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Abstract: The potential of satellite soil moisture (SM) in improving hydrological modeling has been
addressed in synthetic experiments, but it is less explored in real data cases. Here, we investigate
the added value of Soil Moisture and Passive (SMAP) and Advanced Scatterometer (ASCAT) SM
data to distributed hydrological modeling with the soil and water assessment tool (SWAT) in a highly
human disturbed catchment (126, 486 km2) featuring a network of SM and streamflow observations.
The investigation is based on the ensemble Kalman filter (EnKF) considering SM errors from satellite
data using the triple collocation. The assimilation of SMAP and ASCAT SM improved the surface
(0–10 cm) and rootzone (10–30 cm) SM at >70% and > 50% stations of the basin, respectively. However,
the assimilation effects on distributed streamflow simulation of the basin are un-significant and not
robust. SM assimilation improved the simulated streamflow at two upstream stations, while it
deteriorated the streamflow at the remaining stations. This can be largely attributed to the poor
vertical soil water coupling of SWAT, suboptimal model parameters, satellite SM data quality, humid
climate, and human disturbance to rainfall-runoff processes. This study offers strong evidence
of integrating satellite SM into hydrological modeling in improving SM estimation and provides
implications for achieving the added value of remotely sensed SM in streamflow improvement.

Keywords: soil moisture; data assimilation; SWAT; a disturbed catchment

1. Introduction

Soil moisture (SM) plays a crucial role in the energy and water cycle between land and
atmosphere [1]. It not only exerts a strong control on the partitioning of incoming radiation
into latent and sensible heat fluxes, but also determines the partitioning of precipitation
into surface runoff and infiltration [2,3]. In hydrological modeling, rainfall-runoff processes
in a catchment are largely controlled by the initial state of SM [4]. Thus, an accurate
SM estimation is deemed to have great potential to improve hydrological simulation and
prediction within a catchment [5].

The integration of SM observations in hydrological modeling via data assimilation
(DA) techniques is considered a promising approach to improve SM estimation and rainfall-
runoff modeling [6–9]. DA techniques provide an integrated framework to analyze all
sources of uncertainties from modeling and observation, including the errors of model
forcing inputs, model parameters, and model structures, as well as the observation errors
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from in situ measurements and remote sensing [10]. The assimilation of high-quality in
situ SM data in hydrological modeling has been proven to benefit the SM and streamflow
estimation [11–13]. Nevertheless, the benefits are limited by sparse field measurement sites
with lacking capacity to fully account for the spatial heterogeneity of SM.

Remote sensing provides large-scale spatially and temporally continuous SM data.
The ever-improving observation and retrieval techniques and thereby data quality have
largely promoted remote sensing applications in DA in recent decades [14–20]. Currently,
the potential of remote sensing SM assimilation on the improvement in SM and runoff
estimation in hydrological modeling has been validated in synthetic experiments [21–26].
However, the performance of real DA remains largely unexplored. There is still no con-
sensus on the efficacy of remotely sensed SM for hydrological simulation and prediction.
Brocca et al. [27] assimilated the Advanced Scatterometer (ASCAT) SM and the Advanced
Microwave Scanning Radiometer for Earth observations (AMSR-E) SM into a distributed
rainfall-runoff model (MISDc) in six basins of Italy, Luxembourg, France, and the US. They
found a general positive impact on runoff prediction, but no improvement in mountainous
and snow-dominated regions. Alvarez-Garreton et al. [16] improved hydrological predic-
tion in a semiarid catchment by assimilating the AMSR-E SM into a probability distributed
model. Similar conclusions were obtained by Lievens et al. [17] who assimilated the Soil
Moisture Ocean Salinity (SMOS) SM into the Variable Infiltration Capacity (VIC) model over
the Murray Darling basin, Australia. Corato et al. [28] found that the DA performance of
remotely sensed SM was vegetation and time dependent for a catchment in the UK, whereas
Nayak et al. [29] underscored the significance of model structure in the DA performance.
Massari et al. [30] demonstrated that the remote sensing SM data quality and the accurate
model and observation error assumption and estimation have a significant impact on the
assimilation results. In view of the current unknown modelling and observation error,
the immature model structure, and the varying data quality of satellite SM, the efficacy of
remote sensing SM DA in hydrological modeling requires further investigation [31–33].

