuoJiaSET [32] is a large-scale training sample database system
for intelligent interpretation of remote sensing imagery.

Moreover, the OpenEarthMap dataset [33] introduces a benchmark for global high-
resolution land cover mapping, comprising 2.2 million segments of 5000 aerial and satellite
images. With manually annotated eight-class land cover labels at a 0.25–0.5 m ground sam-
pling distance, OpenEarthMap allows semantic segmentation models trained on it to general-
ize worldwide, providing a valuable resource for advancing remote sensing methodologies.

The next step from a mathematical point of view is the use of parameters in cardinal
scale. This leads directly to a regression approach because not distinct classes but contin-
uous values have to be predicted from satellite data. Such a dataset—and especially for
forest characterization—has not been presented so far. This is exactly the point where our
project idea of Wald5Dplus comes into play: the creation of a labeled benchmark for forest
characterization, not classification. Continuous parameters like the crown area per tree
type, the tree height, and the crown volume amongst others are attached to each pixel in
the ARD cube. The annotation of parameters in cardinal scale places new demands on the
labeling that are briefly explained in the following.

1.2. Requirements on Training Data

In the domain of RS and the application of AI techniques, a series of imperative
requirements concerning training data come to the fore. These requisites hold considerable
significance, especially within the context of RS, encompassing both general and forest-
specific aspects.

High-Quality and Well-Labeled Data: Foremost, a fundamental requirement in the
field of RS pertains to the availability of high-quality datasets that are meticulously la-
beled. This precision ensures that AI algorithms can be effectively trained and validated on
information that is both accurate and dependable. It is notable that machine learning, a
cornerstone of AI, relies heavily on data quality. This aligns with findings from research em-
phasizing that the successful utilization of machine learning techniques in RS applications
necessitates high-quality data, particularly well-labeled datasets [34]. Such well-labeled
data serve as the bedrock upon which AI models can be constructed and validated.

Accessibility of Publicly Available Datasets: A pivotal requirement arises from the
accessibility of publicly available datasets, accompanied by validation data. These datasets
serve as indispensable benchmarks for the development and validation of algorithms, al-
lowing researchers to evaluate their methods against established standards. This aligns with
the notion that publicly available datasets with validation data are crucial for researchers
to verify their developed algorithms and compare them with state-of-the-art methods. In
various standard RS applications, frequently employed datasets serve as reference points
for algorithm testing. The abundance of such datasets underscores the importance of
making high-quality training samples available, as highlighted in the literature [14,35,36].

Diversity and Representativeness: Training data should encompass a wide range of
scenarios to enable AI models to generalize effectively. This diversity is crucial in the field
of RS, where real-world conditions can vary significantly. Machine learning techniques,
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which are foundational in AI, rely on diverse training data to ensure that models can adapt
to different conditions and achieve robust generalization. In this context, the need for varia-
tions in land cover, seasonal changes, and different environmental conditions is essential to
ensure that AI models can effectively handle the intricacies of RS applications [37].

Spatial and Temporal Coverage: The training dataset should provide comprehensive
spatial and temporal coverage [37,38], ensuring that AI models can effectively adapt to
diverse regions and monitor temporal dynamics with precision. High-quality training
samples, representative of a wide range of geographic locations and temporal changes, are
fundamental in addressing the challenges of RS data, especially in the context of forests.
The utilization of data with broad spatial and temporal coverage aligns with the need to
capture fine-grained spatial and temporal changes in RS applications.

Data Resolution: Training data should align with the spatial and temporal resolution
of the RS data used for analysis. This matching resolution is essential for enabling AI
models to capture and respond to temporal changes with accuracy, as highlighted in the
literature. Aligning training data resolution with RS data resolution is a crucial aspect of
ensuring the effective application of AI in RS [14].

Quantity and Sample Size: Adequate training samples are pivotal for optimizing
AI models [34,39]. The quantity of training data should align with the complexity of the
analysis task and the specific requirements of the AI model under consideration. The
importance of having an ample sample size to mitigate the risk of model underfitting is
well established in the field of machine learning, including in the realm of RS.

Consistency and Continuity: Consistency in labeling and data quality [38] throughout
the training dataset is imperative for ensuring the reliability of AI models in RS tasks,
especially those involving time-series data. Additionally, maintaining continuity in data
collection is essential for effectively monitoring changes and trends. Such consistency and
continuity are essential components of robust AI model development, as recognized in the
existing body of literature.

Annotated Metadata: Annotated metadata [14,32], providing comprehensive infor-
mation regarding the data’s source, acquisition date, geographical location, and any pre-
processing steps applied, enhance the interpretability and utility of training data. These
metadata are vital in providing context to the training data, enabling researchers to better
understand the information used for AI model development. Researchers in the field have
acknowledged the critical role that annotated metadata play in the effective utilization of
training data.

Data Balance: Maintaining a balanced representation of classes or categories within
training data is vital, especially in classification tasks. Unbalanced datasets can present a
substantial obstacle in the process of model optimization, especially when specific classes
are infrequent or not well represented [38,40]. Ensuring equitable representation of classes
is a recognized strategy to prevent biases and skewed results. Achieving data balance is
crucial for accurate classification of RS data, a concept well supported by prior research [34].

In summary, these requirements collectively underscore the pivotal role of training
data in the accuracy and effectiveness of AI models in RS applications, particularly in
the forest context. These requirements align with the findings from [34–37,39] and are
fundamental in ensuring that AI techniques are effectively applied to RS data, ultimately
advancing the field and promoting robust, reliable, and insightful analyses of RS data.

1.3. Concept of the Wald5Dplus Benchmark Data Cube

In addressing the challenges posed by RS data and the development of a benchmark
dataset that integrates RS data and reference data, it is imperative to devise effective
strategies. These strategies are vital for ensuring that the benchmark dataset meets the
rigorous requirements demanded in the field of ML and DL while also capitalizing on the
power of AI techniques. To achieve this, a multifaceted approach has been adopted, which
will be described in this section (Figure 1).
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Figure 1. Illustration depicting some of the key aspects of the creation process of a benchmark dataset
in remote sensing.

The Key Data Source Sentinel: One of the cornerstones of this approach is the utiliza-
tion of data acquired by the Sentinel satellite missions. Sentinel-1 and Sentinel-2, part of
the European Space Agency’s (ESA) Copernicus program, offer substantial advantages.
Sentinel-1, through its radar technology, provides insights into the forest canopy, offering a
unique view into the dense vegetation. Sentinel-2, on the other hand, offers a view of the
forest foliage through multi-spectral imagery. The temporal frequency of data acquisition
by these missions, with their weekly and bi-weekly revisit times, provides an ideal basis
for monitoring temporal dynamics and capturing variations in forest attributes.

Fusion of Sentinel Data: While both Sentinel-1 and Sentinel-2 (©ESA) sensors offer
unique advantages by themselves, the fusion of Sentinel-1 and Sentinel-2 data provides an
outstanding opportunity to derive rich information about forest attributes, including tree
species and canopy height.

Variability: Variability refers to the diversity and differences present in the input data.
In RS, this can manifest as variations in the data captured due to differences in environ-
mental conditions, sensor characteristics, or the objects being observed (e.g., different tree
species in a forest). ML algorithms, including AI techniques, thrive when they are exposed
to a diverse range of input data. The reason for this is that these algorithms can learn and
adapt better when they encounter a wide array of situations and patterns.

For effective training and deployment of AI models, the benchmark dataset aims to
address the challenges posed by this variability in RS data. While traditional methodolo-
gies often attempted to reduce variability by using techniques like channel combinations
(e.g., combining different spectral bands to calculate indices like the NDVI), AI methods
are more adept at handling high variability in data. Unlike traditional methods that try to
simplify the data by reducing variability, AI techniques have the capability to work with
data that exhibit a wide range of attributes, including outliers or extreme data points.

The benchmark dataset leverages the inherent tolerance of AI techniques to diverse
data attributes, including those that might deviate significantly from the norm. Rather
than eliminating variability, it adapts to it. Additionally, preprocessing techniques are
implemented to prepare the data in a format suitable for AI algorithms. This preprocessing
may include techniques like explicit normalization, which ensures that data are scaled or
adjusted to be in a standardized format [41]. Normalization is particularly important for
some machine learning techniques, such as support vector machines, which rely on the
data being in a specific range or format to work effectively.

