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Abstract: Due to the complex imaging mechanism of SAR images and the lack of multi-angle and
multi-parameter real scene SAR target data, the generalization performance of existing deep-learning-
based synthetic aperture radar (SAR) image target detection methods are extremely limited. In this
paper, we propose an unsupervised domain-adaptive SAR ship detection method based on cross-
domain feature interaction and data contribution balance. First, we designed a new cross-domain
image generation module called CycleGAN-SCA to narrow the gap between the source domain and
the target domain. Second, to alleviate the influence of complex backgrounds on ship detection, a
new backbone using a self-attention mechanism to tap the potential of feature representation was
designed. Furthermore, aiming at the problems of low resolution, few features and easy information
loss of small ships, a new lightweight feature fusion and feature enhancement neck was designed.
Finally, to balance the influence of different quality samples on the model, a simple and efficient
E

1
2 IoU Loss was constructed. Experimental results based on a self-built large-scale optical-SAR

cross-domain target detection dataset show that compared with existing cross-domain methods, our
method achieved optimal performance, with the mAP reaching 68.54%. Furthermore, our method
achieved a 6.27% improvement compared to the baseline, even with only 5% of the target domain
labeled data.

Keywords: deep learning; SAR; object detection; unsupervised domain adaptation

1. Introduction

Synthetic aperture radar (SAR) is an active microwave imaging radar that can ac-
quire high-resolution radar images comparable to optical images, even in extremely harsh
weather conditions. It offers the advantage of all-day and all-weather earth observation, as
it is not affected by light or climatic conditions. In recent years, SAR imaging technology
has advanced rapidly, leading to improved SAR image resolution and a greater amount
of data. Consequently, object detection technology for SAR images has emerged as a
prominent area of research. Its application potential extends beyond civil sectors such as
agriculture, forestry, water management, geology, and natural disaster assessment, as it
also holds significant research value in the military domain. Notably, ship detection in SAR
images has garnered growing interest from both domestic and international researchers.

Target detection is a basic task in SAR image interpretation. Due to the complex imag-
ing mechanism of SAR images, the target information in SAR images is mainly reflected
in the scattering point composition, which leads to the challenge of SAR image target
detection. Before the rise of deep learning algorithms, the target detection of SAR images
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by researchers could be roughly divided into structure-based methods [1–3], grayscale
feature-based methods [4–6] and texture feature-based methods [7,8]. These traditional
detection methods can achieve good results in specific scenes, but when faced with complex
scenes and multiscale targets, the performance of traditional methods is greatly affected.

With the emergence of deep learning algorithms, convolutional neural networks
(CNNs) have gained significant attention and have been extensively utilized in various
domains, including remote sensing. In particular, CNNs are increasingly being applied
to ship detection tasks based on SAR images. Among the numerous approaches in this
field, YOLO [9] and Faster R-CNN [10] are highly regarded and widely adopted for their
superior accuracy, efficiency, and robustness. They are the representatives of the single-
stage detection algorithm and two-stage detection algorithm.

However, CNN-based detection methods heavily rely on a large quantity of labeled
SAR ship data, and in real application scenarios, due to the limitations of target orientation,
imaging geometry, ship shape and construction materials, multi-angle and multi-parameter
SAR ship data are seriously lacking. In recent years, although some organizations have
successively released AIR-SARShip [11], HRSID [12], SSDD [13] and other SAR ship target
detection datasets through the processing of SAR image data collected by SAR satellites
and aircraft, these datasets have a single scenario and a limited number of samples, which
cannot meet the needs of practical applications. Moreover, due to the unique imaging
mechanism and complex electromagnetic wave scattering mechanism of SAR images, the
ship targets in SAR images can only be interpreted by trained experts, making the creation
of large-scale SAR ship image datasets a costly and time-consuming endeavor. As a result,
SAR ship detection in SAR images still faces significant challenges.

