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Abstract: Satellite time-series data contain information in three dimensions—spatial, spectral, and
temporal—and are widely used for monitoring, simulating, and evaluating Earth activities. However,
some time-phase images in the satellite time series data are missing due to satellite sensor malfunction
or adverse atmospheric conditions, which prevents the effective use of the data. Therefore, we need
to complement the satellite time series data with sequence image interpolation. Linear interpolation
methods and deep learning methods that have been applied to sequence image interpolation lead to
large errors between the interpolation results and the real images due to the lack of accurate estima-
tion of pixel positions and the capture of changes in objects. Inspired by video frame interpolation,
we combine optical flow estimation and deep learning and propose a method named Multi-Scale
Optical Flow-Intermediate Feature Joint Network. This method learns pixel occlusion and detailed
compensation information for each channel and jointly refines optical flow and intermediate features
at different scales through an end-to-end network together. In addition, we set a spectral loss function
to optimize the network’s learning of the spectral features of satellite images. We have created a
time-series dataset using Landsat-8 satellite data and Sentinel-2 satellite data and then conducted ex-
periments on this dataset. Through visual and quantitative evaluation of the experimental results, we
discovered that the interpolation results of our method retain better spectral and spatial consistency
with the real images, and that the results of our method on the test dataset have a 7.54% lower Root
Mean Square Error than other approaches.

Keywords: satellite time-series data; missing images; sequence image interpolation; optical flow
estimation; deep learning

1. Introduction

Big data in remote sensing refer to the massive volumes of information generated by
Earth observation satellites, particularly when dealing with time series data from satellites
like MODIS with frequent revisits [1,2]. Remote sensing time series data can be used for
monitoring, analyzing, and predicting various natural and human phenomena, including
land use/cover change detection, wetland monitoring, crop classification, disaster early
warning, etc. [3–7].

However, satellite sensors may malfunction or there may be adverse atmospheric
conditions during the acquisition of remotely sensed data, and these problems often result
in missing data for intermediate time phase images, making it impossible to form a complete
time series [8,9]. There are three instances of remote sensing data that are missing, shown
in Figure 1.
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Figure 1. Three instances of remote sensing data that are missing: (a) displays a MODIS instrument
failure on the Aqua satellite, which caused about 70% of the data in Aqua MODIS band 6 to be
lost; (b) displays a Landsat-7 satellite digital product, where the image had pixel failure due to
a malfunctioning Landsat-7 ETM+ on-board scanning line corrector; and (c) displays a Landsat-8
OLI_TIRS satellite digital product that is useless for direct use due to its 87.3% cloud coverage.

One prevalent approach for filling in the gaps in a sequence of images at intermediate
time phases is the use of image interpolation. This technique involves generating the
missing images by utilizing information from the images at the preceding and subsequent
time phases. Image interpolation is a foundational task in digital image processing and
computer vision, classified into intra-image interpolation and inter-image interpolation
based on the dimension of interpolation [10]. Inter-image interpolation, also termed
sequence image interpolation, focuses on creating multiple new images within a sequence
of existing images. Our research involves a comprehensive exploration and generalization
of the methodology for sequential image interpolation.

The fundamental approach to sequential image interpolation is pixel-wise linear inter-
polation. This method employs a linear weighted combination of pixel values at equivalent
positions within two adjacent images to compute the pixel values of the intervening im-
age. Vandal et al. [11] compared their deep learning method with linear interpolation
and showed that their method is better at time enhancement from 10 min to 1 min for
remote sensing data with different spatial resolutions. The requirements for the spectral
integrity of interpolated images cannot be met by the simple and consistent weighted linear
approach [12].

Shape-based interpolation is a method of interpolating sequential images by extracting
the shape contours of an object from an image sequence and interpolating them in accor-
dance with the changes of an object at each time instance. Raya et al. [13] first proposed
a shape-based interpolation algorithm, which first segmented the given image data into
binary images, then converted the binary images back to gray images, and finally interpo-
lated the gray images. This method is seldom applied to remote sensing data. The reason is
that remote sensing data encompass a multitude of objects and intricate textures, which
significantly complicates the extraction of contours.

In the last few years, deep learning has achieved a good performance in satellite
image processing tasks, including image fusion, image classification, object detection,
and picture reconstruction [14–23]. It employs high-parameter models to comprehend
complex textures and spectral features for image interpolation tasks, using the images from
two time phases to output the intermediate phase image. Niklaus et al. [24] used a local
convolution on two input frames for intermediate frame interpolation. They employed
a convolutional neural network (CNN) to learn spatially adaptive filters for each pixel,
addressing occlusion, blur, and brightness changes. Jin et al. [25] introduced a separable
convolution network for remote sensing sequential image interpolation. This network
uses separable 1D convolution kernels to capture spatial features of sequential images.
Tests on Landsat-8 and drone data showed its effectiveness in generating high-quality
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time series interpolation images. For high-resolution images, Peleg et al. [26] proposed an
interpolation motion neural network to improve interpolation quality. This network uses a
cost-effective structured architecture, end-to-end training, and a multi-scale customized loss
function. It classifies interpolation motion estimation, enhancing the interpolation effect
and speed on high-resolution images. Deep learning-based interpolation methods show
robustness to occlusion, blur, and illumination changes. However, their unpredictability
and uninterpretability may introduce noise.

Optical flow is a technique frequently employed in computer vision, primarily for
target detection and tracking in satellite image processing [27,28]. It aims to determine
the exact location of pixels at each stage within a sequence of images. This technique is
instrumental in analyzing the motion and changes of objects across different frames in
the sequence.