Challenges with Training Data Volume: Generating large training datasets, especially
in forest-related applications, presents a unique set of challenges. Unlike land cover
identification or agricultural land identification, where readily available datasets such as
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LUCAS points [42] or INVEKOS data can be employed, forest classification faces distinct
challenges. The spatial and temporal heterogeneity in forests, including variations in
tree species and canopy height, necessitate extensive and specific training datasets. To
address this, the benchmark dataset leverages the copious data provided by Sentinel-
1 and Sentinel-2 (©ESA, 2020 and 2021), enhancing the ability to generate large-scale
training data. This is particularly important in cases where existing data, such as the
Bundeswaldinventur data [43], do not align with the required spatial and temporal coverage
for forest classification.

Meeting Training Data Requirements: The benchmark dataset is meticulously crafted
to address the multifaceted requirements of training data in the realm of RS and AI appli-
cations, capitalizing on the abundance of data from distinct geographical regions, each of
vital significance in enhancing the robustness of AI models.

Data Quality and Meticulous Labeling: The cornerstone of this dataset is an unwa-
vering commitment to data quality and meticulous labeling. This ensures that every data
point is characterized by a high degree of precision, free from errors, and labeled with
painstaking accuracy. The quality of labeling is central to the successful development of
AI models. Furthermore, the dataset offers comprehensive and consistent data quality
throughout, maintaining the highest standards for accurate and reliable information.

Diversity and Representativeness: To enable AI models to generalize effectively and
tackle the intricacies of real-world RS applications, the benchmark dataset encompasses a
wide range of forest scenarios. These scenarios span across different geographical regions,
including the Bavarian Forest National Park (2016), the Steigerwald Forest (2017), and
the Kranzberg Forest (2020), all situated in southeastern Germany (Table 1). While these
regions share a common geographical location, they exhibit distinct characteristics due to
variations in environmental conditions, tree species, and forest structure. This diversity
ensures that AI models can adapt to the heterogeneous nature of RS data and make accurate
predictions across a spectrum of scenarios.

Table 1. Characteristics of the examined areas of interest.

AOI No. Name Rough Coordinates Airborne Platform Year Area No. of Trees

1 Steigerwald 48°25′N, 11°40′E Helicopter 2017 2600 ha 1,106,073
2 Bavarian Forest National Park 49°15′N, 13°15′E Helicopter 2016 1443 ha 512,489
3 Kranzberg Forest 49°53′N, 10°32′E UAV 2020 7 ha 1467

Spatial and Temporal Coverage: Comprehensive spatial and temporal coverage is
a pivotal aspect of the benchmark dataset. It spans various geographic locations, each
with its unique ecological and environmental attributes. Moreover, the dataset captures
changes over time, providing temporal dynamics with precision. This broad coverage
equips AI models with the ability to adapt to diverse regions and monitor temporal changes,
enhancing their capacity to analyze RS data effectively.

Data Resolution: The benchmark dataset is meticulously aligned with the spatial
and temporal resolution of RS data used for analysis. This strategic alignment ensures
that AI models can effectively process and interpret the level of detail present in RS data.
By matching the resolution, the dataset empowers AI models to capture and respond
to temporal changes with a high degree of accuracy, contributing to the robustness of
their performance.

Quantity and Sample Size: Adequate training samples are pivotal in optimizing
AI models for RS applications. The benchmark dataset takes this requirement seriously,
ensuring that the quantity of training data is commensurate with the complexity of the
analysis task and the specific needs of the AI models under consideration. The provision of
large yet manageable training datasets minimizes the risk of model underfitting, fostering
the development of accurate and reliable AI models.
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This paper emphasizes (1) the development of a unique benchmark dataset, explicitly
crafted to meet the exacting requirements in the field of ML and DL, particularly within
RS and forest-related applications. By synergistically integrating Sentinel-1 and Sentinel-2
(©ESA, 2020 and 2021) data with AI techniques, it effectively bridges the divide between
diverse RS data and AI model application, significantly enhancing the ability to address
data variability. The results (2) highlight its success in facilitating the monitoring of forests
and a wide array of tree parameters. Moreover, the challenges associated with generating
large training datasets are met with a strategic focus on harnessing the capabilities of these
satellite missions. By creating large yet manageable training datasets with minimized
variability, the benchmark dataset intends to empower AI models to unlock the wealth of
information present in RS data, ultimately advancing the field of RS and AI applications in
forest contexts.

2. Materials

This section introduces the different databases from which the reference labels and the
ARD cube are created.

2.1. Single-Tree Polygons

Within this study, three distinct areas of interest (AOI) were meticulously examined
(as illustrated in Figure 2). The reference data employed for analysis correspond to these
specific regions, encompassing large parts of the Bavarian Forest National Park [44,45],
situated at coordinates 49◦15′N, 13◦15′E, where the data were acquired via helicopter
in 2016, covering a vast expanse of 1443 hectares. Additionally, the study included the
Steigerwald Forest [46], located at coordinates 48◦25′N, 11◦40′E, with data collected using
a helicopter in 2017, encapsulating an area of 2600 hectares. Furthermore, the investigation
extended to the Kranzberg Forest [47], positioned at coordinates 49◦53′N, 10◦32′E, where
the dataset was acquired through UAVs in 2020, focusing on a more confined seven-
hectare terrain. These diverse areas provided a rich and varied dataset essential for the
comprehensive analysis conducted within this study.

The reference data, represented in the tree polygons, comprise labeled tree segments,
meticulously generated from full-waveform LiDAR and multi-spectral data within the
designated research areas in accordance with the specifications delineated in Table 1. The
utilization of full-waveform LiDAR data is instrumental in segmenting single trees in
different forest layers. The generation of tree segments is achieved through the application
of a sophisticated normalized cut algorithm that systematically partitions the LiDAR point
cloud into point cloud segments until predefined criteria are met and single trees are
found. These tree segments encompass a multitude of calculated attributes, including
tree height, crown diameter, crown volume, and crown base height. For a comprehensive
elucidation of the reference data creation within the Bavarian forest, Amiri et al. (2019) and
Zielewska-Büttner et al. (2018) offer a detailed exposition [44,45].

The tree segmentation generated from the LiDAR point cloud harmoniously integrates
with the multi-spectral data to facilitate feature extraction. By employing projected poly-
gons of the segmented trees in combination with multi-spectral data covering the AOIs, a
diverse array of classifications and feature sets is deployed, with the overarching goal of
distinguishing between deciduous and coniferous trees, in addition to detecting deceased
standing trees and snags, as comprehensively discussed in the literature [45].

The individual tree polygons encapsulate critical information pertaining to each tree,
encompassing details such as tree type, distinguishing between deciduous and coniferous,
or identifying it as deadwood (=standing dead trees and snags). These polygons, which
can partially overlap, further provide insights into the tree height and the specific crown
base height, as well as the crown volume. Validation of this approach was systematically
conducted by Amiri et al. [45] and Krzystek et al. [48].
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Figure 2. Map of study sites displaying the three designated areas of interest.

In a recent study [47], a novel tree detection method based on the detection transformer
(DETR) was applied. The results demonstrated the potential of this approach, with F1-
scores of 83% for coniferous, 86% for mixed, and 71% for deciduous plots, significantly
outperforming four baseline methods in all forest types.

In summation, these validation endeavors affirm the robustness and adaptability of
this approach across a spectrum of forest structures and environmental conditions. The
holistic integration of full-waveform LiDAR data, adaptive algorithms, and advanced
instance segmentation techniques collectively embodies the potential to markedly elevate
the precision of tree segmentation. This heralds a notable stride forward in the realm of RS
and forest-focused applications.