In recent years, domain-adaptive approaches have evolved rapidly, which is a method
of migrating models from the source domain to the target domain by learning the differ-
ences between the two. It solves the problems of incomplete, unbalanced and inaccurate
labeling of datasets due to high data acquisition and labeling costs in practical applications
and improves the generalization ability and performance of the model. The proposal of
domain adaptation provides an idea for ship detection in SAR images. In real-world sce-
narios, it is difficult to acquire SAR ship data from multiple angles and parameters, and the
collection of SAR ship image data is expensive. To address this issue, incorporating optical
image data to assist SAR image target detection is beneficial. This not only leverages the
advantages of rich image information in optical data but also solves the problem of limited
SAR image data availability. In practical applications, the domain-adaptive method [14–17]
has achieved good results in the object detection task in the natural scene. Inspired by
the research of domain adaptation in natural scenes, research on domain-adaptive meth-
ods [18–23] has emerged in the field of remote sensing, but these methods are mainly
for classification and segmentation tasks, not object detection. In recent years, there has
also been initial progress in domain-adaptive object detection methods [24–29] for remote
sensing images, which are usually improved on the classical domain-adaptive methods
and do not explore the information characteristics of remote sensing images themselves.
Moreover, there is a significant difference in information between different remote sensing
images, especially between optical and SAR images. These large domain differences may
impact the performance of domain adaptation methods in SAR image object detection.
Furthermore, the special imaging mechanism of SAR images poses challenges for com-
monly used object detection algorithms, as they struggle to effectively extract features
from SAR targets. Consequently, it is difficult to meet the performance requirements for
ship detection in practical applications. Lastly, most existing domain-adaptive methods
are based on two-stage detectors. However, for resource-limited and time-critical SAR
image ship inspection tasks, we prefer to use single-stage detectors with high real-time
performance and accuracy.

In summary, it is valuable and meaningful to design a ship detection algorithm for
SAR images with high accuracy and high real-time performance from the optical field to
the SAR field. In this paper, a new domain-adaptive SAR ship detection method based on
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cross-domain feature interaction and data contribution balance is proposed, which realizes
the target detection task of SAR ship images by deeply mining and fusing global and local
feature information and combining new loss functions. We take the optical ship image
containing rich information as the source domain and the SAR ship image as the target
domain, where the source domain data are fully labeled and the target domain data are not
labeled. Then, we introduce a new cross-domain image generation module, CycleGAN-
SCA, to enable the generation of pseudo-images for both optical and SAR domains. Based
on the knowledge distillation framework, the mean teacher (MT) model [30] is used to
guide the teacher network to carry out the object detection task, realize the detection
of unlabeled target domain images and generate pseudo-labels, and achieve a relatively
unbiased update of the student network. Specifically, the contributions of our proposed
method in the field of remote sensing are as follows:

(1) A cross-domain image generation module from the optical to SAR domain (referred
to as CycleGAN-SCA) is designed. By making full use of the explicit information of
the target in the optical image, the module realizes unbiased feature generation from
the optical to SAR domain, which solves the problem of low performance caused by
insufficient annotation data in SAR image ship detection and significantly improves
the performance of SAR ship detection without increasing the annotation cost.

(2) To mitigate the influence of the complex background of SAR images on ship detection
and to ensure that the model can still perform well under the condition of high-density
targets, a new self-attention feature extraction backbone network (abbreviated as SFE)
is designed. It can effectively capture global information and rich context information,
which improves the performance of the model for SAR image ship detection tasks.

(3) Aiming at the problems of low resolution, few features, and easy information loss of
small-sized ships, a new lightweight feature fusion and feature enhancement neck
(referred to as LFE) is designed, and more efficient upsampling modules and context
aggregation modules are introduced to learn the global spatial content and improve
the detection effect of small-sized ship targets.

(4) A new simple and efficient E
1
2 IoU loss is constructed. E

1
2 IoU loss has the characteris-

tics of balancing the contribution of high-quality samples and low-quality samples
to loss, which strengthens the contribution of low-quality samples to loss, and is
more suitable for ship target detection in SAR images based on unsupervised domain-
adaptive detection.

2. Related Work

The existing SAR image ship detection methods are divided into traditional methods
and deep learning methods. The traditional method is mainly represented by the CFAR
proposed by Leng [31], and by combining the intensity and spatial distribution of SAR
images, a bilateral CFAR algorithm is proposed for ship detection in SAR images, which
effectively reduces the influence of SAR ambiguity and sea clutter. Although traditional
methods can play a good role in some specific mission scenarios, they still cannot meet
the accuracy and real-time requirements of ship target detection in a wider range of
scenarios. In order to solve this problem, deep-learning-based algorithms have become the
mainstream method in SAR image ship detection tasks due to their end-to-end advantages.
Among them, the two-stage detection algorithm is represented by Faster R-CNN, and Li [32]
proposed an improved ship detection method based on the Faster R-CNN for SAR images.
Liu [33] constructed a scale-independent SAR image proposal box generator to effectively
alleviate the multiscale problem. Fu [34] semantically balances multiple features at different
levels to help detectors learn more about small ships in complex scenarios. However, the
two-stage detection algorithm has a deep network structure, multiple parameters, and a
slow detection speed, which cannot meet the actual needs of SAR image ship detection.
Therefore, researchers began to turn their attention to single-stage detection algorithms
with faster detection speeds, represented by YOLO. Among them, Chang [35] proposed a
lightweight network model based on the improved YOLOv2 network. Zhou [36] improved



Remote Sens. 2024, 16, 420 4 of 21

the structure of the YOLOv3 [37] network and proposed a low-sample target detection
method for SAR images based on lightweight meta-learning. Feng [38] added position-
enhanced attention to the latest object detector YOLOX [39], redesigning the lightweight
multiscale backbone. However, these deep learning algorithms are supervised algorithms,
which means that a large amount of labeled training data needs to be prepared in advance,
but SAR image labeling is an expensive task, which greatly limits the development of SAR
image ship detection.