This study investigated the impact of the Soil Moisture Active and Passive (SMAP)
and the ASCAT SM DA on the distributed hydrological simulation with the soil and water
assessment tool (SWAT) model in a watershed highly disturbed by human activities in
China. The selection of the SWAT model considers its wide applicability in catchment
hydrological modeling and the unexplored performance of satellite SM retrievals [8,21,23].
The investigation is based on a robust data assimilation approach of the ensemble Kalman
filter (EnKF), considering the observation errors based on the triple collocation (TC) method.
Our focus is on the impact of the remotely sensed surface SM DA on profile SM and
streamflow estimation in SWAT for a highly disturbed catchment.

2. Methodology
2.1. SWAT Model

SWAT is a physically based basin scale distributed model, widely used to predict the
impacts of land management practices on water, sediment, and agricultural chemical yields
in large, complex catchments with varying land use, soil, and topography over long periods
of time [34]. For modeling purposes, a catchment is geographically partitioned into a
number of sub-catchments or subbasins; then, each subbasin is further divided into several
Hydrological Response Units (HRUs) with unique land cover, soil type, and slope steepness.
HRUs are the basic units for land phase of hydrological cycle modeling including surface
runoff generation, evapotranspiration, soil water routing, and groundwater generation. SM
plays a critical role in the rainfall-runoff process. SM modulates the redistribution of water
infiltrated or percolated to the soil profile, which can largely impact evapotranspiration,
surface runoff, and groundwater generation directly or indirectly, and finally river flow
through overland and channel flow concentration. The water balance equation for each
soil layer is as follows:

SWt,ly = SWt−1,ly + ∆wperc,ly − Qlat,ly − Ea,ly (1)
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where SWt−1,ly and SWt,ly are the soil water content (mm) at the start and end of the day
for layer ly; ∆wperc,ly is the net water percolation received in layer ly; Qlat,ly is the lateral
flow generated from layer ly; and Ea,ly is the evapotranspiration drawn from layer ly.

The vertical movement of soil water in unsaturated soil layers is dominated by the
evapotranspiration process. Potential evapotranspiration (PET) is first calculated with
the Penman-Monteith equation [35]. The potential soil water evaporation is a function of
PET and leaf area index, and the potential plant uptake can also be estimated from the
Penman-Monteith equation. The total potential soil water evaporation and plant uptake
is allocated to each soil layer with the depth distribution function. The actual soil water
extraction is constrained by the available soil water of a given layer and not allowed to
be compensated from another layer. This deficiency is made up by a soil and a plant
compensation factor to adjust the depth distribution of the potential soil water evaporation
and ideal plant uptake.

2.2. The Ensemble Kalman Ffilter (EnKF)

The ensemble Kalman filter (EnKF) is proposed based on the theory of the linear
Kalman filter by incorporating the Monte Carlo method to generate a state ensemble
representing the probability distribution of the state, for example SM [36,37]. The predicted
state ensemble X f

t at time t is given by the following:

X f
t = F

(
Xa

t−1, It
)
+ µt µt ∼ N

(
0, δ2

)
(2)

where F indicates the SWAT model; Xa
t−1 represents the updated state ensemble at time

t − 1. In this study, Xa
t−1 includes the three-layer profile SM for each subbasin (Table 1).

It indicates the model forcing inputs (e.g., precipitation and temperature) at time t. µt is the
stochastic perturbation of the forecast state and represents the modeling error, assumed to
have a normal distribution with zero mean and a variance of δ2. The state update of X f

t is
obtained by the following:

Xa
t = X f

t + Kt

[
Yt − H

(
X f

t

)]
(3)

where Yt is the observation ensemble at time t, which is generated by adding a stochastic
perturbation with a normal distribution of zero mean and a variance of σ2 on the rescaled
remote sensing SM retrievals. Yt covers the SM observations of all remote sensing grids that
overlapped the subbasin being assimilated. H represents the observation operator to map
model states to observations. In this study, H is simplified as a matrix of 3 × m constructed
by 1 (first column) and 0, where m is the number of remote sensing grids overlapped the
subbasin being assimilated. Kt is the Kalman gain matrix at time t, which indicates the
weight of modeling and observation. Kt is estimated based on the forecast and observation
error covariance:

Kt = Mcs,t (Ms,t + Rs,t)
−1 (4)

where Mcs,t is the cross error covariance of the predicted state X f
t and the measurement

prediction H(X f
t ) at time t, Ms,t and Rs,t are the error covariance of the measurement

prediction and the observations at time t, respectively.