The accuracy of interpolation can be enhanced by accurately estimating pixel motion
and addressing occlusion and blurring when optical flow and deep learning are integrated.
This concept is frequently used in the field of video frame interpolation, and effectively
increases the precision and speed of interpolation. Liu et al. [29] developed a deep voxel
flow layer (DVF), akin to an optical flow field. The method captures the direction of pixel
flow between adjacent frames and is trained to generate intermediate frames. Jiang et al. [30]
proposed a video interpolation method called Super SloMo, based on a convolutional neural
network. It initially calculates the bidirectional optical flow between input frames using
a U-Net [31], then linearly combines the bidirectional optical flow according to the time
step to obtain the approximate intermediate frame optical flow. This is then refined with
another U-Net, while also predicting visibility, distorting and fusing the input frames,
and excluding the insignificant. The result of the experiment has shown that the U-Net
produces high-quality intermediate frames that surpass those produced by current video
frame interpolation techniques in the field of remote sensing. Vandal et al. [11] extended
Super SloMo to multiple channels and applied it to the GOES-R/Advanced Baseline Imager
mesoscale dataset. This enhances the satellite data with different spatial resolutions from
10 min to 1 min in temporal resolution, enabling more accurate weather detection.

In addition, to enhance the speed and accuracy of frame interpolation, Kong et al. [32]
proposed simpler and more efficient model structures. They designed an end-to-end net-
work, IFRNet, which extracts pyramidal features from a given input and subsequently
recombines bilateral intermediate streams with robust intermediate features until the de-
sired output is produced. Their progressive intermediate features not only aid in the
estimation of intermediate information but also compensate for contextual details, thereby
efficiently generating intermediate images. This approach signifies a promising advance-
ment in the field of frame interpolation.

This paper draws inspiration from IFRNet [32], to which we have introduced mod-
ifications to tailor it for the task of interpolating sequences of satellite images. As far as
we know, this is the first attempt to use the optical flow-based interpolation method on
satellite images possessing complex object characteristics. The main work in this article is
as follows:

• Given the complexity of objects and the richness of spectra in satellite imagery, we
endeavor to integrate optical flow estimation with deep learning. This integration
aims to develop a robust method for enhancing satellite image sequences.

• We carried out comprehensive experiments on two time-series satellite datasets—
Landsat-8 and Sentinel-2. The results demonstrate that our approach yields lower
interpolation errors across the four seasons: spring, summer, autumn, and winter. This
evidence substantiates that our method can be effectively applied to the interpolation
of satellite image sequences in various seasons.

The remainder of this paper is organized as follows: Section 2 provides a detailed
description of the satellite datasets and the proposed methodology. The experiments and
their results are presented in Section 3. Section 4 offers an in-depth discussion on the
rationale behind the results. Finally, Section 5 draws conclusions from the study.
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2. Materials and Methods
2.1. Datasets

We selected data from two satellites—Landsat-8 and Sentinel-2—consisting of eight
and four time series. Their details are given in Tables 1 and 2, and each time series contains
images from five time phases. For the Landsat-8 satellite dataset, we used seven bands:
coastal, blue, green, red, near-infrared, short-wave infrared-1, and short-wave infrared-2, all
with a spatial resolution of 30 m and a size of 5120 × 5120 per image. Figure 2a shows two
examples of time series of the Landsat-8 satellite data. For the Sentinel-2 satellite dataset, we
used 8 bands, including blue, green, red, 3 vegetation red edge, near-infrared (wide), and
near-infrared (narrow), of which 4 bands, 3 vegetation red edge and near-infrared (narrow),
have a spatial resolution of 20 m and a size of 5490 × 5490, and the other bands have a
spatial resolution of 10 m and a size of 10,980 × 10,980 per image. The time resolution of the
Landsat-8 dataset and the Sentinel-2 dataset is 16 days and 5 days, respectively. Figure 2b
shows two examples of time series of the Sentinel-2 satellite data.

In addition, we chose two satellite datasets from latitudes that differ by about ten
degrees to ensure climate consistency. The two satellite datasets cover the four seasons:
spring, summer, autumn and winter, respectively. The cloud coverage of the images for
each temporal phase of both datasets is within 5%.

Table 1. The details of the Landsat-8 satellite dataset. This table contains the path and row, the
acquisition date, the latitude and longitude of the image center point, and the number of phases
included for each Landsat-8 satellite time series.

Path,Row Date Center Latitude Center
Longitude

Phase
Number

91,78 21 June 2022 25°59′42′′S 150°32′35′′E 5
7 July 2022

23 July 2022
91,79 8 August 2022 27°26′2′′S 150°11′2′′E 5

24 August 2022

91,84 20 January 2019 34°36′50′′S 148°16′34′′E 5
5 February 2019

21 February 2019
9 March 2019

24 March 2019

92,85 20 January 2022 36°2′46′′S 147°51′58′′E 5
5 February 2022

21 February 2022
9 March 2022

24 March 2022

99,73 31 March 2018 18°47′24′′S 139°53′38′′E 10
16 April 2018
2 May 2018

18 May 2018
3 June 2018

99,74 7 September 2018 20°13′55′′S 139°33′40′′E 10
23 September 2018

9 October 2018
25 October 2018

1 November 2018
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Table 2. The details of the Sentinel-2 satellite dataset. This table contains the tile ID, the acquisition
date, the latitude and longitude of the image center point, and the number of phases included of each
Landsat-8 satellite time series.

Tile ID Date Center Latitude Center
Longitude

Phase
Number

18STF 11 January 2019 36°31′12′′N 77°44′14′′W 5
16 January 2019
21 January 2019
26 January 2019
31 January 2019

31TDN 26 March 2020 47°21′29′′N 2°24′8′′E 5
31 March 2020
5 April 2020
10 April 2020
15 April 2020

30TXT 7 July 2020 47°20′28′′N 0°56′57′′W 5
12 July 2020
17 July 2020
22 July 2020
27 July 2020

35TNM 28 September 2018 46°27′26′′N 27°42′52′′E 5
3 October 2018
8 October 2018
23 October 2018
18 October 2018

Figure 2. Examples of Landsat-8 and Sentinel-2 satellite time series. There are two time series
examples for Landsat-8 (a) and Sentinel-2 (b), respectively, with a linear stretch of 2% and a true color
synthesis.