2.2. Sentinel-1/2 Time Series

The key conditions for the choice of satellite are: public availability without costs, high
temporal as well as high spatial resolution, and sufficient coverage for larger forest stands.
These requirements are fulfilled by the Sentinel-1/2 (©ESA) missions of the Copernicus
program. Due to the open data policy of ESA, anyone can download and evaluate the data,
which is a crucial step for the extensive use of the knowledge gained by training on the
reference data. The short repeat pass times enabled by two satellite sensors on the same
orbit in space guarantee weekly acquisitions in the case of the weather-independent SAR
sensors Sentinel-1a and Sentinel-1b. The optical Multi Spectral Imager on Sentinel-2a and
Sentinel-2b, though passing every five days, is often hindered by clouds. Furthermore, the
varying illumination conditions hamper the consistent interpretation. Thus, sophisticated
preprocessing is necessary in both cases: first, to identify and to remove (for the most
part) clouds and other atmospheric effects and second, to establish a common reference
frame—a high resolution 10 m pixel grid in UTM coordinates—for the subsequent data
fusion. The Sentinel mission per se delivers a Europe-wide coverage with these stringent
requirements and a global coverage of the land surfaces with possibly lower spatial or
temporal resolution.
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Sentinel-1 (©ESA) acquires VV- and VH-polarized SAR images in the C-band, i.e.,
the images are sensitive toward structures in the size of the wavelength of about 5 cm.
The co-polarization VV is known to deliver the highest backscatter over land. The cross-
polarization VH, on the contrary, is dominated by the volume scattering effect that can
be observed in backscattering volumes like high vegetation, like forests. The originally
complex images are preprocessed by the multi-SAR processor of DLR [49]. It calculates the
four Kennaugh elements k0, k1, k5, and k8 and therewith assures an information-preserving
representation of the polarimetric information [50]. The Kennaugh elements that are
nothing else than intensities and intensity differences are then multi-looked in order to
generate square pixels and geocoded to the respective UTM zone. As SAR is characterized
by the inherent speckle noise, a special adaptive filtering approach known as multi-scale
multi-looked follows [50]. In this filtering approach, the noise content is adopted from the
denoted noise floor provided in the metadata and neighboring pixels are smoothed as long
as their difference in backscatter does not exceed the expected noise variation. Thanks to
the extraordinary noise model [51], edges are preserved in order to prevent any information
loss. The final normalization ensures a closed data range and the space-saving archiving of
UInt16 digital numbers in analogy to the Sentinel-2 images.

Sentinel-2 (©ESA) is typically provided in scaled reflectances: either top-of-atmosphere
(TOA) reflectance in the case of L1C data or bottom-of-atmosphere (BOA) reflectances in
the case of L2A data. In both product levels, the single acquisitions are taken into account.
As time series are the focus of Wald5Dplus, we decided in favor of a preprocessor that
involves the temporal dimension to generate comparable BOA reflectances: the Sentinel-2
MAJA product of DLR, which is a crucial resource for Earth observation [52]. It includes
atmospheric correction and cloud screening. Although clouds are removed, the gaps
remain in the individual time step and have to be filled later on with reasonable values.
These datasets are also freely available via the Geoservice distribution platform, facilitating
scientific research and environmental monitoring. This study relies on the utilization of the
10-m resolution bands, encompassing the blue, green, red, and near-infrared (NIR) spectral
ranges from those Sentinel-2 data. These specific bands are instrumental in providing the
required level of detail and precision for this research.

While this study acknowledges the potential influence of terrain, particularly land sur-
face slope, on remote sensing data, no exhaustive terrain-specific analysis was conducted.
The study utilizes preprocessed Sentinel-1 data, including Kennaugh decomposition,
geocoding, and calibration, alongside Sentinel-2 data corrected with MAJA atmospheric
correction for bottom-of-atmosphere reflectance. The inherent corrections in Sentinel-1 and
Sentinel-2 MAJA data aim to minimize potential biases induced by terrain effects. Further
investigations into terrain influences, especially in areas where land surface slope and land
cover types intersect, are recommended for future studies or follow-up analyses.

Both datasets, the multi-SAR-preprocessed Sentinel-1 images and the MAJA-processed
Sentinel-2 image, will be part of the TerraByte project that provides ARD for scientific use.
So, the algorithms are easily transferable to other sites and other time spans.

2.3. Ground Truth from Field Campaigns

The reference datasets and the satellite datasets show an unavoidable time discrepancy.
As consistency and continuity are two key features of training datasets, as stated before, the
labels generated from LiDAR point clouds and multi-spectral images acquired by airborne
sensors are checked during several field campaigns. We document representative forest
stands within the test sites by field walking and taking geotagged photos (Figure 3). Using
the saved coordinates and the orientation, the forest stands can be qualitatively assessed.
The temporal gap between reference and satellite data can thus be closed.
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Figure 3. Ground truth from field campaigns in the three designated study sites (a) Steigerwald,
(b) Bavarian Forest National Park, and (c) Kranzberg Forest.

3. Methodology

This section presents the single steps from the data bases to the final benchmark
dataset as well as the efforts in effective quality assurance.

3.1. Generation of Labels from Single-Tree Polygons

In the endeavor to transition the properties encapsulated within the single-tree poly-
gons, which initially comprise information, i.e., labels relating to leaf type, crown volume,
tree height, and crown base height, onto a raster format without a substantial loss of detail,
a conscientious aggregation process unfolds. The procedure is implemented as follows:
employing a QGIS model, the input label data are extracted from the single-tree polygons.
These labels encompass crucial insights into the nature of the trees, distinguishing between
deciduous and coniferous varieties as well as identifying those categorized as deadwood.
Furthermore, the polygons encompass attributes detailing the crown volume, tree height,
and crown base height. Of notable significance is the generation of a model output raster,
consisting of ten distinct bands, each conveying distinct metrics derived from the tree
segments. These bands encapsulate the core information extracted from the single-tree
polygons. It is essential to emphasize the seamless integration of this model output raster
with the input satellite raster. This integration operates harmoniously with a 10 m grid
meticulously aligned with its spatial coordinates. The Bavarian Forest AOI adheres to UTM
zone 33N (EPSG: 32633), while the other two AOIs lie within UTM zone 32N (EPSG: 32632)
due to the inherent characteristics of the satellite data. The primary challenge encountered
during this intricate process lies in the development of a method capable of robustly ex-
tracting single-tree polygon information and accumulating the associated values within
the new raster cells (as illustrated in Figure 4). The resulting raster bands are presented
in Table 2.
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Table 2. Rasterized single-tree polygon bands. The sum of the crown area might possibly exceed the
pixel area because of overlays in tree canopy. To address these deficiencies, the proportion of tree
canopy coverage per pixel is given as separate band. For lack of deadwood due to continuous forest
management, the bands 3 and 6 may be completely zero in several study sites.

Band Variable Unit Value Range

1 Sum crown area of deciduous trees m2 0−170
2 Sum crown area of coniferous trees m2 0−170
3 Sum crown area of dead trees m2 0−120
4 Count of deciduous trees amount 0−9
5 Count of coniferous trees amount 0−9
6 Count of dead trees amount 0−7
7 Tree area coverage % 0−100
8 Sum crown volume m3 0−3000
9 Mean tree height m 0−43

10 Mean crown base height m 0−24

Figure 4. Exemplary aggregation results of the tree segments onto the 10 m grid of the raster data,
displaying the tree class (left) and the crown volume (right) of a subset in the Bavarian Forest National
Park test site (AOI 2).

The calculation of values related to crown volume involves multiplying the crown
volume by an area factor. For the three tree type count bands, the area factor is summed
for each tree type. These calculations are executed through the derivation of an area ratio.
This ratio represents the proportion of an attribute’s area within a raster cell concerning
the total area of the same attribute in the intersected polygons. Applying this area ratio
method results in an adjustment in crown volume values based on the extent of the
intersection between tree segments and raster cells. For tree height and crown base height,
a weighted arithmetic average calculation, as defined in Equation (1), is implemented for
each intersected raster cell.

h̄ =
∑n

i=1 ai · hi

∑n
i=1 ai

(1)
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Within the equation, a represents the area of the intersected polygons and h represents
either tree height or crown base height depending on the specific attribute being calculated.
Equation (1) is applied to all polygons within a raster cell. The area of the intersected
polygons thus serves as a means to proportionally adjust the attribute heights in accordance
with the portions of their area within a given raster cell. The tree type labels, categorizing
trees as deciduous, coniferous, or deadwood, have their areas calculated per pixel. This is
achieved by aggregating the area of all polygons with their respective tree type within a
pixel grid. The counts of these areas are summarized for each tree type, with the previously
described area ratio method applied per tree type. In addition to the tree type areas, a
percentage value denoting the tree type coverage of a pixel is calculated. The resulting
value represents the proportion of the grid cell’s area occupied by tree segments, with each
cell standardized to 100 square meters. It is important to note that this calculation does not
consider overlapping polygons.