3. Study Area and Data
3.1. Study Area

The study catchment is located in the upper Huai River basin of China (Figure 1).
It covers an area of 126,486 km2 with an elevation ranging from −11 to 2122 m. The
catchment is in the transitional zone between the northern warm temperate semi-humid
and the southern subtropical humid monsoon climate. The mean annual precipitation is
884 mm, of which over 60% falls in June to September. The average air temperature is 15 °C.
The dominant land covers are agriculture (69.9%), forest (11.5%), and residential medium
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density land (12.5%), with significant anthropogenic influences (e.g., irrigation, reservoir)
on the basin’s hydrology.

Table 1. Soil classification and its area proportion in upper Huai River basin.

Soil Name Layers Soil Depth
(cm)

CLAY
(%)

SILT
(%)

SAND
(%)

ROCK
(%)

Profile
Stratification (cm) Area (%)

HEAVYCLAY 3 100 67 21 12 7 0–10–30–100 0.01
CLAY 3 100 49.54 29.23 21.23 4.77 0–10–30–100 18.19

CLAYLOAM 3 100 30 31.25 38.75 7 0–10–30–100 7.29
SILTLOAM 3 100 21 50 29 10 0–10–30–100 14.49

LOAM 3 100 20.51 41.16 38.34 9.44 0–10–30–100 48.13
SANDYCLAYLOAM 3 100 23 24 53 5 0–10–30–100 0.75

SANDYLOAM 3 100 10.25 13.375 76.38 9.125 0–10–30–100 2.13
LOAMYSAND 3 100 8.1 11.7 80.2 10 0–10–30–100 7.64

SAND 3 100 4.2 6 89.8 10 0–10–30–100 0.25
SHUITI 2 100 0 0 0 0 0–10–30 1.13
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3.2. Data Preparation for SWAT Model Building

The SWAT model building requires meteorological forcing and underlying land sur-
face data. The meteorological forcing data include precipitation, maximum and minimum
air temperature, solar radiation, wind speed, and relative humidity. The precipitation
data were collected from 63 precipitation and meteorological stations within the catch-
ment (Figure 1). The other meteorological variables were recorded from 12 meteorological
stations. The land surface data include terrain, land use, and soil category. The terrain
data were obtained from the digital elevation model (DEM) of the basin, download from
the 90 m Shuttle Radar Topography Mission (SRTM) (https://search.earthdata.nasa.gov/,
accessed on 1 October 2022) (Figure 1). The land use land cover data were extracted from
the1km remote sensing based Chinese national land use map (Figure 2a). The catchment
is predominantly covered by agricultural land, mixed forest, and residential land. The
soil category data were extracted from the 1km Harmonized World Soil Database (HWSD)

https://search.earthdata.nasa.gov/
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database (Figure 2b). The soil texture, profile stratification, and area proportion of this
basin were listed in Table 1. Based on these aforementioned meteorological and underly-
ing surface data, the upper Huai River basin was divided into 37 subbasins and further
delineated into 107 HRUs.
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Figure 2. (a) Land use and land cover, and (b) soil category in the upper Huai River basin. AGRL
(69.9%), FRST (11.5%), PAST (3.2%), URMD (12.5%), URML (0.006%), and WATR (2.9%) represent the
general agricultural land, mixed forest, pasture, residential medium density land, residential medium
and low density land, and water, respectively.