2.2. Interpolation Model

The objective of satellite image sequencing is to utilize two time-phase images, I0
and I1, to interpolate an image for a specific intermediate time phase t, thereby complet-
ing the satellite image sequence. We assume that the two time phases are 0 and 1, and
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the interpolated result is denoted as Ît. The interpolation model can be represented as
Equation (1):

Ît = f (I0, I1, t), (1)

where t ∈ [0, 1] signifies the time interval between the intermediate time phase to be inter-
polated and time phase 0. f (x) symbolizes the non-linear relationship between I0, I1, t, and
Ît. In this study, the non-linear relationship f (x) is approximated using a neural network.

2.3. Architecture of the Model

The network architecture in this paper is depicted in Figure 3, and comprises two
main components: an encoder and a decoder. The network accepts images from the two
time phases (I0, I1) as well as the intermediate phase T(t) as inputs, which aligns with
Equation (1). It generates an image of the intermediate time phase Ît by collaboratively and
interactively enhancing the images from the two time phases. It learns the intermediate
optical flow field and intermediate features across various scales during this process. The
following is a detailed explanation of this network.

Figure 3. The architecture of the Multi-scale Optical Flow-Intermediate Feature joint Network. The
network begins with the encoder ε, which extracts the four-scale features from the two time-phase
images, I0 and I1. Subsequently, the intermediate optical flows and features are collectively refined
by four decoders Dk(k ∈ {1, 2, 3, 4}) in an ascending order of scale. The time phase T is input into
the decoder D4. The decoder D1 outputs the bidirectional optical flows, a multi-channel occlusion
information mask, and multi-channel detail compensation information residuals, all of which are
equal in size to the original image. Finally, these outputs are synthesized with the images from the
preceding and subsequent time phases to generate the image at the intermediate time phase T.
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2.3.1. Extraction of Feature Pyramids

The encoder ε contains four sub-encoders εk(k ∈ {1, 2, 3, 4}). Each sub-encoder has
two convolutional layers and one activation layer. The activation function makes use of the
PReLU [33]. The input data are two time phase images, I0, I1, in a satellite image sequence,
and the purpose is to extract the feature pyramid ϕ0,ϕ1 containing four scales from the two
images. The encoder can be expressed as Equation (2):

ε([I0, I1]) = [ϕ1
0, ϕ1

1 ], [ϕ
2
0, ϕ2

1 ], [ϕ
3
0, ϕ3

1 ], [ϕ
4
0, ϕ4

1 ], (2)

where I0 and I1 are instances of the parameters in Equation (1). ϕk
0,ϕk

1(k ∈ {1, 2, 3, 4}) is the
four-scale features extracted from I0 and I1.

2.3.2. Joint Refinement of Optical Flow-Intermediate Feature

The decoder D is composed of four sub-decoders, Dk(k ∈ {1, 2, 3, 4}). These sub-
decoders iteratively refine the intermediate optical flow by backward warping the pyra-
midal features ϕk

0 and ϕk
1 through the intermediate optical flow fields Fk

t→0 and Fk
t→1. Each

sub-decoder also outputs a higher-level reconstructed intermediate feature ϕ̂k
t , which

compensates for the missing image information caused by the backward warping. The
subsequent sub-decoder generates an improved intermediate optical flow, Fk

t→0 and Fk
t→1,

which can be more accurately pixel-aligned to produce better ϕ̃k
0 and ϕ̃k

1. This, in turn, en-
hances the reconstruction of intermediate features at higher levels. Therefore, this decoder
facilitates the simultaneous enhancement of both the intermediate optical flow and the
intermediate features, contributing to a more accurate and detailed interpolation of satellite
image sequences. The decoders D4 and D1 are expressed as Equations (3) and (4). The
decoders D2 and D3 are expressed as Equation (5):[

F3
t→0, F3

t→1, ϕ̂3
t
]
= D4([ϕ4

0, ϕ4
1, T]) (3)

[Ft→0, Ft→1, M, R] = D1
([

F1
t→0, F1

t→1, ϕ̂1
t , ϕ̃1

0, ϕ̃1
1

])
(4)[

Fk−1
t→0, Fk−1

t→1, ϕ̂k−1
t

]
= Dk

([
Fk

t→0, Fk
t→1, ϕ̂k

t , ϕ̃k
0, ϕ̃k

1

])
k ∈ {2, 3}, (5)

where T represents the single-channel data of size 1 × H × W, which is extended by the
intermediate time phase t as defined in Equation (1). The warped images ϕ̃k

0 and ϕ̃k
1 are

generated by warping the pyramidal features ϕk
0 and ϕk

1 backward through the intermediate
optical flow. This process is governed by Equations (6) and (7):

ϕ̃k
0 = w(ϕk

0, Fk
t→0), k ∈ {1, 2, 3} (6)

ϕ̃k
1 = w(ϕk

1, Fk
t→1), k ∈ {1, 2, 3}, (7)

where w means backward warping.

2.3.3. Synthesis of Intermediate Images

The rear stage encoder D1 outputs the intermediate bidirectional optical flow fields
Ft→0 and Ft→1, a mask M, and a residual R. All of these outputs are the same size as the
input image. The mask M is generated by passing through a sigmoid layer, and its values
range from 0 to 1. This mask contains the extracted bidirectional occlusion information.
The residual R compensates for details such as the presence of regions in the target image
that have been occluded in the images from the preceding and subsequent time phases,
as well as the contours of objects. Both the mask M and the residual R have the same
number of channels as the input image. In summary, the final synthesis of the image at the
intermediate time phase t is given by Equation (8):

Ît = M ⊙ Ĩ0 + (1 − M)⊙ Ĩ1 + R, (8)
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where Ĩ0 = w(I0, Ft→0), Ĩ1 = w(I1, Ft→1), ⊙ denotes element-wise multiplication.