In recent years, domain-adaptive methods have developed rapidly, and object detec-
tion methods based on unsupervised domain adaptation have been widely used in many
fields where it is difficult to obtain a large amount of labeled data, but they are less applied
in SAR image object detection. In contrast, in natural scenes, there are already many object
detection methods based on unsupervised domain adaptation that have achieved good
results. For example, Chen [14] designed two domain-adaptive components at the image
level and instance level based on the Faster R-CNN model to reduce domain differences.
Chen [15] considered the contradiction between transferability and discriminability in
adversarial adaptation and proposed a hierarchical transferability calibration network.
Deng [16] proposed a cross-domain mean teacher model distillation method to maximize
the knowledge of the teacher model and solve the problem of model bias. In addition,
Zhou [17] integrated the single-stage detector YOLOv5 [40] with domain adaptation, which
improved the detection performance and generalization of the model.

The successful application of an unsupervised domain-adaptive target detection
method in natural scenes provides direction for SAR image ship detection. Recently,
there has been work on the application of domain-adaptive methods in the field of remote
sensing. Among them, Shi [24] reduced the domain difference from the image level and
the instance level and realized unsupervised domain adaptation between different SAR
datasets. Li [25] and Chen [26] realized unsupervised domain adaptation from optical
images to SAR images through adversarial training methods. Guo [27] used a small number
of labeled SAR image samples to learn transferable features by using instance-level adapta-
tion. Zhang [28] extracted and aligned the global structure and local instance information
between SAR and optical images, and a hierarchical domain-adaptive network for SAR
ship detection was constructed. Li [29] transferred knowledge from the optical domain
to the SAR domain for SAR ship detection from the three levels of pixels, features and
predictions. However, these methods do not make full use of the image information of the
SAR image itself, but only improve on the classical domain-adaptive method.

Therefore, according to the actual task requirements, we designed a domain-adaptive
SAR ship detection method based on cross-domain feature interaction and data contribution
balance. In this method, the labeled optical ship image is used as the source domain and
the unlabeled SAR ship image is used as the target domain, so as to realize the SAR image
ship detection without labeling of SAR data.

3. Methods

In this paper, a new domain-adaptive SAR ship detection method called CFD based on
cross-domain feature interaction and data contribution balance is proposed. CFD adopts the
MT model structure. The MT model was originally designed for semi-supervised learning
tasks; it has the ability to correct cross-domain differences and perceive target-related
features. We apply the MT model to SAR ship target detection with unsupervised domain
adaptation. In this section, we will detail the CFD algorithm flow. In the unsupervised
domain adaptation SAR ship detection task, we use the optical dataset as the source domain.

For Ns source domain images Is, N target bounding box B = {Bj|
N

j = 1
, Bj = (xj, yj, wj, hj)}

and their corresponding class labels C = {Cj|
N

j = 1
, Cj = 0}; define the source domain as

Ds = {
(

Is
i , Bs

i , Cs
i
)
| Ns
i = 1

}. The SAR dataset is used as the target domain; likewise, the target
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domain of Nt unlabeled images It is defined as Dt = {It
i |

Nt
i = 1

}. CycleGAN-SCA is used

to learn with invariant features through weak alignment in the global scene and generate
the class source image Is

f and class target image It
f . During the training process, (I s, Is

f

)
and (I t, It

f

)
are required to appear in pairs, enter into the MT model, and input (I s, Is

f , It)

into the student model and It
f into the teacher model, where the loss of source domain data

training is expressed as:

Ldet(Is) = Lbox(Bs; Is) + Lcls,obj(Cs; Is) (1)

Similarly, the loss at training time for class source domain data is expressed as:

Ldet

(
Is

f

)
= Lbox

(
Bs; Is

f

)
+ Lcls,obj

(
Cs; Is

f

)
(2)

In the MT model, both the student model and the teacher model have the same
structures, and we use SFE as the backbone network, which combines global information
and rich context information to explore the potential of feature representation through the
self-attention mechanism and extract ship target features more effectively. LFE includes an
upsampling module and a context aggregation module with larger receptive fields, which
improves the resolution of ship targets, enhances the semantic features of different scales,
and effectively enhances the detection performance of the model, especially for small ship
targets. Finally, the enhanced features are predicted by three detection layers at different
scales, and the parameters of the loss-updating model are calculated. The exponential
moving average (EMA) of the weight parameters of the student model is used to guide the
update of the weight parameters of the teacher model, assuming that the weight parameter
of the student model is Ps and the weight parameter of the teacher model is Pt. Pt

n are
updated after the Nth training batch:

Pt
n = αPt

n−1 + (1 − α)Ps
n (3)

where α is exponential decay, usually 0.99, 0.999, etc. In the distillation process, the teacher
model selects a high-probability bounding box as a pseudolabel by predicting the It

f of
the class target image, which guides the student model training, reduces the detection
loss of the student model on the target domain, and enhances the robustness of the model.
Distillation losses are expressed as:

Ldis

(
It, It

f

)
= Ldet

(
It; P

(
It

f

))
(4)

where P
(

It
f

)
is the pseudolabel generated by the teacher model for It

f prediction of the
class target image. Therefore, the total loss of the model is expressed as:

L = Ldet(Is) + Ldet

(
Is

f

)
+ Ldis

(
It, It

f

)
(5)

In the calculation of the regression box loss function, to accelerate the convergence of
the function, balance the contribution of different quality samples to the loss, and optimize
the impact of low-quality samples, a new regression box loss named E

1
2 IoU loss is designed.

Finally, we use the trained student model to reason about the target domain image.
The cross-domain image generation module CycleGAN-SCA, self-attention feature

extraction backbone network SFE, lightweight feature fusion and feature enhancement neck
LFE, and simple and efficient E

1
2 IoU loss are the main modules and strategies of the CFD

model, and Figure 1 shows the overall network structure of the model. In the following
sections, we will cover these four aspects in detail.
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Figure 1. Network structure of CFD.

3.1. Cross-Domain Image Generation Module: CycleGAN-SCA

In SAR ship detection based on unsupervised domain adaptation, there are significant
differences in texture, color, and appearance between the optical images in the source
domain and the SAR images in the target domain due to the disparity in imaging principles.
These domain differences greatly affect the model’s performance in domain-adaptive
tasks. To address this issue, we propose a cross-domain image generation module called
CycleGAN-SCA, based on the CycleGAN framework [41], to generate pseudo-images that
resemble both the source and target domains. CycleGAN is a cyclic image generation
module that learns the features between different domains and generates pseudo-images
with consistent content but different styles. In our approach, the style of the pseudo-image
from the source domain resembles that of the target domain, and vice versa.

In order to strengthen the network’s attention to local information, we add SCA atten-
tion mechanism to the discriminator of CycleGAN to improve the quality of the generated
pseudo-images. SCA is an improved version of the coordinate attention (CA) mecha-
nism [42]. Since the Sigmoid activation function in CA is prone to gradient disappearance
and gradient explosion, it is not suitable for deep neural networks. The ReLU activation
function has the problem of neuronal death, and the problem of gradient disappearance
may occur in the case of negative input. Especially in the small target detection task of
SAR ships, the gradient disappearance problem will cause that the gradient cannot be
effectively transmitted to the shallow network layer in the process of backpropagation, so
the shallow network cannot learn effective feature representation. Therefore, the Sigmoid
activation function in CA is replaced by the SiLU activation function. SiLU introduces
nonlinearity on the basis of Sigmoid function and has the advantages of both sigmoid
and ReLU. Approaching ReLU on the positive interval, while approaching sigmoid on the
negative interval, can better retain the information of the SAR ship images. The activation
function expressions for Sigmoid and SiLU are as follows:

Sigmoid(x) =
1

1 + e−x (6)

SiLU(x) = x ∗ Sigmoid(x) = x ∗ 1
1 + e−x (7)

The two activation functions are shown in Figure 2. We refer to the improved attention
mechanism as SCA, as shown in Figure 3. SCA not only accurately captures the location of
the region of interest but also effectively learns the relationships between channels. The
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capabilities of this model can enhance the discrimination of different regions in the image
and improve the quality of the resulting pseudo-images. At the same time, the high-quality
target domain pseudoimages share common labels with source domain samples, which
improves the diversity of trainable samples and enhances the generalization of the model.
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3.2. Self-Attention Feature Extraction Backbone Network: SFE

In the SAR image ship detection task, considering the special imaging mechanism of
SAR images, it is difficult for the traditional backbone network to extract discrete scattered
feature information in SAR images, and a new self-attention feature extraction backbone
network SFE is designed. SFE combines the advantages of local feature extraction of the
CNN network and transformer [43] global relationship modeling and deeply mines the
potential of image feature representation through global information and rich context
information, achieving more efficient extraction of ship target features.