3.3. Remote Sensing and In Situ SM Data

The SMAP L3 and ASCAT L2 SM data were used in this study. The SMAP SM (V8) is
an estimate of the surface SM within top 5 cm of soil column based on the baseline dual
channel algorithm [38]. Here, the passive L-band radiometer 36 km resolution product was
used. The ASCAT SM was retrieved from the ASCAT backscatter measurements using
a time-series-based change detection approach [39,40]. ASCAT is a real-aperture radar
instrument measuring radar backscatter at C-band in VV polarization and scans the Earth’s
surface in descending and ascending overpasses [41]. ASCAT provides SM data with a
spatial resolution of 25 km and a revisit time of 1–3 days. The SMAP SM was first resampled
to 25 km using the nearest neighboring method to make it consistent with the ASCAT SM.
The spatial distribution of the resampled SMAP and ASCAT grids is shown in Figure 3a.
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SM observations were collected from 51 in situ stations with varying record lengths
between 2016 and 2018 (hydrographic office of Henan and Shandong province in China)
(Figure 3a,b). The ground-based data were used to validate the satellite SM DA efficacy on
SM estimation. The validation was between the grid-based SM estimation and the in situ
SM observation falling in a given grid pixel. In situ SM data were observed at the depths of
10 cm, 20 cm and 40 cm. According to the stratification scheme of soil profile, we obtained
30 cm SM values based on linear interpolation. Model simulations and satellite retrievals
were validated against the in situ 10 cm SM values, considering the fact that SM in the top
5 cm and 10 cm layers have marginal differences [42,43].

4. Data Assimilation (DA) Setup
4.1. Triple Collocation (TC) Based Error Analysis

TC analysis is a method to estimate the total random error variances of three collocated
measurements of the same geophysical variable [44]. It allows the intercomparison of errors
obtained for three independent datasets after scaling into the same space. Currently, TC is
one of the most widely used error evaluation methods for SM products in the absence of in
situ SM measurements [45–48]. In this study, the three independent SM datasets are SMAP,
ASCAT, and SWAT modelled SM, respectively. To ensure unbiased errors from the three
independent sources, SMAP and ASCAT SM data were rescaled to the reference model
estimates of SWAT by matching the cumulative distribution function (CDF) of satellite SM
retrievals to that of the modelled SM [49,50]. The CDF matching was achieved by ranking
datasets of satellite derived and modelled SM and fitting a five-order polynomial to the
differences. Under the assumption that the three independent datasets are linearly related
to the true value with additive random error in TC, the error variance (σ2) of each dataset
can be estimated from the temporal variance and covariance between datasets, respectively,
as follows [45]:

σ2
x = (Qx,x −

Qx,yQx,z

Qy,z
) (5)

σ2
y = (Qy,y −

Qx,yQy,z

Qx,z
) (6)

σ2
z = (Qz,z −

Qz,yQx,z

Qx,y
) (7)

where x, y and z represent the rescaled SMAP, ASCAT and SWAT SM, respectively, and
Q denotes the temporal variance and covariance between the three datasets.

4.2. EnKF Implementation in SWAT Model

DA aims to merge forecasted model states (i.e., the background) and observations
considering their respective uncertainties to minimize the error variance in the updated
(analyzed) model states. The EnKF requires an appropriate ensemble of model states to
represent the background error. In this study, the ensemble of SM model states was gener-
ated by an integrative perturbation of model forcing inputs of precipitation, temperature,
and model simulated SM. Precipitation at each station was perturbed by a multiplicative
lognormal error with a mean of 1.0 and a standard deviation of 0.3 combing the error setting
in previous research (e.g., [25,51]) and the robustness of EnKF in error processing. The max-
imum and minimum air temperature were perturbed by an additive normally distributed
error with a standard deviation of 1.0 ◦C [18,21]. The modelled SM states were perturbed
by an additive normally distributed error with a standard deviation of 0.02 m3/m3 for the
surface layer (0–10 cm) and rootzone (10–30 cm), and a standard deviation of 0.01 m3/m3

for the deep layer (30–100 cm).
In this study, the SM DA was based on the calibrated SWAT model considering ex-

clusively the state update. The implementation of the calibrated SWAT model with error
perturbations on precipitation, temperature, and simulated SM was regarded as reference
(Openloop). Preprocessing was implemented with satellite SM retrievals before DA. Sys-
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tematic biases between satellite and modeled SM were corrected using the CDF rescaling
method after the spatial mapping of the grid pixels and subbasins. The rescaled satellite
SM was assimilated into SWAT modeling at each time step with available EnKF-based
SM state updates and TC-based error characterization. Figure 4 provides the schematic
overview of the Openloop, DA preprocessing, and EnKF scenario.
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preprocessing scheme.