2.3.4. Details of the Model

The feature pyramid extracted from the image by the encoder comprises four scales
with 32, 48, 72, and 96 channels, respectively. Each sub-decoder in the network contains a
convolutional layer, a residual block, and an inverse convolutional layer, all followed by a
PReLU activation function.

The structure of the residual block is shown in Figure 4. It includes five convolutional
layers. Convolutional layers 2 and 4 update only a subset of the channels of the output
feature maps from the previous convolutional layer. These updated outputs are then spliced
with the remaining channel feature maps before being input into convolutional layers 3
and 5, respectively. This process is performed in the channel dimension.

Figure 4. Detailed structure of the residual block used by each sub-decoder. The residual block
(b) uses a residual connection (a) as a whole. There are five convolution layers within the residual
block, which uses an interleaved convolution (c) at convolution layer 2 and convolution layer 4.

The residual block adopts the concept of residual connections [34]. The feature maps
output from the convolutional layer 5 are added to the input feature maps of the residual
block. The final output of the residual block is obtained through the PReLU activation
function. This operation enhances the network’s ability to transmit information, preventing
issues such as gradient explosion and gradient disappearance, which could halt information
transmission. As a result, the network’s characterization ability is improved, and network
degradation is prevented. The residual block also incorporates the concept of interleaved
convolution [35]. In this approach, convolutional layers 2 and 4 convolve only some
of the channels of the output results of convolutional layers 1 and 3, respectively. The
convolved results are then spliced with the channels not involved in this convolution. This
operation reduces the number of parameters in the convolution kernel and the amount of
computation, thereby enhancing the efficiency and speed of the model.

2.4. Loss Functions

The loss function we use is a linear combination of the reconstruction loss Lr, the
feature space geometric consistency loss Lg, and the spectral loss Lsam, which is expressed
as Equation (9):

L = λrLr + λgLg + λsamLsam. (9)
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We set the weight of each loss function as λr = 0.1, λg = 0.01, λsam = 0.5.

2.4.1. Reconstruction Loss

The reconstruction loss Lr shows the pixel difference between the real image It and
the interpolated result Ît; the reconstruction loss formula used in this paper is shown in
Equation (10):

Lr = ρ( Ît − It) + Lcen( Ît, It), (10)

where ρ(x) = (x2 + ϵ2)α with α = 0.5, ϵ = 10−3 is the Charbonnier loss [36], which is a
more robust loss function than the Mean Square Error (MSE), avoids the oversensitivity of
MSE and can better handle outliers, while Lcen is the census loss, which calculates the soft
Hamming distance between census-transformed [37] image patches of size 7 × 7.

2.4.2. Feature Space Geometric Consistency Loss

The pyramid features ϕk
0, ϕk

1(k ∈ {1, 2, 3, 4}), extracted by the encoder ϵ, are in a sense
equivalent to the intermediate feature ϕ̂k

t reconstructed by the decoder Dk+1. Inspired by
the local geometric alignment property of the census transform, the present experiments
first extract the features ϕk

t from the real image It using the same parameter of the common
encoder ε. Then, the census loss Lcen [38] is extended to the multi-scale feature space for
asymptotic supervision, and the soft Hamming distance between the 3 × 3 blocks of feature
maps corresponding to the census transform is computed based on the channel dimension.
This loss can be expressed as Equation (11):

Lg =
3

∑
k=1

Lcen(ϕ̂
k
t , ϕk

t ). (11)

The pyramidal features extracted by the encoder ϵ contain low-level structural infor-
mation that is useful for frame synthesis, and the addition of this loss function regularizes
the reconstructed intermediate features to maintain a better geometric layout.

2.4.3. Spectral Loss

The spectral loss Lsam quantifies the degree of spectral similarity between images by
calculating the cosine of the spectral vectors between the interpolated result Ît and the real
image It, which is calculated as Equation (12):

Lsam =
1

NHW

N

∑
n=1

H

∑
i=1

W

∑
j=1

∣∣∣∣∣ ⟨ŷn,i,j, yn,i,j⟩
|ŷn,i,j|2|yn,i,j|2

− 1

∣∣∣∣∣, (12)

where ⟨·, ·⟩ denotes the inner product, |·|2 is the Euclidean norm, N, H, and W are the
number of channels, height, and width of the image, respectively, and ŷn,i,j, yn,i,j are the
spectral vectors of the interpolated resultant image and the real image at pixel point
(i, j), respectively.

3. Experiments and Results
3.1. Experiments Strategy

As shown in Tables 3 and 4, we set up four sets of experiments for the Landsat-8 and
Sentinel-2 satellite datasets, respectively. Each set of experimental data contains two time
series for the Landsat-8 satellite, and there is one time series for the Sentinel-2 satellite,
and each time series has 5 time-phase images. In each group of experiments, the image of
phase 1 and phase 5, the intermediate time phase t(t ∈ {0.25, 0.5, 0.75}) and the image of
the intermediate time phase t are used as network inputs to train the network and estimate
the intermediate images of phase 2, phase 3, and phase 4. The output results are compared
with the reference images. The detailed training process is shown in Algorithm 1.
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Table 3. Setup of multi-temporal image interpolation experiments. We set up four sets of experiments
using the Landsat-8 satellite dataset, and in each set of experiments the inputs are Input Image 1 and
Input Image 2, as well as the intermediate time phase t (Input Time Phase). The interpolated results
are compared with the Reference Image (the real image).