3.2. Generation of Analysis-Ready Data Cube

In order to fuse multi-polarized SAR and multi-spectral optical data, a common
radiometric frame is necessary. One most interesting approach was mentioned in the
context of SARsharpening [53] and later on explained as hyper-complex bases (HCBs) in
detail [41]. The basic idea is to generate Kennaugh-like elements from the multi-spectral
reflectances of Sentinel-2 that are compatible with the Kennaugh elements of Sentinel-1. In
a first step, reflectance values influenced by varying bandwidths in the spectral bands of
Sentinel-2 are normalized to a uniform bandwidth. This step reduces the typical dominance
of the NIR channel apparent in most optical images. Then, the reflectances are transformed
into the Kennaugh space by a simple linear combination [41]. The Kennaugh-like elements
of Sentinel-2 are thus composed of one total reflectance and three spectral elements in
complete analogy to the total intensity and the three polarimetric elements of Sentinel-1. In
the next step, both datasets are joined using linear fusion. The joint image thus comprises
one total intensity K0 and seven spectral/polarimetric elements K1−7. In the same way, the
64 acquisitions gathered during one year can be fused temporally on HCB to K∗,0−64. The
big advantage is the availability of one mean image K∗,0, which is representative for the
whole year (similar to the total intensity), and 63 elements K∗,1−63 describing the temporal
variations throughout the year, e.g., K0,0 stands for the mean reflectance over all channels
over the whole year whereas K0,∗ also includes all its variations throughout the year. The
final normalization allows for the loss-less and space-saving archiving of the image data
as UInt8 digits [41], which can be displayed and processed by each image processing or
GIS software.

Two important aspects have not been taken into consideration so far: cloud gaps
and the varying acquisition time of Sentinel-1 and Sentinel-2 (©ESA). The gaps caused
by clouds and insufficient illumination are closed by reasonable values interpolated on
an HCB. This algorithm acts like a Fourier transform in the temporal domain with only
sparse input values. The resampling from the Sentinel-2 acquisition times to the regular
Sentinel-1 acquisitions every six days is realized by a further interpolation. These two steps
guarantee a plausible temporal signature and a consistent image fusion. For comparison
reasons, both satellite datasets are also provided as individual ARD cubes in addition to
the fused version:

Sentinel-1 only 256 channels comprising 64 times 4 polarimetric Kennaugh elements;

Sentinel-2 only 256 channels comprising 64 times 4 spectral Kennaugh-like elements;

Sentinel-1 and -2 512 channels comprising 64 times 8 fused Kennaugh-like elements.

Based on these three ARD cubes, the influence of SAR and optical data can be evaluated
separately. The gain achieved by fusing SAR and optical data thence can easily be assessed
in a numerical manner during the subsequent quality assurance.
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3.3. Forest Parameter Regression Analysis

In this study, the focus lies on predicting tree-related attributes, namely the sum crown
area of deciduous, coniferous, and dead trees in square meters, the count of deciduous,
coniferous, and dead trees, the tree area coverage in percentage, sum crown volume in cubic
meters, and mean tree height and mean crown base height in meters, as described in Table 2.
These parameters, collectively reflecting a comprehensive view of tree characteristics, are
integral to our regression analysis, allowing for a detailed understanding and prediction of
tree-related attributes. The foundation for this analysis lies in the aggregation process of
reference data, produced from LiDAR-generated tree polygons, as detailed in Section 3.1.
These reference data serve as a semantic reference against which the predictive capabilities
of the fused satellite data are assessed. The iconic part is represented by the three ARD
cubes with 256 and 512 channels, respectively; see Section 3.2. Figure 5 gives an impression
of typical signatures of deciduous, coniferous, and dead trees.

Figure 5. Typical signatures of two pixels in the ARD cube with the labels given in the table on the
right: deciduous forest in red, coniferous forest in blue, and dead trees in green. The differences in
the spectrally, polarimetrically, and temporally fused Kennaugh elements are clearly visible.

To establish predictive models, we employ a random forest regression approach [54].
Random forests (RFs) represent an ensemble learning technique that amalgamates the
predictions of multiple decision trees, enhancing accuracy and robustness. RF, renowned
for its precision in both classification and regression tasks, is capable of modeling complex
variable interactions and effectively handling outliers. Its robustness is exemplified by
its ability to run efficiently on large datasets, insensitivity to noise and overfitting, and
the capacity to handle numerous input variables without the need for variable deletion.
This stands in contrast to other machine learning algorithms like artificial neural networks
(ANNs) or support vector regression (SVR), which often involve more intricate parameter
tuning, making model construction more complex, whereas RF boasts fewer parameters,
simplifying model construction [55,56].

Leveraging a multi-modal, multi-temporal dataset, our approach involves using the
Python-based scikit-learn RF regression technique [54]. For a further enhancement of the
predictive power of the RF model, a multi-output regressor framework was employed.
With this approach, a separate RF is fitted for each target variable. This means that every
tree within the RF predicts one of the target outputs, thus optimizing the model’s ability
to capture intricate relationships specific to each parameter. One significant advantage
of using a multi-output regressor framework in this context is that it can lead to more
streamlined models. Instead of creating individual models for each target variable, a multi-
output model can offer a more compact representation, which is beneficial for efficient
and manageable model construction [57]. Feature engineering techniques were applied to
enhance the quality of the dataset. Specifically, Z-score trimming was applied to address
outliers prior to the training, involving the calculation of Z-scores for each input variable
and applying a threshold (e.g., three standard deviations) to identify and remove outliers
from the dataset. This step enhances the robustness and reliability of the predictions,
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ensuring a comprehensive and accurate assessment of tree-related attributes using our
fused satellite dataset. To determine the most relevant variables for the model, a feature
importance ranking was established to assess the significance of each feature in predicting
the target variable. These steps collectively aim to improve the overall importance and
interpretability of the model.

3.4. Comprehensive Quality Assurance

As for the comprehensive quality assurance, a thorough assessment of our models’
predictive performance is envisaged. This entails a detailed examination of various quality
indicators to ensure the robustness of our methodology. Our assessment extends across
two prominent datasets: Sentinel-1 and Sentinel-2 (©ESA), both renowned for their utility
in Earth observation and RS applications.

3.4.1. Accuracy of Regression

The first aspect under scrutiny is the accuracy of our regression models, with a specific
focus on their performance within the context of our fused Sentinel-1 and Sentinel-2 (©ESA)
data. This analysis entails a comprehensive evaluation further explained in the following.

In our pursuit of precision, we employ multiple accuracy metrics—median absolute
deviation (MAD), mean absolute error (MAE), and standard deviation (STD)—to meticu-
lously scrutinize the efficacy and reliability of our random forest (RF) regression models.
These metrics constitute vital instruments in our quest for comprehending the accuracy
and consistency of our predictions.

Median absolute deviation (MAD), a resilient sentinel against the vagaries of outliers,
quantifies the median of absolute discrepancies between actual Y and predicted values Ŷ.
The formula for MAD is defined as:

MAD = median(|Yi − Ŷi|) (2)

MAD’s robustness against outliers is indicative of the model’s consistency in making
predictions. Smaller MAD values signify predictions that closely adhere to actual values,
showcasing the model’s reliability in various contexts.

Mean absolute error (MAE) serves as a robust gauge of the average prediction error
and is articulated mathematically as follows:

MAE =
1
n

n

∑
i=1

|Yi − Ŷi| (3)

MAE offers invaluable insights into the magnitude of inaccuracies in our predictions.
Lower MAE values are emblematic of heightened precision, symbolizing a close alignment
between the predicted values Ŷ and the actual values Y. The MAE metric encapsulates
the average magnitude of the prediction errors, illustrating how effectively the model
approximates the true values.

Standard deviation (STD), a widely employed metric for unearthing the degree of
dispersion in prediction errors, is expressed mathematically as:

STD =

√
1
n

n

∑
i=1

(Yi − Ŷi)2 (4)

STD endeavors to elucidate the extent to which predictions cluster around the nominal
value. Smaller STD values indicate the model’s consistency, as predictions cluster closely
around the nominal/actual value, thus affirming the model’s reliability and stability. Con-
versely, larger STD values are indicative of a greater variability in predictions, signifying
the potential for more erratic model behavior. In the context of these metrics, actual values
Y represent the true, observed values, while predicted values Ŷ denote the values estimated
by the model.
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Collectively, these metrics contribute to a holistic evaluation of the accuracy, consis-
tency, and dependability of our RF regression models, enriching our understanding of
their practical utility across diverse environmental contexts. Moreover, we take a unified
approach, consolidating the data from the individual transects for an encompassing as-
sessment. This comprehensive evaluation allows us to gain a holistic understanding of
model performance across various environmental settings, reinforcing the practical utility
of our methodology.

3.4.2. Transferability of Regression

Moreover, in addition to evaluating the accuracy of standard regression models within
their original contexts, it is essential to highlight that while our study conducted initial tests
of combined and transfer models involving training in one AOI and predicting in another
AOI, these findings are not included in the present study. The results of these preliminary
tests suggest promising avenues for further exploration. While we can recommend these
models for future testing, their comprehensive analysis and presentation await potential
future research studies.