The DA period was 2016–2018 after the model calibration of 2010–2015. The model
calibration is based on the streamflow observations of all six hydrological stations available
at the mainstream, i.e., Xixian, Huaibin, Wangjiaba, Lutaizi, Bengbu and Xiaoliuxiang
(Figure 1). The distributed parameter optimization follows the principle from upstream to
downstream controlling stations. The calibration processes combine the auto-calibration of
the Sequential Uncertainty Fitting [52] and the manual fine-tuning method. The sensitive
parameters that need to be adjusted are listed in Table 2.

Table 2. SWAT model parameters in calibration.

Hydrological Modules Paramters Descriptions

surface runoff
CN2 moisture condition II curve number

surlag surface runoff lag coefficient

evapotranspiration
esco soil evaporation compensation coefficient
epco plant uptake compensation factor

canmx maximum canopy storage

soil water dynamics AWCly available water capacity of soil layer
Ksat saturated hydraulic conductivity of soil

ground water aqshthr,q threshold water level in shallow aquifer for base flow
αgw baseflow recession constant
βrev revap coefficient

aqshthr,rvp threshold water level in shallow aquifer for revap

channel routing Kch effective hydraulic conductivity of channel
n Manning’s n value for main channels

4.3. Evaluation Metrics

The DA performance was evaluated by comparing the EnKF and Openloop results
against the in situ SM and streamflow measurements. The bias (Bias), percent bias (PBias),
Pearson’s correlation coefficient (r2), root mean square error (RMSE), unbiased RMSE
(ubRMSE), and Nash–Sutcliffe coefficient of efficiency (NSE) were used as metrics. Mean-
while, the effectiveness criterion (EFF) [53] and the normalized error reduction index (NER)
were used to directly assess the streamflow improvement in the EnKF over the Openloop.
EFF and NER can be obtained as follows:
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EFF(%) = 100·(1 −
∑n

t=1

(
QEnKF

t − Qobs
t

)2

∑n
t=1

(
Qol

t − Qobs
t

)2 ) (8)

NER(%) = 100·(1 − RMSEEnKF
RMSEol

) (9)

where n is the total time step of DA; QEnKF
t , Qol

t , and Qobs
t are the model predicted

streamflow in the EnKF and the Openloop scenario; and the observed discharge at time
t, RMSEEnKF and RMSEol are the RMSE of the modelled streamflow in the EnKF and
Openloop scenario, respectively.

5. Results
5.1. Catchment Applicability of SWAT Model

Figure 5 compares the SWAT model simulated against the observed daily streamflow
at the catchment outlet (Xiaoliuxiang station) in model calibration and validation phases.
The hydrographs of both streamflow data generally match well during the calibration
and validation phases. The evaluation statistics at the catchment outlet show good consis-
tency of the modeling and observational results: the PBias values within ±10%, r2 > 0.8,
NSE > 0.65, and RMSE < 600 m3/s (station Xiaoliuxiang in Table 3). The evaluation statis-
tics at the other five interior hydrological stations (Table 3) indicate the relatively good
performance of the SWAT model in the distributed rainfall-runoff simulation of the upper
Huai River basin. For both calibration and validation phases, almost all stations have PBias
values within ± 15%, r2 > 0.8, and NSE > 0.6 except for the station Xixian at the most
upstream. The comparatively high consistent hydrograph and the good statistics reflect the
good applicability of the SWAT model in the study catchment.
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5.2. Modeling and Observation Errors