Experiment ID Path,Row Input Image 1 Input Image 2 Reference Image Input Time Phase

1

91,84 20 January 2019 24 March 2019
5 February 2019 0.25

21 February 2019 0.5
9 March 2019 0.75

92,85 20 January 2022 24 March 2022
5 February 2022 0.25

21 February 2022 0.5
9 March 2022 0.75

2

99,73 31 March 2018 3 June 2018
16 April 2018 0.25
2 May 2018 0.5

18 May 2018 0.75

99,74 31 March 2018 3 June 2018
16 April 2018 0.25
2 May 2018 0.5

18 May 2018 0.75

3

91,78 21 June 2022 24 August 2022
7 July 2022 0.25

23 July 2022 0.5
8 August 2022 0.75

91,79 21 June 2022 24 August 2022
7 July 2022 0.25

23 July 2022 0.5
8 August 2022 0.75

4

99,73 7 September 2018 1 November 2018
23 September 2018 0.25

9 October 2018 0.5
25 October 2018 0.75

99,74 7 September 2018 1 November 2018
23 September 2018 0.25

9 October 2018 0.5
25 October 2018 0.75

Table 4. Setup of multi-temporal image interpolation experiments. We set up four sets of experiments
using the Sentinel-2 satellite dataset, and in each set of experiments the inputs are Input Image 1 and
Input Image 2, as well as the intermediate time phase t (Input Time Phase). The interpolated results
are compared with the Reference Image (the real image).

Experiment ID Tile ID Input Image 1 Input Image 2 Reference Image Input Time Phase

1 18STF 11 January 2019 31 January 2019
16 January 2019 0.25
21 January 2019 0.5
26 January 2019 0.75

2 31TDN 26 March 2020 15 April 2020
31 March 2020 0.25
5 April 2020 0.5
10 April 2020 0.75

3 30TXT 7 July 2020 27 July 2020
12 July 2020 0.25
17 July 2020 0.5
22 July 2020 0.75

4 35TNM 28 September 2018 18 October 2018
3 October 2018 0.25
8 October 2018 0.5
13 October 2018 0.75
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Algorithm 1 Training process.

// For each set of experiments
for each i ∈ [1, 8] do

Input Image 1: Image of the first time phase Ii
0

Input Image 2: Image of the last time phase Ii
1

Input Time Phase: the intermediate time phase t(t ∈ {0.25, 0.5, 0.75})
Input Reference Image: Image of the intermediate time phase Ii

t
train(Ii

0, Ii
1, Ii

t)
weight initialized randomly
Îi
t = f (Ii

0, Ii
1, t)

Li = λrLi
r(Ii

t , Îi
t) + λgLi

g(Ii
t , Îi

t) + λsamLi
sam(Ii

t , Îi
t)

weight save as Wi
end for

Due to the limited computer memory, the images need to be trained in blocks. Each
scene image is divided into a collection of blocks with a size of 256 × 256. Among them,
there are 400 blocks per image for Landsat-8 data and 1764 blocks per image for Sentinel-2
data. The division strategy of the two satellite datasets is shown in Figure 5. The red box is
the validation sample, the blue box is the testing sample, and the others are the training
samples. The ratio of the three types of samples is 1:1:8. In addition, in order to make the
network training more stable and accelerate convergence, the data need to be preprocessed
before entering the network training. The range of Landsat-8 data and Sentinel-2 data used
in this experiment is [0, 65,535], so the input data are normalized as follows:

x′ =
x − min(x)

max(x)− min(x)
, (13)

where min(x) is 0 and max(x) is 65,535.
In addition, the experiment also sets up a data augmentation strategy: randomly flip

horizontally or vertically and randomly reverse the image sequence to improve the robust-
ness and generalization ability of the model. In order to improve network convergence, we
train the network using the adaptive moment estimation (Adam) [39] optimization method
and a learning rate decay strategy with cosine annealing [40].

This experiment is implemented using Python language coding and uses the PyTorch
deep learning library to implement the proposed network model. An NVIDIA GeForce
RTX 3060Ti GPU is used for training.

Figure 5. Distribution of training, testing, and validation samples in our experiment: (a) Landsat-8
and (b) Sentinel-2 images; areas inside blue and red boxes and the remainder of the images show the
distribution of testing, validation, and training samples, and training set:validation set:test set = 8:1:1.

3.2. Evaluation Indicator

We evaluate the experimental results using three metrics: Root Mean Square Error
(RMSE) [41], Structural Similarity (SSIM) [42], and Peak Signal-to-Noise Ratio (PSNR) [42].
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RMSE reflects the change in pixel error between the interpolated resultant image Ît
and the true image It, which is calculated as in Equation (14):

RMSE =

√
1

W · H ∑
(∥∥ Ît − It

∥∥
2

)
, (14)

where W and H are the width and height of the image. The range of the RMSE is related
to the size of the pixel values of the image, and the smaller the value, the closer the
interpolated resultant image is to the real image.

SSIM is based on the visual characteristics of the human eye and measures the similar-
ity between the interpolated image and the reference image in three respects—luminance
L(X, Y), contrast C(X, Y), and structure S(X, Y)—which is calculated as in Equation (15):

SSIM(X, Y) = L(X, Y) · C(X, Y) · S(X, Y), (15)

where L(X, Y) = 2uXuY+C1
u2

X+u2
Y+C1

, C(X, Y) = 2σXσY+C2
σ2

X+σ2
Y+C2

, S(X, Y) = σXY+C3
σXσY+C3

, µX , σX are the mean

and standard deviation of the experimental result X; µY, σY are the mean and standard
deviation of the reference image Y, respectively; σXY is the correlation coefficient be-
tween the experimental result X and the reference image Y. C1, C2, C3 are constants to
prevent the denominator from becoming zero, usually set as C1 = (K1 · L)2, C2 = (K2 · L)2,
C3 = C2

2 , K1 = 0.01, K2 = 0.03, L = 255. The value of SSIM ranges from 0 to 1, and the
larger the value, the more similar the interpolated image and the reference image are, and
vice versa.