In image processing tasks, by introducing position coding into the image, the trans-
former is able to capture contextual information at different locations of the image, enabling
more accurate modeling and prediction. In deep networks, the transformer can perform
deeper feature extraction while consuming less memory and computing resources. Com-
pared to traditional CNNs, the Transformer model has obvious advantages. However,
completely discarding CNNs will make the model lose the ability to capture local features,
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and combining the advantages of both CNNs and transformers will bring better results.
Therefore, we added the Swim-Transformer block module in Swim-Transformer [44] and
the newly designed SCA attention mechanism module to the backbone network, and
through a large number of experimental verifications and analyses, a new backbone net-
work SFE is finally designed, and Figure 4 shows the network structure of the SFE.
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We added two Swim-Transformer modules to the backbone’s deep network and
renamed them STR modules. Compared with the extraction of simple features of SAR ship
targets in shallow networks, we expect to extract the semantic features of the entire SAR
image in deep networks so that ship targets can be detected from complex backgrounds
more effectively. Therefore, we use the STR module in the deep network and keep the
original C3 module in the shallow network. In addition, we introduce the SCA mechanism
module after establishing the STR module to enhance the network’s feature extraction
ability for local information in the images. The SCA module considers both the position
relationship and channel attention in the SFE backbone. This allows us to accurately
capture the region of interest by utilizing the captured position information effectively,
while also capturing the relationship between channels. Compared with the SE module
and the CBAM module, the SE module only considers spatial attention, the CBAM module
separates spatial attention and channel attention, and the design of SCA is more suitable
for SAR image ship detection tasks.

Through extensive experimental comparisons, the results demonstrate that the design
of the SFE module significantly improves the model’s feature extraction capability.

3.3. Lightweight Feature Fusion and Feature Enhancement Neck: LFE

In the task of ship detection with SAR images, we are faced with the problems of
multiscale ship targets, few features of small-sized targets, and easy loss of information. In
order to solve these problems, we expect to design a module that can fully integrate deep
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and shallow semantic features at different scales. To this end, we designed a lightweight
neck LFE with feature fusion and feature enhancement. LFE consists of the feature map
upsampling module CARAFE [45] and the context aggregation module SCABlock, and the
network structure of the LFE is shown in Figure 5.
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To address the limitations of conventional upsampling methods, such as limited
receptive fields, difficulty in capturing semantic information from feature maps, and high
parameter and computational requirements, we employ the CARAFE upsampling module
proposed by Wang [45]. CARAFE offers a larger receptive field and effectively utilizes
surrounding information, which is crucial for dealing with complex and irregular feature
maps, such as ship targets in SAR images. At the same time, the CARAFE module can
dynamically generate an adaptive kernel based on the semantic information of the input
content, so as to better adapt to the characteristics of different targets. In addition, CARAFE
introduces little computational overhead, exhibits fast calculation speed and is a lightweight
and efficient upsampling module. Using CARAFE as the upsampling module can alleviate
the problem of loss of small-size target information in SAR image ship detection and make
more efficient use of the feature information of ship targets.

Finally, before object detection of feature maps of three different scales, the context
aggregation module SCABlock is added to further enhance the features by learning the
global spatial context of each scale. SCABlock is an improved version of CABlock used
by Liu [46] in optical remote sensing image instance segmentation tasks, as shown in
Figure 6. As shown in the figure, there is a clear difference in the structure of the two
modules. SCABlock has an extra layer of shortcut connection than CABlock, and the
Sigmoid activation function in the original position is replaced by the SiLU activation
function. The shortcut connection is added to effectively fuse local and global features
before SAR ship detection, reduce information confusion, enhance feature extraction of
feature maps of different scales, alleviate the problems of multiscale and insufficient features
of ship targets, and improve the accuracy of ship target detection in SAR images.
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3.4. Simple and Efficient Regression Box Loss: E
1
2 IoU Loss

In the object detection task, the loss function used for bounding box regression is
based on the intersection over union (IoU) [47], which calculates the overlap between
the predicted bounding box and the real bounding box. Although IoU Loss solves the
two major problems of smooth L1 series variables being independent of each other and
not having scale invariance, it also has two problems. First, when there is no overlap
between the prediction box and the real bounding box, the loss does not reflect the distance
between the two boxes. In these cases, the loss value is 0 and the gradient cannot be
used for further training. Second, when the size and shape of the prediction box and the
real bounding box are fixed, different intersection modes can obtain the same IoU value,
which cannot reflect how the two intersect. In response to these problems, the variants
of IoU Loss, GIoU Loss [48], DIoU Loss [49], CIoU Loss [49], and EIoU Loss [50] have
been proposed. Among them, EIoU Loss proposed by Zhang [50] adds factors such as the
center point distance, aspect ratio, and overlapping area between the predicted bounding
box and the real bounding box to the calculation of IoU Loss. This modification results
in faster convergence speed and improved positioning ability of the model. Furthermore,
Focal-EIoU Loss is introduced by combining Focal Loss [51] to address the problem of
sample imbalance in bounding box regression. This loss function reduces the contribution
of prediction boxes with low overlap with the target bounding box to the regression box
loss, thus prioritizing high-quality prediction boxes during the regression process. The
formula for Focal-EIoU Loss is as follows:

LFocal−EIoU = IoUγLEIoU (8)

γ is a parameter that ranges from 0 to 1, and in the original paper, the authors found
through ablation experiments that the best trade-off can be achieved when γ = 0.5.

In SAR image ship detection missions, because the target feature information is difficult
to extract, the number of low-quality samples is far more than the number of high-quality
samples, and the training samples are extremely unbalanced. Therefore, based on the idea
of EIoU Loss, we design a simpler and more efficient regression box E

1
2 IoU Loss, which is

in the following form:

L
E

1
2 IoU

= (L EIoU)
1
2 (9)

Since the function expression of the Focal-EIoU Loss is more complex, to compare
the differences between the EIoU Loss, Focal-EIoU Loss, and E

1
2 IoU Loss, the IoU in

the Focal-EIoU Loss function expression is approximately replaced with the EIoU, and
the changes in the three IoU Losses with the EIoU are shown in Figure 7. From the
figure, it is evident that the Focal-EIoU Loss and E

1
2 IoU Loss have different gradients

when dealing with high quality and low-quality samples. The Focal-EIoU Loss strongly
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suppresses the loss for low-quality samples, while enhancing the loss for high-quality
samples. This design allows the network model to focus more on detecting high-quality
samples. However, in the SAR image ship detection task dominated by small targets,
low-quality prediction boxes and low-confidence predictions may be ignored or assigned
to small targets, which will severely impact the performance of the model. E

1
2 IoU Loss

is improved on this basis, which balances the contribution of high-quality samples and
low-quality samples to loss, strengthens the attention to low-quality samples, and improves
the model’s detection performance for small-sized target ships. Furthermore, E

1
2 IoU IoU

Loss has lower computational complexity, and compared with Focal-EIoU Loss, there
are fewer calculation parameters, which accelerates the convergence speed of the model.
Experimental results show that the design of E

1
2 IoU Loss is effective.
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4. Experiments
4.1. Datasets Introduction and Experimental Setup

To ensure the accuracy and effectiveness of our CFD model, we perform experimental
verification on the self-built optical-SAR cross-domain target detection dataset. The dataset
is based on the commonly used optical image dataset DIOR [52] and SAR image ship target
detection dataset SSDD.

(1) DIOR: The DIOR dataset is a large-scale, publicly available optical remote sensing
image target detection benchmark dataset proposed by Northwestern Polytechnical
University. The dataset adopts a horizontal bounding box (HBB) annotation format,
containing 23,463 images and 190,288 instances, covering 20 types of remote sensing
ground objects, with an image size of 800 × 800 × 3 and a resolution of 0.3–30 m.

In this paper, we only utilize images from the DIOR dataset that contain ship targets.
After strict screening, 928 ship images were selected as the source domain, which was
consistent with the number of images in the target domain, to avoid the problem of model
performance degradation caused by the imbalance between the two domains. The source
domain data include ship targets near the shore and far out at sea, and target sizes are
widely distributed.

(2) SSDD: The SSDD dataset is the earliest dataset published at home and abroad specifi-
cally for SAR image ship target detection, and the dataset draws on the production
process of the PASCAL VOC dataset. The data are sourced from multiple satellite
sensors, including four polarization methods, with resolutions ranging from 1 m to
15 m, covering a large area of ship targets near the shore and far out at sea.

In the SSDD dataset, there are 1160 images of a total of 2456 ships. The ratio of target
length or width to image size ranges from 0.04 to 0.24, and most of them are very small
targets. The aspect ratio has a wide distribution, from 0.4 to 3. We divide the dataset into
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a target domain training set and a test set according to the ratio of 8:2, where the target
domain training set has 928 images, which is the same number as the source domain images.
The remaining 232 images serve as the target domain test set.