Figure 6 presents the rescaled SMAP, ASCAT and SWAT-modeled SM errors at each
grid pixel and the error probability distribution of all grid pixels within the catchment
based on the TC method (Figure 3). The error standard deviation of SMAP SM and ASCAT
SM vary between 0.01 and 0.03 m3/m3, and the error standard deviation of SWAT-modelled
SM is less than 0.02 m3/m3. The random error of remote sensing SM is substantially larger
than that of the modelled SM. Large error differences are present in the grid pixels in space
with varying topography, land cover and soil (Figure 2), in particular for the ASCAT SM
and SWAT modelled SM. Meanwhile, large error differences are present in the three SM
datasets for a given grid pixel, demonstrating the potential benefit of SM data fusion and
assimilation. The very small values of the SWAT-SM error at a few grids are likely caused
by the unchanged modelling SM, for example the water body.
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5.3. Data Assimilation Effects on Soil Moisture

Figure 7 compares the data accuracy of the simulated SM in EnKF and Openloop sce-
narios based on the 51 in situ SM stations available to illustrate the SMAP SM DA effects on
profile SM modeling. For the surface layer (0–10 cm), most stations have bias values within
−0.1 and 0.1 m3/m3, r values within 0.2–0.6, RMSE values within −0.05–0.15 m3/m3, and
ubRMSE values within 0.04–0.06 m3/m3 for the Openloop, EnKF and rescaled SMAP SM
(Figure 7a–d). The corresponding statistics of the rootzone (0–30 cm) SM are comparable to
those of the surface layer (Figure 7e–h). SMAP SM DA marginally reduces the biases of
SM modeling (Figure 7a), yet significantly increases the correlations between the model
simulated and in situ SM (Figure 7b). Meanwhile, the RMSE and ubRMSE values are largely
reduced through SMAP SM assimilation (Figure 7c,d). Similar to the surface layer, the
improvement in the rootzone is mainly manifested in the improved r, RMSE, and ubRMSE
values (Figure 7f–h). Generally, SMAP SM is superior to SWAT simulated SM in Openloop
at ~47% stations (Table 4). SMAP SM has a relatively larger (0.7%) bias, but a higher (7%)
r, and a slightly lower (−0.8%) RMSE and (−2%) ubRMSE than Openloop. Integrating
SMAP SM largely improves SWAT simulated SM for surface and rootzone layers at over
70% of stations. The overall improvements are −10.5%/−9.5% for Bias, 11.7%/8.8% for r,
−9.5%/−10.1% for RMSE, and −7.9%/−10.9% for ubRMSE in the surface/rootzone.
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Table 4. Comparison of bias, r, RMSE and ubRMSE for total 51 SM stations based on SMAP and
ASCAT DA.

Scenarios Statistics Bias r RMSE ubRMSE

SMAP DA
(10 cm)

% of stations with SMAP
superiors to Openloop 37 53 47 49

% of stations with EnKF
improves upon the Openloop 27 63 88 76

SMAP DA
(30 cm)

% of stations with EnKF
improves upon the Openloop 29 71 82 84

ASCAT DA
(10 cm)

% of stations with ASCAT
superiors to Openloop 33 27 25 25

% of stations with EnKF
improves upon the Openloop 33 31 69 57

ASCAT DA
(30 cm)

% of stations with EnKF
improves upon the Openloop 24 41 76 57

Figure 8 shows the bias, r, RMSE, and ubRMSE values for the EnKF and Openloop
SM based on ASCAT SM assimilation. ASCAT SM is inferior to SWAT simulated SM in
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Openloop at most stations, particularly for r, RMSE and ubRMSE (Figure 8a–d). Only ~28%
stations show better ASCAT SM than Openloop SM (Table 3). It seems that the ASCAT SM
DA effects on SM modeling are not robust for all stations. The ASCAT SM retrievals with
high data quality tend to improve SM simulation (Figure 8a–h). Statistically, the ASCAT SM
assimilation improved the surface and rootzone SM at over 50% of stations, in particular
for the RMSE and ubRMSE values (Table 3). The RMSE and ubRMSE are improved by
−4.9%/−9.3% and −2.9%/−5.3% in the surface/rootzone.
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Overall, SMAP SM DA largely improved the surface (0–10 cm) and rootzone (10–30 cm)
SM estimation in the upper Huai River basin. The effects of ASCAT SM assimilation are
moderate, caused by its poor data quality in this basin.