PSNR is the ratio between the maximum possible power of a signal and the power of
the noise that affects the fidelity of its representation, measured in dB, which is calculated
as in Equation (16):

PSNR = 10 · log10

(
MAX2

I
MSE

)
, (16)

where MAXI is the maximum value of the pixel color, which is 255 for 8-bit images.
MSE = 1

W·H ∑
(∥∥ Ît − It

∥∥
2

)
is the MSE between the interpolated image and the reference

image. The higher the PSNR, the better the interpolation result.

3.3. Results

We tested the trained model on two satellite datasets, Landsat-8 and Sentinel-2, and
evaluated the results both visually and quantitatively. Due to the large number of experi-
ments, we selected one experiment from each of the two satellite experiments, Experiment
2 for Landsat-8 and Experiment 2 for Sentinel-2, and presented the visual evaluation of
the results of these two experiments. At the same time, we presented the quantitative
evaluation results of all experiments in the comparative experiments section.

3.3.1. Evaluation of Pixel Error

We conducted pixel error analysis on the interpolation results. We linearly mapped
the pixel value range from [0, 65,535] to [0, 255]. Subsequently, we computed the pixel
error between the interpolated result and the actual image. A pixel error range of [0, 10]
indicates low error, (10, 80] indicates medium error, and (80, 255] indicates high error.

The visual effect maps of the actual images from the three time phases of Experiment
2 for the Landsat-8 and Sentinel-2 test datasets, the visual effect maps of the interpolated
results, and the pixel error maps are depicted in Figures 6 and 7. These figures illustrate that
the spatial features of the test results from the three time phases of the proposed method
across different datasets align closely with those of the corresponding actual images. Most
of the pixel errors are concentrated in the range of 0 to 10, with a minor proportion of pixel
errors falling in the range of 10 to 80, and very few pixel errors in the range of 80 to 255.
This outcome underscores the robust generalization capability of our method.
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Figure 6. Pixel error map for Experiment 2 of multi-temporal sequence image interpolation for the
Landsat-8 satellite dataset. (a,b) are the results of two time series from Experiment 2 of the Landsat-8
satellite dataset. Time phase 1, 2 and 3 represent the experimental results for the middle three time
phases t = 0.25, 0.50, and 0.75. It, Ît, and It − Ît represent the real image, the interpolation result, and
the pixel error between the two. In the pixel error map, grey, green, and blue represent the absolute
value of the pixel difference in the ranges 0–10, 10–80, and 80–255, with larger values representing
larger errors.

Figure 7. Pixel error map for Experiment 2 of multi-temporal sequence image interpolation for the
Sentinel-2 satellite dataset. Time phases 1, 2, and 3 represent the experimental results for the middle
three time phases t = 0.25, 0.50, and 0.75. It, Ît, and It − Ît represent the real image, the interpolation
result, and the pixel error between the two. In the pixel error map, grey, green, and blue represent
the absolute value of the pixel difference in the ranges 0–10, 10–80, and 80–255, with larger values
representing larger errors.
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3.3.2. Evaluation of Point Spectrum

To showcase the predictive capability of our method with respect to feature spectra,
we conducted tests on point spectra. Specifically, to mitigate the influence of chance, we
randomly selected 100 test points from each of the two test datasets. We then computed the
average of these points in each spectral channel for comparison with the actual values.

The point spectral maps of the results from Experiment 2 for the Landsat-8 and
Sentinel-2 test datasets are depicted in Figures 8 and 9. These maps demonstrate that the
point spectral features of our method’s interpolated results across the three time phases
in different datasets align closely with those of the corresponding actual images. The
interpolation results are within a range of 4 from the actual image in each spectral channel
for the Landsat-8 test dataset and within 0.1 for the Sentinel-2 test dataset. This outcome
indirectly validates the effectiveness of our method in applying the spectral loss function.

Figure 8. Spectral curves map at 100 random points for Experiment 2 of multi-temporal sequence
image interpolation for the Landsat-8 satellite dataset. (a,b) are the results of two time series from
Experiment 2 of the Landsat-8 satellite dataset. Time phases 1, 2, and 3 represent the experimental
results for the middle three time phases t = 0.25, 0.50, and 0.75. For each time phase image, we plotted
the average of the spectra of the real image and the interpolated result at 100 random points (True
and Ours), and the absolute value of the difference between the two spectra.

Figure 9. Spectral curves map at 100 random points for Experiment 2 of multi-temporal sequence
image interpolation for the Sentinel-2 satellite dataset. Time phases 1, 2, and 3 represent the experi-
mental results for the middle three time phases t = 0.25, 0.50, and 0.75. For each time phase image, we
plotted the average of the spectra of the real image and the interpolated result at 100 random points
(True and Ours), and the absolute value of the difference between the two spectra.
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3.3.3. Comparative Experiments

To substantiate the superior performance of our method over existing approaches,
we selected the linear method (Linear) and three deep learning methods—Unet [31], Su-
per SloMo [30], and IFRNet [32] for comparative analysis. The Linear method is fre-
quently employed as a baseline in comparative tests of sequential image interpolation,
while the other three methods have recently demonstrated good performance in sequence
image interpolation.

Tables 5 and 6 present the quantitative evaluations of the five methods across three
metrics—RMSE, PSNR, and SSIM—for the three time phases. On the test datasets of Landsat-
8 and Sentinel-2, our method outperforms others in terms of indicator values. Specifically,
our method achieves a 7.54% lower RMSE compared to other approaches. Furthermore, only
our method surpasses the performance of IFRNet on the Landsat-8 dataset. Similarly, on the
Sentinel-2 dataset, only our method outperforms IFRNet and Unet.