3.4.3. Plausibility Analysis by Ground Truth

In the culmination of our comprehensive quality assurance process, a critical compo-
nent of our validation strategy involves a plausibility check by ground truth, substantiated
by the utilization of on-site data. This pivotal step serves as the ultimate verification of
the accuracy of our predictions, ensuring their real-world applicability and reliability. To
execute this plausibility analysis, we conducted fieldwork and gathered recently collected
validation data directly at the designated sites; see Figure 3. This data collection process
involved a rigorous comparison of the reference information with the tangible observations
made on site. By corroborating our model predictions with the physical presence of the
observed phenomena in the field, we not only validate the precision of our methodology
but also reinforce its practical relevance and utility in the context of Earth observation and
RS applications.

4. Results

This section gives an overview of the results achieved by applying the methodology
described above. In order to not exceed the limits of this article, only selected examples are
illustrated. All others are summed up in tables and diagrams.

4.1. Labeled ARD Cube

The aggregation of the information provided by the single-tree polygons and their
attributes to the 10 m grid results in image data with bands as listed in Table 2. The units
and respective value ranges are mentioned as well. As deadwood is only apparent in a
few transects, the bands 3 and 6 are mainly just zero. The pixels are perfectly collocated
to the image grid of the ARD cube generated from satellite data showing 512 bands per
pixel. Missing information is estimated with the help of the described gap-filling algorithm.
Thus, the ten labels to be predicted face 512 bands with spectral, polarimetric, and temporal
information. Exemplary labeled signatures of selected forest stands at the National Park
Bavarian Forest (AOI 2) are plotted in Figure 5. The characteristic peaks in relation to
the labels are clearly recognizable and even allow for a finer distinction as shown in the
subsequent section.

4.2. Regression Analysis and Quality Assurance

In order to analyze the potential of the spectrally, polarimetrically, and temporally
fused datasets derived from the synergy of Sentinel-1 and Sentinel-2 (©ESA, 2020 and
2021), a random forest regression was carried out on K0,∗. It has to be noted that, because
of terms of actuality, only the results regarding the 2021 datasets are shown in this article.
A compendium of random forest regression plots juxtapose the predicted values against
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the actual values from the reference data for each target variable across all study sites. A
distinctive characteristic of these plots is the logarithmic representation of point density,
which elegantly enhances the visual portrayal of the data distributions. The intricacy and
depth of these visualizations provide a unique perspective on the relationships between
the model predictions and ground truth reference data.

To delve further into the results, each study site is meticulously examined. For every
study site, a combination of visualizations is presented, encompassing the core elements of
the analysis. These include:

Residuals Assessment: Each study site is characterized by a series of plots illustrating
the distribution of residuals. These plots consist of a histogram representing the frequency
of residual values, a quantile–quantile (Q-Q) plot demonstrating the conformity of residuals
to a normal distribution, and a violin plot that vividly displays the variation in mean
absolute error (MAE) across the target variables.

Prediction Visualizations: For each study site, the predictions are vividly showcased.
The reference data for variables such as the sum crown area of deciduous and coniferous
trees, sum crown volume, mean tree height, and mean crown base height are juxtaposed
with the corresponding model predictions. These visualizations offer an insightful view of
the model’s ability to capture and reproduce the intricacies of these ecological variables,
facilitating a deeper understanding of the analysis results.

The fusion of these elements enables a comprehensive and multifaceted exploration of
the model’s performance and its capacity to elucidate the complex relationships inherent
in the dataset. The ensuing sections provide a detailed breakdown of these findings,
enhancing the understanding of the interplay between the model’s predictions and the
reference data across the three study sites.

4.2.1. Steigerwald

Within this section, the Steigerwald study site (AOI 1) results are presented. The
reference data [46] pertaining to this site were gathered in 2017 (Table 1), while it should be
noted that the satellite imagery and fusion transpired across the years 2020 and 2021. This
temporal span, resulting in a substantial temporal discordance, necessitates thoughtful
consideration during the interpretation of these findings. The three- to four-year gap
between the reference data collection and satellite observations introduces potential changes
in land cover and vegetation. Researchers should be attentive to this temporal discrepancy
to accurately assess the impact of these changes on the study outcomes and avoid drawing
unwarranted conclusions based on temporal variations. The discussion section further
explores and addresses these temporal discrepancies, providing a more comprehensive
understanding of their implications.

In Figure 6, the RF regression results of a spectrally, polarimetrically, and temporally
fused Sentinel-1 and -2 (©ESA, 2021) dataset in the Steigerwald study site, displaying the
predicted values using K0,∗ against the actual values for each present target variable, are
presented. In the evaluation of the random forest regression model at the Steigerwald
study site, the accuracy assessment metrics, encompassing MAE, MAD, and STD, provide
insights into the model’s performance. The following Table 3 summarizes these metrics for
each target variable.

Table 3. Accuracy assessment of the random forest regression highlighting MAE, MAD, and STD per
target value in the study site Steigerwald (AOI 1).

Variable MAD MAE STD Unit

Sum crown area of deciduous trees 4.120 5.195 6.768 m2

Sum crown area of coniferous trees 3.510 4.326 5.433 m2

Count of deciduous trees 0.200 0.248 0.317 amount
Count of coniferous trees 0.090 0.133 0.193 amount
Tree area coverage 0.710 1.075 1.602 %
Sum crown volume 24.330 31.140 40.601 m3

Mean tree height 0.709 0.962 1.220 m
Mean crown base height 0.430 0.530 0.692 m
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Figure 6. Random forest regression results of a spectrally, polarimetrically, and temporally fused
Sentinel-1 and -2 (©ESA, 2021) dataset in the Steigerwald study site (AOI 1), displaying the predicted
values using K0,∗ against the actual values (i.e., reference data in Table 1) for each present target
variable including the point density as logarithmic count and the perfect conditions (red dashed line);
(a) sum crown area of deciduous trees [m2], (b) sum crown area of coniferous trees [m2], (c) count of
deciduous trees [amount], (d) count of coniferous trees [amount], (e) tree area coverage [%], (f) sum
crown volume [m3], (g) mean tree height [m], and (h) mean crown base height [m].
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The model’s predictions for various target variables are detailed, indicating precision
across different entities at the Steigerwald study site. Visual representations (Figure 7) pro-
vide insights into predictive accuracy and areas for improvement. The histograms reveal a
symmetric shape, indicating that the model’s predictions align with actual values for most
variables. Notably, counts of deciduous and coniferous trees exhibit a bimodal distribution,
signifying challenges in predicting these counts. The residuals show a narrow range across
variables, except for crown volume, displaying a broader distribution. Specifically, in tree
area coverage and crown volume, negative residuals prevail, suggesting frequent underes-
timations by the model. Q-Q plots reveal deviations for tree area coverage and coniferous
tree counts, indicating potential outliers or non-normal behavior. Violin plots highlight the
distribution of MAE values, with broad sections indicating high probability for accurate
predictions. Overall, the violins consistently surround a low median point, aligning with
accuracy assessment findings. While generally broad, indicating good accuracy, some nar-
row outliers exist across variables, representing instances where predictions significantly
deviate from actual values. Importantly, these outliers are limited, emphasizing the model’s
overall accuracy.

Figure 7. Accuracy assessment of the random forest regression in the Steigerwald study site (AOI 1)
with a histogram and Q-Q-plot of the residuals (with the diagonal line representing the expected
normal distribution) and the MAE variations as violin plots of each target variable; (a) sum crown
area of deciduous trees [m2], (b) sum crown area of coniferous trees [m2], (c) count of deciduous trees
[amount], (d) count of coniferous trees [amount], (e) tree area coverage [%], (f) sum crown volume
[m3], (g) mean tree height [m], and (h) mean crown base height [m].

Figure 8 further compares model predictions to actual reference data (Table 1). Notably,
there is strong agreement for sum crown area, emphasizing the model’s accuracy. Subfigure
(Figure 8b) visually reinforces the accuracy in estimating sum crown area for deciduous and
coniferous trees. Subfigure (Figure 8c) presents reference data for sum crown volume, mean
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tree height, and mean crown base height. Subfigure (Figure 8d) complements this with the
model’s predictions, demonstrating consistency between predicted and actual values.

Figure 8. Prediction results of a spectrally, polarimetrically, and temporally fused Sentinel-1 and -2
(©ESA, 2021) dataset in the Steigerwald study site (AOI 1), displaying the predicted values and the
actual values as RGB composite (i.e., reference data in Table 1) as comparison; (a) reference data of
the sum crown area of deciduous (red) and coniferous (blue) trees [m2], (b) prediction of the sum
crown area of deciduous (red) and coniferous (blue) trees [m2], (c) reference data of the sum crown
volume [m3] (red), mean tree height [m] (green), and mean crown base height [m] (blue), and (d)
prediction of the sum crown volume [m3] (red), mean tree height [m] (green), and mean crown base
height [m] (blue).