5.4. Data Assimilation Impacts on Streamflow

Table 5 shows the effectiveness criterion (EFF) and the normalized error reduction
index (NER) values of the simulated streamflow based on SMAP and ASCAT SM assimila-
tion at five interior hydrological stations (Xixian, Huaibin, Wangjiaba, Lutaizi, and Bengbu)
and the station at the catchment outlet (Xiaoliuxiang). SMAP and ASCAT SM assimilation
improves the modelled streamflow at two upstream interior stations, i.e., the Huaibin and
Wangjiaba satations. However, the DA does not improve the modelled streamflow at the
other four stations, in particular for the downstream station (Bengbu) and the catchment
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outlet. It means that both SMAP SM and ASCAT SM assimilation produce un-robust
impacts on the distributed streamflow modeling in the Huai River basin.

Table 5. Statistics of the SMAP and ASCAT soil moisture assimilation impacts on streamflow
simulation at the six hydrological stations in upper Huai River basin.

Hydrological
Stations

EnKF-SMAP EnKF-ASCAT
EFF (%) NER (%) EFF (%) NER (%)

Xixian −2.8 −5.8 −4.5 −9.1
Huaibin 2.4 4.7 1.9 3.8

Wangjiaba 5.3 10.3 4.1 8.1
Lutaizi 0.3 0.6 −2.9 −5.9
Bengbu −5.8 −12.0 −5.3 −10.9

Xiaoliuxiang −8.7 −18.1 −5.6 −11.4

Figure 9 compares the SMAP SM assimilation-based and the Openloop streamflow at
the Wangjiaba and Xiaoliuxiang stations. The DA has a marginal impact on streamflow
modeling in the study catchment. The EnKF streamflow does not show much difference
from the Openloop streamflow (the red and blue lines in Figure 9a,b). The marginal effects
in streamflow can be partly impacted by the semihumid and humid climate conditions
of the catchment. SM content is relatively high throughout the year, with catchment
averages in most days exceeding 0.3 m3/m3, in particular for the rootzone and deep layers
(Figure 10). Thereby, it leaves a limited room for improvement of streamflow simulation
by enhancing SM status. Moreover, both positive and negative effects are present (see the
light green and pink bands in Figure 10), suggesting the un-robust DA performance, in
particular for the basin outlet. The un-robust effects might be related to the sub-optimal
model parameters and the unsatisfied model structure, which cannot effectively account for
the disturbances of the complex and dense human activities on the rainfall-runoff processes
of the basin, for example the reservoir influences (see the gray rectangle in Figure 10b).
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6. Discussion

We demonstrated the benefits of high-quality satellite SM to improve SWAT modeling
of SM at both the surface layer and rootzone. The improved SM estimation confirmed the
significance of integrating remotely sensed SM in distributed hydrological modeling of
SWAT. Nevertheless, the improvements in profile SM estimation are not robust, particularly
for those based on the low-quality ASCAT SM data. Analyzed SM accuracy is deteriorated
at several stations, even when SMAP SM is assimilated (Figures 7 and 8, Table 3). Different
model error parameterizations still cannot largely improve the DA effects on SM estimation.
We found error parameterizations had no significant impact on SM estimation as differences
in ubRMSE values are marginal (see vertical legend in Figure 11a,b). It seems that low
ubRMSE values can be obtained in the cases of high SM states and large precipitation errors.
However, larger SM perturbations at each time step likely cause biases to streamflow
modeling due to the truncation errors of the updated SM by the saturation water capacity,
particularly for deep soil layers. Thus, the error standard deviation was set as 0.02 m3/m3