The pixel error maps of the comparative experiments from Experiment 2 on the
Landsat-8 satellite dataset are depicted in Figures 10 and 11. These figures reveal that the
pixel error between our method’s interpolation results and the actual image across all three
time phases is lower than that of the other four methods on the test datasets. Both the
Linear and Super SloMo methods exhibit substantial pixel errors. Moreover, other methods
display large errors in image areas with extensive vegetation coverage, as these areas
undergo more changes over time. In contrast, our method yields lower pixel errors than
other methods due to the incorporation of optical flow learning and prediction, enabling
our method to accurately capture object changes and thus precisely predict pixel positions.

Table 5. Quantitative comparison of multi-temporal sequential image interpolation results on the
Landsat-8 dataset. For each indicator, the results in bold are the best results and those marked with *
are the second best results. Time phases 1, 2, and 3 represent the experimental results for the middle
three time phases t = 0.25, 0.50, and 0.75. Arrows ↓ and ↑ stand for smaller is better and bigger
is better.

Experiment
Method

Time Phase 1 Time Phase 2 Time Phase 3

ID RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑

1

Linear 9.357 29.154 0.957 9.225 29.330 0.958 9.106 29.513 0.959
Unet [31] 10.997 27.980 0.942 10.074 28.769 0.949 9.823 29.028 0.955
Super
SloMo [30] 8.996 29.550 0.961 8.813 29.766 0.963 8.584 30.102 0.966

IFRNet [32] 8.140 * 30.197 * 0.971 * 7.892 * 30.367 * 0.977 7.642 * 30.734 * 0.975 *
Ours 7.860 30.383 0.972 7.216 31.359 0.972 * 7.069 31.736 0.978

2

Linear 8.448 30.091 0.967 8.395 30.224 0.972 6.528 32.299 0.979
Unet [31] 10.763 28.091 0.947 9.830 28.948 0.954 9.579 29.070 0.957
Super
SloMo [30] 8.178 30.329 0.971 8.372 30.168 0.969 6.216 32.703 0.980 *

IFRNet [32] 7.384 * 31.173 * 0.977 * 6.900 * 31.912 * 0.979 * 5.696 * 33.434 * 0.984
Ours 6.770 31.940 0.980 6.275 32.732 0.981 5.532 33.752 0.984

3

Linear 8.588 30.038 0.965 8.734 29.804 0.963 7.192 31.500 0.977
Unet [31] 9.304 29.228 0.958 9.254 29.298 0.958 8.862 29.740 0.961
Super
SloMo [30] 7.841 30.401 0.974 7.800 30.446 0.975 6.928 31.738 0.979

IFRNet [32] 6.884 * 31.931 * 0.979 * 7.077 * 31.655 * 0.978 * 6.196 * 33.150 * 0.982 *
Ours 6.154 33.375 0.983 6.268 33.112 0.981 5.648 33.453 0.984

4

Linear 8.618 29.858 0.964 8.976 29.674 0.961 8.509 30.163 0.967
Unet [31] 9.276 29.229 0.958 9.344 29.192 0.957 9.179 29.458 0.959
Super
SloMo [30] 7.130 * 30.981 0.976 7.396 31.111 0.976 * 7.998 30.279 0.971

IFRNet [32] 7.130 * 31.545 * 0.978 * 6.910 * 31.910 * 0.979 7.127 * 31.615 * 0.978 *
Ours 6.377 32.436 0.980 6.889 31.917 0.979 6.210 33.119 0.980
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Table 6. Quantitative comparison of multi-temporal sequential image interpolation results on the
Sentinel-2 dataset. For each indicator, the results in bold are the best results and those marked with *
are the second best results. Time phases 1, 2, and 3 represent the experimental results for the middle
three time phases t = 0.25, 0.50, and 0.75. Arrows ↓ and ↑ stand for smaller is better and bigger
is better.

Experiment Method
Time Phase 1 Time Phase 2 Time Phase 3

ID RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑

1

Linear 11.029 28.083 0.959 12.031 27.389 0.942 11.501 27.633 0.944
Unet [31] 9.211 29.751 0.963 9.308 29.745 0.962 10.167 28.557 0.961 *
Super
SloMo [30] 10.898 28.234 0.960 11.109 27.998 0.959 10.485 28.524 0.961 *

IFRNet [32] 8.368 * 30.754 * 0.970 * 9.969 28.949 0.961 * 9.472 * 29.709 * 0.961 *
Ours 7.486 31.411 0.975 9.821 * 29.558 * 0.960 9.140 29.820 0.965

2

Linear 11.961 27.458 0.943 12.924 26.499 0.940 11.135 27.765 0.959
Unet [31] 9.575 29.948 * 0.959 9.124 29.854 0.966 * 7.888 * 31.104 * 0.973 *
Super
SloMo [30] 11.276 27.996 0.948 10.157 28.816 0.960 10.313 28.536 0.961

IFRNet [32] 9.412 * 29.733 0.962 * 9.028 * 29.980 * 0.966 * 8.821 29.858 0.970
Ours 8.597 30.856 0.967 8.471 30.664 0.970 7.237 31.873 0.978

3

Linear 11.295 27.914 0.948 11.822 27.466 0.943 14.500 25.598 0.932
Unet [31] 10.126 29.110 0.960 10.160 28.653 0.960 * 12.852 26.000 0.940 *
Super
SloMo [30] 10.868 28.241 0.960 10.826 28.323 0.960 * 13.053 26.403 0.936

IFRNet [32] 9.230 * 29.747 * 0.963 * 9.670 * 29.707 * 0.959 11.911 * 27.460 * 0.943
Ours 8.962 30.123 0.967 9.194 29.787 0.964 11.809 27.501 0.943