In our experiment, first, the CycleGAN-SCA model generates high-quality class target
domain data and class source domain data from the input source domain data and target
domain training data. Then, these four types of data are uniformly cut to a size of 512 × 512
and input into the CFD model. Finally, the model’s performance is tested on the target
domain test data. To balance computing power and real-time requirements, we use partial
training parameters of YOLOv5s and set the batch size to 4 for a total of 500 epochs.
The parameter α of the EMA in the MT model is set to 0.99. The experiment uses an
NVIDIA Quadro RTX 6000 GPU and the Ubuntu 16.04 Linux operating system, based on
the PyTorch deep learning framework. Figure 8 shows instances selected from the DIOR
and SSDD datasets.
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4.2. Experimental Indices

In this experiment, mAP.5 was used as the evaluation index. The mean average
precision (mAP) is a commonly used evaluation index in object detection models, calculated
according to precision P and recall R, and the formula is as follows:

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

mAP =
∫ 1

0
P(R)dR (12)

The precision rate reflects the false alarm rate in the overall detection results, and
a higher precision indicates a lower false alarm rate. The recall rate reflects the missed
detection rate in the overall detection results, with higher recall rates and lower missed
detection rates. The mAP is calculated from the area under the precision–recall (PR) curve,
and it provides a comprehensive evaluation of the model’s performance based on accuracy
and recall. A higher mAP indicates better model performance.

4.3. Experimental Results

To validate the excellent performance of our proposed CFD method, we conduct a
series of experiments on the preprocessed self-built large-scale optical-SAR cross-domain
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target detection dataset. Firstly, we compare CFD with existing methods to demonstrate its
superiority. Moreover, we perform numerous ablation experiments to verify the effective-
ness of each component in the CFD model. Furthermore, we compare the newly designed
E

1
2 IoU Loss with the existing IoU Loss, and the comparative experiments show that the

E
1
2 IoU Loss significantly improves the performance of the model, which demonstrates

the rationality of the E
1
2 IoU Loss design. To further reflect the application prospect of

CFD in SAR image ship detection, we add different proportions of SAR annotated data
to the training set, and the experimental results show that the combination of CFD and a
small amount of annotated data can achieve detection accuracy comparable to supervised
learning. We also discuss the influence of image generation on the detection performance
and justify CycleGAN-SCA in SAR image ship detection tasks. Lastly, we compare the
performance of CFD with the existing unsupervised domain adaptation methods under
three background noises to verify the robustness of CFD under background noise.

4.3.1. Comparative Experiment with the Latest Unsupervised Domain
Adaptation Methods

To verify the high performance of our proposed CFD, we compare CFD with the
latest unsupervised domain adaptation methods on the self-built large-scale optical-SAR
cross-domain target detection dataset. In the comparative experiment, we ensure that
the division of the data set is consistent in each experiment to reflect the fairness of the
experiment. The results of each experiment are shown in Table 1.

Table 1. Comparison with the latest unsupervised domain adaptation methods.

Method Precision Recall mAP

Source_only 0.4831 0.3595 0.3330
DA [14] 0.6328 0.5413 0.5342

HTCN [15] 0.6801 0.6154 0.6145
Baseline 0.6561 0.5879 0.5934

CFD 0.7237 0.6548 0.6854
Upper bound 0.9662 0.9469 0.9836

The bold format is to highlight the results of our experiments.

Source_only represents the performance of the YOLOv5s model trained in the source
domain without domain adaptation in the target domain. Baseline is a network before CFD
design, DA and DTCN represent unsupervised domain adaptation methods as mentioned
in [14,15], respectively, and the upper bound refers to the performance of the target domain
itself on the YOLOv5s model under full supervision. The data in the analysis table show
that the performance of baseline and DTCN is very similar, the performance of DA is not
good, and CFD is significantly better than all comparison methods. The mAP obtained
by CFD is 15.12% and 7.09% higher than that of DA and DTCN, respectively, and 35.24%
higher than that of source_only, but there is still a certain gap compared with the upper
bound. The prediction visualization of the method in the table is shown in Figure 9, and
CFD detects small targets more accurately and has a lower false and missed detection rate
than DA and DTCN. It shows that the application of CFD in the SAR image ship detection
task is effective, and compared with other unsupervised domain adaptation methods, CFD
is specially designed to enhance the performance of the model by considering the unique
characteristics of SAR ship targets.
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4.3.2. Ablation Experiments

We conducted ablation experiments on our self-built large-scale optical-SAR cross-
domain target detection dataset to showcase the effectiveness of our CycleGAN-SCA, SFE,
LFE, and E

1
2 IoU Loss designs. We combine these designs differently to better validate the

impact of different designs on model detection performance.
The ablation experiment results are presented in Table 2, which shows that the cross-

domain image generation module CycleGAN-SCA, the self-attention feature extraction
backbone network SFE, the lightweight feature recombination and enhancement neck LFE,
and the simple and efficient E

1
2 IoU Loss have improved the detection performance of

the model.

Table 2. Ablation experimental results.