and 0.01 m3/m3, respectively, for surface/rootzone and deep-layer SM.
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The limited success of actual surface SM assimilation on profile soil water estimation
in SWAT has also been found in previous studies (e.g., [21,51]), largely attributed to the
inadequate vertical soil water coupling strength of SWAT. The correlation between surface
and rootzone SM is subjected to underestimation and overestimation, varying with sites
(Figure 12), despite the consideration of evaporation and evapotranspiration compensation
factors in SWAT to account for varying vertical coupling in real cases. Decoupling (underes-
timation) limits the EnKF’s ability to update SM states of deeper layers, while over-coupling
(overestimation) leads to overcorrection of deeper SM states [54]. Attempts to improve
the SWAT inherent vertical coupling of soil layers were made using the ensemble of soil
storages and the coupled soil moisture analytical relationship based on the EnKF [55,56].
These attempts marginally benefit the covariance-based state updates in EnKF. However,
it should be acknowledged that SWAT still lacks a physical mechanism in its soil water
dynamic module, so integrating a physically based module, for example the Richards
equation, should be a candidate solution to this issue.
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In addition to the vertical coupling issue of the model, suboptimal model calibration is
also responsible for the un-robust improvements in SM, particularly for streamflow. It is a
challenging task to seek optimal parameters for distributed hydrological models, due to the
large number of parameters and the well-known parameter equifinality issue [57,58]. In
the current study, we can hardly fine-tune the best-for-all parameters for the rainfall-runoff



Remote Sens. 2024, 16, 429 15 of 18

module based on data from six discharge stations. Extreme streamflow (low and high) is
inclined to be more biased with suboptimal parameters [59]. Thus, the pre-parameter cali-
bration is highly needed to improve streamflow modeling in the state-update DA scheme.
The combined state-parameter update likely provides a viable solution (e.g., [8,60,61]).

Human manipulation of river discharges partly explains the poor DA performance
on streamflow simulation. We obtained improved streamflow in the upstream regions
with less intensive human activities, whereas neutral impacts or even deterioration of
accuracy were found in the densely populated downstream regions (Figure 1, Table 3).
Human alterations of hydrological processes increase the uncertain effectiveness of DA. It
requires a more sophisticated model structure to account for these human activities. The
humid and subhumid climate of the catchment are also responsible for the marginal DA
effects on streamflow. The relatively high SM throughout the year tends to leave limited
room for streamflow improvement by enhancing SM status. Additionally, data quality
of satellite SM is another hinderance to improve streamflow simulations based on DA.
Future enhancement on satellite SM observation and retrieval is essential for its effective
application in hydrological modeling and prediction. Assimilating multisource data is
also a promising approach to couple big data with hydrological models by separately
accounting for multiple sources of uncertainty under the DA framework [62–64].

7. Conclusions

The DA impacts of satellite SM on distributed hydrological modeling of SWAT are
investigated based on the EnKF considering the observation error using the TC method.
The investigation focused on the DA effects on the surface and rootzone SM, as well as
the streamflow estimation of a highly human disturbed catchment in China, i.e., the upper
Huai River basin with dense in situ SM and streamflow observations. Our results show
the following:

(1) SWAT has good applicability in the daily rainfall-runoff simulation of the upper Huai
River basin. The PBias values are generally within ±15%, r2 > 0.8, and NSE > 0.60 at
the validation stations.

(2) The random error standard deviation of SMAP and ASCAT SM varies between
0.01 m3/m3 and 0.03 m3/m3 for all grid pixels within the basin. Large error differ-
ences are present in the SM datasets and in different grid pixels.

(3) SMAP SM DA largely improves the surface and rootzone SM estimation. Nevertheless,
ASCAT SM DA gains mixed impacts on performance in SM estimation, primarily due
to poor data quality.

(4) The satellite SM DA does not improve streamflow simulation as effectively as SM
itself. The effects of SMAP and ASCAT SM assimilation on distributed streamflow
simulation are un-significant and not robust.

Overall, this study presents strong evidence of integrating satellite SM in hydrological
modeling in improving SM estimation and provides implications for achieving the added
value of remotely sensed SM in streamflow improvement. Satellite SM retrievals do have
great capacity to improve the distributed hydrological simulation of SWAT, in particular for
SM estimation. However, current benefits from DA effects are still limited by the vertical
soil water coupling of SWAT, suboptimal model parameters, satellite SM data quality,
humid climate, and the human disturbances on catchment rainfall-runoff process. In future,
more efforts should be paid to the improvement in model structure, satellite SM retrieval,
and multi-source data assimilation.
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