4

Linear 11.440 27.687 0.946 13.121 26.249 0.936 11.392 27.835 0.947
Unet [31] 9.417 29.721 * 0.962 11.158 28.170 * 0.960 * 8.352 30.531 0.968
Super
SloMo [30] 10.111 29.207 0.960 12.191 26.936 0.941 9.771 29.690 0.959

IFRNet [32] 9.348 * 29.679 0.963 * 10.933 * 28.149 0.960 * 8.282 * 30.791 * 0.971
Ours 8.010 30.901 0.970 9.126 29.853 0.966 7.999 30.903 0.970 *

Figure 10. Cont.
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Figure 10. Pixel error map for comparative experiments of Experiment 2 for multi-temporal sequence
image interpolation on the Landsat-8 satellite dataset. (A,B) are the results of two time series from
Experiment 2 of the Landsat-8 satellite dataset. Time phases 1, 2, and 3 represent the experimental
results for the middle three time phases t = 0.25, 0.50, and 0.75. In the pixel error map, grey, green,
and blue represent the absolute value of the pixel difference in the ranges 0–10, 10–80, and 80–255,
with larger values representing larger errors.

Figure 11. Pixel error map for comparative experiments of Experiment 2 for multi-temporal sequence
image interpolation on the Sentinel-2 satellite dataset. Time phases 1, 2, and 3 represent the experi-
mental results for the middle three time phases t = 0.25, 0.50, and 0.75. In the pixel error map, grey,
green, and blue represent the absolute value of the pixel difference in the ranges 0–10, 10–80, and
80–255, with larger values representing larger errors.
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Similarly, we computed the interpolated results of these five methods in comparison
with the actual images based on the spectral values at 100 random points from Experiment
2 on the Landsat-8 satellite dataset. The results are shown in Figures 12 and 13. They
indicate that, in the test datasets of two time series datasets, the spectral features of our
method’s interpolated results across the three time phases at the specified point are closer
to the actual spectral features than those of the other four methods.

Figure 12. Spectral curves map at 100 random points for comparative experiments of Experiment
2 for multi-temporal sequence image interpolation on the Landsat-8 satellite dataset. (a,b) are the
results of two time series from Experiment 2 of the Landsat-8 satellite dataset. For each time phase
image, we plotted the average of the spectra of the real image and the interpolated results of the five
methods at 100 random points.
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Figure 13. Spectral curves map at 100 random points for comparative experiments of Experiment 2
for multi-temporal sequence image interpolation on the Sentinel-2 satellite dataset. For each time
phase image, we plotted the average of the spectra of the real image and the interpolated results of
the five methods at 100 random points.
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4. Discussion

To illustrate the efficacy of incorporating optical flow learning in our deep learning
method, we selected a 256 × 256 block from each of the two test datasets to display
the intermediate three temporal optical flow and interpolation results. As depicted in
Figures 14 and 15, our model accurately predicted the intermediate optical flow by jointly
refining the intermediate optical flow and the intermediate features at multiple scales.
The bi-directional optical flows have the capability to capture the changes in object pixels
between the images from two input time phases. Moreover, our method predicts images
that are visually indistinguishable from actual images, owing to the multi-channel occlusion
information mask and the multi-channel detail compensation information residuals.

Figure 14. Interpolation results and optical flow visualization of a Landsat-8 image block. The first
row displays the images of the previous time phase and the next time phase; the second to third rows
are the results of the three intermediate time phases of the images of the previous time phase and the
next time phase.



Remote Sens. 2024, 16, 426 21 of 24

Figure 15. Interpolation results and optical flow visualization of a Sentinel-2 image block. The first
row displays the images of the previous time phase and the next time phase; the second to third rows
are the results of the three intermediate time phases of the images of the previous time phase and the
next time phase.

Furthermore, we provide a detailed analysis of why our method surpasses the other
four techniques. The Linear method focuses solely on the pixel values to be interpolated in
the images from the preceding and subsequent time phases, without taking into account
the spatial and spectral features of the images. Unet considers the spatial features of the
images from the preceding and subsequent time phases, but neglects the spectral features
and the pixel correspondences in the temporal images (optical flow). Both Super SloMo and
IFRNet take into account the spatial features of the images and the pixel correspondences
in the temporal images. However, Super SloMo separates the refinement of the optical
and spatial features into two phases, resulting in a disconnection between the two. IFRNet
performs a joint refinement of the optical flow and the spatial features, but its interpolation
effect is superior for RGB images and inferior for multispectral satellite images. In contrast,
our proposed method excels at handling multispectral satellite imagery by extending the
number of detail-compensated residual channels to match the number of spectra and
implementing a spectral loss function to enhance the supervision of spectral learning.



Remote Sens. 2024, 16, 426 22 of 24

5. Conclusions

Inspired by video frame interpolation, this paper proposed a method for satellite
sequence image interpolation. This method leverages a multi-layer convolutional network
to learn the intermediate optical flow and intermediate features of the image. It predicts
the precise positions of pixels and complex spatial features, ultimately yielding a highly
accurate image for the intermediate time phase. The key conclusions of this paper can be
summarized as follows:

(1) Our proposed method predicts images for intermediate time phases based on optical
flow and intermediate features. It excels at capturing the intermediate optical flow
and integrating the intermediate features to produce superior interpolated images.
Our research offers a novel paradigm for interpolating satellite image sequences of
complex objects.

(2) Thanks to the multi-channel mask structure of occlusion information and the spectral
loss function in our model, our approach yields lower interpolation errors across all
four seasons: spring, summer, autumn, and winter. Specifically, our method’s results
on the test dataset exhibit a 7.54% RMSE compared to other approaches.

In future work, we aim to explore the utilization of information from images in
multiple time phases of a time series to guide the generation of images in intermediate
temporal phases, rather than relying solely on information from the images of the preceding
and subsequent time phases of the image to be interpolated.
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