These findings offer comprehensive insights into the model’s capabilities, with detailed
visualizations available in associated figures and metrics in corresponding tables. Refer to
Table 3 and Figures 6–8 for more detailed information on the Steigerwald study site results.

4.2.2. Bavarian Forest National Park

In this section, the findings within the Bavarian Forest National Park study site (AOI 2)
results are presented. Reference data pertaining to this site were gathered in 2016 (Table 1).
Similarly to the Steigerwald study site, the temporal discordance between satellite imagery
and the reference data shall be noted. In this context, it is also important to point out the
bark beetle infestations in the last few years [58], which may influence the results with the
transition of coniferous forest to deadwood. This assumption is confirmed by spot checks
during our field campaigns.

Figure 9 displays RF regression results for the fused Sentinel-1 and -2 (©ESA, 2021)
dataset, and Table 4 summarizes accuracy metrics. Noteworthy results include a robust
predictive performance for coniferous tree variables, evident in low MAE, MAD, and STD
values. Accurate predictions extend to count variables and tree area coverage, showcasing
the model’s effectiveness.
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Figure 9. Random forest regression results of a spectrally, polarimetrically, and temporally fused
Sentinel-1 and -2 (©ESA, 2021) dataset in the Bavarian Forest National Park study site (AOI 2),
displaying the predicted values using K0,∗ against the actual values (i.e., reference data in Table 1)
for each present target variable including the point density as logarithmic count and the perfect
conditions (red dashed line); (a) sum crown area of deciduous trees [m2], (b) sum crown area of
coniferous trees [m2], (c) sum crown area of dead trees [m2], (d) count of deciduous trees [amount],
(e) count of coniferous trees [amount], (f) count of dead trees [amount], (g) tree area coverage [%],
(h) sum crown volume [m3], (i) mean tree height [m], and (j) mean crown base height [m].

Table 4. Accuracy assessment of the random forest regression highlighting MAD, MAE, and STD per
target value in the study site Bavarian Forest National Park (AOI 2).

Variable MAD MAE STD Unit

Sum crown area of deciduous trees 5.765 6.249 7.564 m2

Sum crown area of coniferous trees 4.630 5.238 6.525 m2

Sum crown area of dead trees 3.115 3.811 4.745 m2

Count of deciduous trees 0.240 0.281 0.344 amount
Count of coniferous trees 0.190 0.221 0.262 amount
Count of dead trees 0.090 0.125 0.161 amount
Tree area coverage 1.345 2.133 3.202 %
Sum crown volume 52.130 64.858 83.534 m3

Mean tree height 0.910 1.246 1.608 m
Mean crown base height 1.045 1.249 1.488 m

Figure 10 visually assesses the Bavarian Forest National Park study site’s random
forest regression model. These plots depict deviations between predicted and actual values,
offering insights into the model’s accuracy and precision. The histogram of residuals
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reveals distinctive features. Notably, the mean crown base height displays two prominent
peaks, while deciduous and coniferous tree counts exhibit multiple peaks, emphasizing
variations in residuals. The sum of tree types, however, shows a more symmetric histogram,
indicating a balanced model prediction with a low range of residuals compared to actual
values. Residuals extend more into the negative axis for tree area coverage and crown
volume, suggesting a tendency for underestimations. The Q-Q plot highlights the overall fit,
with most variables closely resembling the diagonal line, indicating a strong fit. Variations
are observed in tree area coverage and counts of all tree types, hinting at potential outliers
or deviations from the diagonal line. MAE violin plots show broad sections consistently
around a low median point, indicating reliable predictive performance. Across variables,
the median aligns with the accompanying table, reinforcing the model’s precision. While
small outliers are present, they are relatively thin. Slight departures from this trend are
noted in the count and area of dead trees, as well as the sum of the crown area in deciduous
trees, where performance is relatively less optimal, reflecting wider outliers.

Figure 10. Accuracy assessment of the random forest regression in the Bavarian Forest National Park
study site (AOI 2) with a histogram and Q-Q-plot of the residuals (with the diagonal line representing
the expected normal distribution) and the MAE variations as violin plots of each target variable;
(a) sum crown area of deciduous trees [m2], (b) sum crown area of coniferous trees [m2], (c) sum
crown area of dead trees [m2], (d) count of deciduous trees [amount], (e) count of coniferous trees
[amount], (f) count of dead trees [amount], (g) tree area coverage [%], (h) sum crown volume [m3],
(i) mean tree height [m], and (j) mean crown base height [m].

Comparing prediction results (Figure 11) with reference data reveals a notable agree-
ment in predicting various forest parameters using fused satellite imagery. However,
distinctions in the model’s performance emerge, with instances of interchanging tree types
and potential confusion in predicting deciduous and coniferous areas. While the presence
of dead trees is visible, accurate prediction improvement is needed. The model excels in
estimating crown volume, closely aligning with reference data. Despite some nuances and
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outliers in tree height and crown base height predictions, the overall performance indi-
cates the model’s suitability for estimating crucial ecological attributes within the complex
landscape of Bavarian Forest National Park.

Figure 11. Prediction results of a spectrally, polarimetrically, and temporally fused Sentinel-1 and -2
(©ESA, 2021) dataset in the Bavarian Forest National Park study site (AOI 2), displaying the predicted
values and the actual values as RGB composite (i.e., reference data in Table 1) as comparison;
(a) reference data of the sum crown area of deciduous (red), coniferous (green), and dead (blue) trees
[m2], (b) prediction of the sum crown area of deciduous (red), coniferous (green), and dead (blue)
trees [m2], (c) reference data of the sum crown volume [m3] (red), mean tree height [m] (green), and
mean crown base height [m] (blue), and (d) prediction of the sum crown volume [m3] (red), mean
tree height [m] (green), and mean crown base height [m] (blue).

4.2.3. Kranzberg Forest

This subsection refers to the last study site AOI 3, the Kranzberg Forest, where the
temporal discordance between satellite imagery and the reference is the lowest. However, it
is to be noted that this study site is the smallest in spatial extent, and therefore encompasses
the lowest amount of trees in general. In the subsequent Figure 12 and Table 5, the RF
regression results of the spectrally, polarimetrically, and temporally fused Sentinel-1 and -2
(©ESA, 2021) dataset in the Kranzberg Forest study site are shown. Note that the reflectance
bands K0,∗ are used to predict the forest-related values.

In this smaller study site, the lower tree count might influence regression outcomes,
warranting careful consideration. Despite its limited spatial extent, the model continues
to yield valuable insights. Figure 13 provides a comprehensive accuracy assessment,
portraying histograms, Q-Q plots of residuals, and MAE violin plots for each target variable.
The histograms unveil interesting patterns, manifesting as bimodal distributions in tree
counts while indicating more uniform predictions for the sum of tree types and overall
crown volume. Notably, despite varied shapes, residual ranges consistently remain low
across all variables. A distinct observation is the model’s tendency to underestimate tree
area coverage, overall crown volume, and mean tree height, particularly with negative
residuals. Q-Q plots generally demonstrate close alignment with the diagonal line, implying
a relatively normal distribution of residuals for most variables. However, some deviations
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are noticeable in tree area coverage and count variables, potentially indicating outliers or
specific patterns. Examining MAE violin plots consistently reveals broad sections, with
Kranzberg Forest displaying fewer outliers but a notably larger spread. This is especially
pronounced in the count of trees. Despite the study site’s spatial limitations, these findings
contribute valuable insights into the model’s performance.

Figure 12. Random forest regression results of a spectrally, polarimetrically, and temporally fused
Sentinel-1 and -2 (©ESA, 2021) dataset in the Kranzberg Forest (AOI 3), displaying the predicted
values using K0,∗ against the actual values (i.e., reference data in Table 1) for each present target
variable including the point density as logarithmic count and the perfect conditions (red dashed line);
(a) sum crown area of deciduous trees [m2], (b) sum crown area of coniferous trees [m2], (c) count of
deciduous trees [amount], (d) count of coniferous trees [amount], (e) tree area coverage [%], (f) sum
crown volume [m3], (g) mean tree height [m], and (h) mean crown base height [m].

Table 5. Accuracy assessment of the random forest regression highlighting MAE, MAD, and STD per
target value in the study site Kranzberg Forest (AOI 3).

Variable MAD MAE STD Unit

Sum crown area of deciduous trees 7.800 6.917 7.513 m2

Sum crown area of coniferous trees 4.700 6.759 8.663 m2

Count of deciduous trees 0.170 0.156 0.186 amount
Count of coniferous trees 0.040 0.084 0.115 amount
Tree area coverage 1.320 2.955 5.423 %
Sum crown volume 117.410 140.235 134.399 m3

Mean tree height 0.540 0.976 1.417 m
Mean crown base height 1.250 1.332 1.552 m

While the model generally performs well for Kranzberg Forest, subtle nuances ex-
ist in its predictions. Deciduous trees are slightly under-represented, while predictions
for coniferous trees align well with the reference data. The model excels in predicting
crown volume, with strong agreement. However, outliers in mean tree and crown heights
indicate occasional deviations from the general trend. Figure 14 highlights a notable agree-
ment between prediction results and reference data, underscoring the model’s aptness for
estimating crucial ecological features in Kranzberg Forest.
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Figure 13. Accuracy assessment of the random forest regression in the Kranzberg Forest study
site (AOI 3) with a histogram and Q-Q-plot of the residuals (with the diagonal line representing
the expected normal distribution) and the MAE variations as violin plots of each target variable;
(a) sum crown area of deciduous trees [m2], (b) sum crown area of coniferous trees [m2], (c) count of
deciduous trees [amount], (d) count of coniferous trees [amount], (e) tree area coverage [%], (f) sum
crown volume [m3], (g) mean tree height [m], and (h) mean crown base height [m].

Figure 14. Prediction results of a spectrally, polarimetrically, and temporally fused Sentinel-1 and -2
(©ESA, 2021) dataset in the Kranzberg Forest study site (AOI 3), displaying the predicted values and
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the actual values as RGB composite (i.e., reference data in Table 1) as comparison; (a) reference data
of the sum crown area of deciduous (red) and coniferous (blue) trees [m2], (b) prediction of the
sum crown area of deciduous (red) and coniferous (blue) trees [m2], (c) reference data of the sum
crown volume [m3] (red), mean tree height [m] (green), and mean crown base height [m] (blue), and
(d) prediction of the sum crown volume [m3] (red), mean tree height [m] (green), and mean crown
base height [m] (blue).

5. Discussion

In this section, an exploration of key aspects of our study and their implications
is undertaken. The discussion commences with an examination of the selection of test
sites, followed by an analysis of the temporal discrepancy between data sources, an ac-
knowledgement of the importance of transferability, and a presentation of the implications
and applications. The section concludes with an evaluation of the limitations and future
directions for this research.

5.1. Selection of Test Sites

The selection of three distinct test sites in southern Germany significantly enriched our
benchmark dataset for mid-European forests. Each site—Bavarian Forest National Park,
Steigerwald, and Kranzberg Forest—possesses unique ecological and spatial characteristics
that greatly enhance the dataset’s diversity and value. To further augment our dataset’s
richness, we supplemented our field campaign expeditions with geotagged photos that
vividly capture the forest characteristics outlined in the existing literature for these regions.

For instance, the geotagged photos from Bavarian Forest National Park reveal the
locally extensive presence of deadwood, which is highly susceptible to outbreaks of the
European spruce bark beetle [58,59]. This susceptibility exposes the forest to recurrent
disturbances caused by storms, introducing substantial fluctuations in ecosystem dynamics
and challenging model predictability. The forest, as a national park, is designed to resemble
a “jungle” or primaeval forest, predominantly featuring Picea abies (Norway spruce) and
Fagus sylvatica (European beech) and encompassing a mix of production forests and strictly
protected areas characterized by intense natural disturbances or old-growth stands [60].
Steigerwald, characterized by a wide range of broadleaf forest utilization, is predominantly
dominated by Fagus sylvatica (European beech) [60], showcasing a high deciduous tree
density and the outcomes of intensive forest management [61]. Despite its relatively small
size, Kranzberg Forest presents a well-balanced mix of deciduous, coniferous, and mixed
forest regions [47], offering valuable insights into the coexistence of diverse tree types in a
compact ecosystem. These geotagged photos provide a visual dimension to the described
forest characteristics, enriching the dataset with on-the-ground perspectives.

Understanding these distinctions is crucial for interpreting the dataset’s context and its
potential applications, influenced by tree species variability, forest management practices,
and ecosystem stability. Despite a valid criticism regarding the dominance of spruce and
beeches in the datasets—given their prevalence in middle and northern Europe [62]—it is
essential to note that the tree species itself plays a minor role in our dataset due to the broad
categorization of coniferous and deciduous trees. However, this limitation underscores the
need to address specific challenges, such as detecting tree species like larch that exhibit
seasonal needle loss. This issue becomes a priority for follow-up studies, especially in
forests with a larger proportion of European larches, such as in the Eastern Alps.

While acknowledging the significance of tree species diversity in biodiversity stud-
ies, it is imperative to underscore the inclusion of a multitude of available parameters
in the dataset. The multifaceted nature of biodiversity, encompassing intricate patterns
and processes, complicates its monitoring using remote sensing methodologies. In this
context, forest crown size assumes a pivotal role, shaping ecosystem functions such as
timber production, nutrient cycling, and carbon storage [63]. Despite the acknowledged
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complexities, the benchmark dataset offers valuable insights into the structural aspects
of forest ecosystems. Tree height, size, and density, included in the dataset, contribute to
understanding vertical structure, habitat complexity, and forest density, all of which are
pertinent to biodiversity considerations and therefore serve as baseline information for
biodiversity monitoring and management, aligning with global initiatives, including Skid-
more et al.’s [64] call for a definitive set of biodiversity variables. Thus, this dataset plays a
vital role in advancing the collective strategy for a comprehensive space-based monitoring
of biodiversity-related parameters. In summary, despite limitations in representing the
full array of tree species, the inclusion of various parameters enhances the dataset’s utility
for initial biodiversity assessments. The dataset’s significance lies in providing valuable
insights into forest structure, laying the groundwork for exploring the relationships be-
tween remote sensing parameters and biodiversity indicators. Ongoing efforts to refine
and expand the dataset will further amplify its importance for advancing biodiversity
monitoring in forestry.

The limited representation of tree species, primarily dictated by the available labels,
constrains the dataset’s general applicability, particularly in the context of biodiversity
monitoring. While serving as a valuable starting point, the dataset’s coverage of tree species
reflects the need for further expansion to encompass the broader spectrum of species found
in regional forests.

5.2. Temporal Discrepancy

One of the challenges encountered in this study was the temporal discrepancy between
the satellite data and the reference data. While Sentinel-1 and Sentinel-2 (©ESA, 2020 and
2021) data from 2020 and 2021 were utilized, the reference data originated from 2016 (AOI 2),
2017 (AOI 1), and 2020 (AOI 3). This temporal offset raises questions about the accuracy and
relevance of the reference data due to potential changes in forest conditions over time. It is
crucial to consider the impact of these temporal differences on the predictions. Variations
in tree counts between the model and the reference data could be attributed to multiple
factors, such as tree growth rates, forest management practices, seasonal fluctuations, or
external influences like disease outbreaks or natural disasters. The investigation into the
reasons behind these disparities is a critical aspect of improving our model’s predictive
performance. It highlights the need for more frequent updates of reference data to maintain
the accuracy and relevance of such datasets.

Nevertheless, our field campaigns confirmed a high accordance of satellite and refer-
ence data, i.e., only little variations for deciduous forests. The situation regarding more
or less purely coniferous forest stands especially in the Bavarian Forest National Park
(AOI 2) is different. Some of the areas identified as coniferous in the reference data are
now characterized by deadwood because of a bark beetle infestation in the intervening
period. In contrast, some areas marked as deadwood are now covered by young growth.
In comparison to the entirety of the labeled ARD cubes, the proportion of unclear labels
is extremely low or even negligible. Potential outliers are reliably identified by the RF
regression so that the prediction based on satellite data shows a higher accordance with the
actual state than to be expected from the reference dataset.

5.3. Transferability

While transferability was tested in ancillary studies but not further explored in this
article, it is essential to acknowledge its importance in the broader field of RS and forest
parameter prediction. The methodology and especially the preprocessing techniques
developed here may serve as a foundation for future studies focusing on different regions
or datasets. As mentioned in Section 3.4.2, the potential for transferability should not
be dismissed entirely. Future research might explore how the models and approaches
developed in this study can be adapted and applied to other geographic locations or
datasets. The findings of our research could serve as a springboard for related studies
seeking to employ similar methods for the benefit of diverse ecosystems.



Remote Sens. 2024, 16, 488 27 of 33

From a technical point of view, the transferability is closely linked to the ML or DL
method employed for the prediction. For instance, an overfitted model would perfectly
predict the area where it is trained but completely fail in other areas. As the Wald5Dplus
dataset will be open to all interested scientists, the transferability using different methods
can be checked by the whole AI community. The easiest way would be to train on the one
and predict the other AOI using the labeled ARD cubes. The transfer to new unlabeled
forest stands can be checked by local ground truth acquisition or by relying on freely
available data like the dominant tree species maps [65], for instance. It is understandable
that these datasets do not provide the spatial resolution for the training of algorithms, but
it should be sufficient for a plausibility check of the prediction.

5.4. Implications and Applications

This study presents a unique and comprehensive benchmark dataset achieved through
the fusion of satellite data from optical and radar sensors, specifically Sentinel-1 and
Sentinel-2 (©ESA, 2020 and 2021). This fused dataset is further enriched by integrating
reference data derived from multi-spectral and LiDAR sources. The synergy of these
data sources, incorporating optical and radar sensor data, spectral information, and laser
scanning data, results in a rich and versatile dataset. It is made available on a 10 m
grid in UTM projection and is preprocessed into analysis-ready data cubes containing
256 channels (for Sentinel-1 and Sentinel-2 separately) or even 512 channels (for the joint
version, Sentinel-1 and 2) per year. Significantly, the fused satellite dataset possesses
substantial predictive power on its own. Its ability to generate accurate forest parameter
predictions is a testament to its value as a standalone resource. By harnessing this multi-
sensor dataset, users from diverse fields can unlock numerous practical applications,
including forest management, ecological research, and conservation efforts. It empowers
stakeholders such as governmental agencies, environmental organizations, and research
institutions to make informed decisions, monitor forest health, and investigate the dynamic
interplay of forest parameters over time.

From a data science perspective, the Wald5Dplus dataset provides an unprecedented
amount of training samples on biophysical parameters describing mid-European forests
joined with a comprehensive SAR and optical satellite time series over one year and even
for two consecutive years, enabling an interannual comparison. In total, this results in
more than 800,000 labeled samples only for the AOIs presented in this article, and even
more in the final dataset. This is an exceptional playground for all scientists working on
the development and improvement of machine learning algorithms for the prediction or
regression of continuous parameters. In this way, our labeled ARD cube might also be of
interest for the testing of machine learning algorithms in a purely technical focus far away
from the intended forest applications.

5.5. Limitations and Future Directions

In the pursuit of refining this research, it is essential to acknowledge the limitations of
this study. These limitations encompass potential sources of error in data collection, model
assumptions, and constraints in data resolution. Addressing these limitations can provide
a foundation for future research and improvements in forest parameter prediction.

A prominent limitation is brought into focus as bimodal and multimodal distributions
are vividly revealed in the histograms and Q-Q plots of the residuals (Figures 7, 10 and 13)
for tree count variables (deciduous, coniferous, dead wood) across all AOIs. This prompts
a discussion, as questions arise regarding their origin. The consideration is made as to
whether these observations are rooted in the reference data themselves, particularly as the
segmentation method, normalized cut, may tend to naturally lead to an underestimation of
the number of small trees in the lower layers [48]. In contrast to conventional segmentation
approaches, it is discovered that a relatively significant number of trees are still found in
the lower layers, when using the modified version of the normalized cut. This observation
fuels the speculation that the suitability of satellite data might be primarily limited to
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capturing the dominant trees in the forests. This bimodal pattern, however, is exhibited
less prominently when deciduous trees are considered compared to their coniferous
counterparts. These nuances in the distributions underscore the complexity of translating
RS data into precise forest parameter predictions. It becomes evident that while remarkable
strides have been made, challenges in capturing the full spectrum of forest characteristics
still persist.

One key issue already discussed above is the temporal discrepancy, though its impact
on the predictive performance seems to be negligible. But, even the simultaneous acquisi-
tion of reference data and satellite data in the same year might potentially be erroneous. As
the satellite time series covers a whole year and the airborne acquisition of multi-spectral
and LiDAR data can only cover one single day or at most one spring and one fall, leaf-on
acquisition may be enriched by a leaf-off LiDAR measurement due to the high costs of
the flight and the tedious process for data preparation and evaluation, and short-term
changes will never be captured in the airborne data. In the context of Wald5Dplus, a
leaf-off LiDAR acquisition together with one spring and one fall leaf-on multi-spectral
acquisition was carried out for two forest stands adjacent to the Kranzberg Forest. This
combination allows for the detection of temporal changes and underpins the reliability
of the reference data by assuring that no temporal changes occurred during summer.
However, the temporal changes possibly visible in the satellite data cannot be represented
by the chosen labels. This deficiency could be eliminated by introducing time-dependent
labels in future studies.

For convenience only, the RF prediction is carried out on K0,∗ exclusively. Nevertheless,
detailed evaluations for the individual labels showed a completely different picture: for
each variable, an individual element of the HCBs has a dominant importance as depicted
in Figure 15. Future studies should deepen the research on the impact of the individual
elements in the HCBs. In doing so, the crucial spectral, polarimetric, and temporal informa-
tion can be studied. Regarding K0,∗ as the most meaningful feature, it is reasonable that the
mean reflectance in SAR and optics over the whole year holds the most stable information.
This is one key issue of the HCB in separating stable information from possible noise [50].
In a second step, the difference between summer and winter might hold further distinctive
information, whereas the weekly change might be negligible because it is hampered by
short-term temporal variations like atmospheric effects in optical images. In short, these
assumptions should be proven or disproven in follow-up studies. With this knowledge,
the ARD cubes could be thinned out and reduced to the most important features, which
simplifies the data handling to a great extent.

Another promising avenue for future research is the incorporation of additional
reference data from a broader geographical range. This expansion could help to mitigate
disparities in accuracy and enhance the generalizability of our models. Moreover, the
integration of other data sources could further enhance the predictive power of our model.
In combination with the possible simplification by the reduction to the most significant
features, the inclusion of further data sources might stabilize the distinguishability without
increasing the complexity of the model.

In summary, our labeled ARD cubes of Wald5Dplus not only provide a valuable
benchmark dataset but also highlight the challenges and opportunities in the field of RS
for forest parameter prediction. By considering the diverse test sites, temporal discrepan-
cies, transferability, implications, and limitations, we lay the groundwork for continued
advancements in this critical area of research.
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Figure 15. Feature importance of the HCB elements in the ARD cube evaluated with respect to the
ten labels under study in the Bavarian Forest National Park (AOI 2).

6. Conclusions

The Wald5Dplus project has culminated in the creation of a remarkable benchmark
dataset that offers valuable insights into mid-European forests from space. This dataset
is a product of the fusion on hyper-complex bases of satellite data from radar and optical
sensors, namely Sentinel-1 and Sentinel-2 of the ESA Copernicus mission, enriched with
reference data derived from airborne multi-spectral and LiDAR sources. The dataset, made
available on a 10 m grid in UTM projection, contains 512 channels per year, making it
a valuable resource for a wide range of applications. The selection of three distinct test
sites—Bavarian Forest National Park, Steigerwald, and Kranzberg Forest—played a pivotal
role in enhancing the dataset’s diversity and its representativeness for mid-European
forests. These sites, with their unique ecological and spatial characteristics, underscore the
importance of considering specific ecological factors when interpreting satellite imagery.
Despite the time lag of a few years between the satellite data and the reference data, the
dataset exhibits substantial predictive power. Variations in tree counts between the model
predictions and reference data can be attributed to multiple factors, highlighting the need
for more frequent updates of reference data to maintain the timeliness and, therewith, the
accuracy regarding temporally stable labels. Time-dependent labels may represent a further
development of the presented benchmark dataset that allows for the immediate detection
of changes in the forest stands imaged from space. While the study tested transferability to
some extent, it remains an important avenue for future research. The methodology and
techniques developed in this project lay the groundwork for applying similar methods in
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different regions or with different datasets. The implications of the Wald5Dplus benchmark
dataset are significant. It serves as a comprehensive resource for forest management,
ecological research, and conservation efforts. Stakeholders from governmental agencies,
environmental organizations, and research institutions can leverage this dataset to make
informed decisions and monitor forest health. In conclusion, the Wald5Dplus dataset not
only contributes to the field of RS for forest parameter prediction but also underscores
the importance of discovering diverse test sites, addressing temporal discrepancies, and
exploring transferability. This project sets the stage for continued advancements in our
understanding of mid-European forests and their dynamic parameters as well as in the
evaluation and ranking of various machine learning algorithms.
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