Model SFE LFE E
1
2 IoU Loss Cyclegan-SCA Precision Recall mAP

Baseline × × × × 0.6561 0.5879 0.5934
√

× × × 0.7390 0.6225 0.6489
×

√
× × 0.6858 0.6557 0.6385

× ×
√

× 0.7249 0.6244 0.629
CFD

√ √
× × 0.7162 0.6354 0.6581√

×
√

× 0.7234 0.6370 0.6648
×

√ √
× 0.7366 0.6350 0.6495√ √ √
× 0.7311 0.6325 0.6790√ √ √ √

0.7237 0.6548 0.6854

The bold format is to highlight the results of our experiments.

Specifically, when SFE, LFE, and E
1
2 IoU Loss were used alone, mAP increased by

5.55%, 4.51% and 3.56%, respectively. Among them, SFE had the greatest performance
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improvement on the model, which proves that SFE has powerful feature extraction capabil-
ities. In addition, we find that LFE alone can obtain the highest recall rate, proving that
LFE can predict targets more accurately by learning deep and shallow semantic features
at different scales. When these three designs are combined, the model performance is
improved more than if used alone. The combination with E

1
2 IoU Loss increased mAP by

1.59% and 1.1%, respectively, compared with SFE and LFE alone. It is proven that the
design of E

1
2 IoU Loss is effective in improving model performance. When all three designs

were applied simultaneously, the mAP improved by 8.56%, and the performance of the
model was greatly improved. Finally, we applied the newly designed cross-domain image
generation module CycleGAN-SCA to the model, and the mAP reached the highest value
of 68.54%, an increase of 9.2%. It is proven that CycleGAN-SCA effectively reduces the
domain difference between the source domain and the target domain and enhances the
performance of the model. The visual comparison results of the ablation experiment are
shown in Figure 10.
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Figure 10. Visual comparison results of ablation experiments. Ablation 1 stands for SFE only; Ablation
2 represents SFE and LFE; Ablation 3 represents SFE, LFE, and E

1
2 IoU Loss; Ablation 4 stands for

adding four designs at the same time.

In summary, the CFD proposed by us exerts excellent performance in SAR image ship
detection, and the four designs in CFD contribute to the improvement of model performance.
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4.3.3. IoU Loss Comparison Experiment

To further verify the applicability of our designed E
1
2 IoU Loss in SAR image ship

detection, we keep the CFD model structure and parameters unchanged, only change the
IoU Loss, and compare the E

1
2 IoU Loss with several classic IoU Losses. The experimental

results are shown in Table 3, where CIoU Loss is the IoU Loss in baseline. EIoU Loss and
Focal-EIoU Loss are the inspiration basis for our design of E

1
2 IoU Loss.

Table 3. IoU Loss comparison experiment.

IoU Loss Precision Recall mAP

GIoU Loss 0.7296 0.6429 0.6538
DIoU Loss 0.6929 0.6410 0.6674
CIoU Loss 0.7162 0.6354 0.6581
EIoU Loss 0.7545 0.6301 0.6710

Focal − EIoU Loss 0.6438 0.6239 0.6303
E

1
2 IoULoss 0.7237 0.6548 0.6854

The bold format is to highlight the results of our experiments.

As seen from the table, E
1
2 IoU Loss has the largest improvement in model performance,

with mAP reaching 68.54%, which is 2.73% higher than baseline, which proves the high
efficiency of E

1
2 IoU Loss. In addition, comparing the experimental results of the first four

IoU Losses in the table, it can be found that EIoU Loss obtains the largest mAP, indicating
that the accurate positioning ability of EIoU Loss is more suitable for SAR image ship
detection tasks, and it also proves that it is reasonable to design a new IoU Loss based on
the ideas of EIoU Loss. Comparing the experimental results of EIoU Loss and Focal-EIoU
Loss and E

1
2 IoU Loss, it can be found that the E

1
2 IoU Loss we designed is 1.44% higher than

the mAP obtained by EIoU Loss, while Focal-EIoU Loss has the worst effect, proving that
in SAR image ship inspection missions, the design of IoU Loss balances the contribution
of high-quality samples and low-quality samples to loss. It is also necessary to give more
attention to low-quality samples and improve the detection performance of the model for
small target ships. Therefore, the E

1
2 IoU Loss we designed is reasonable and efficient in

SAR image ship detection.

4.3.4. Additional Comparative Experiments of SAR Image Annotation Data of Different
Proportions of the Target Domain

To reflect the robustness and generalization of CFD, it also provides an experimental
basis for the development of SAR image ship detection to semisupervised domain adap-
tation. We add different scales of target domain labeling data to the trained CFD model,
and a short training period is carried out; the results are shown in Table 4. Analyzing the
experimental data in the table, it can be seen that only adding 5% of the target domain
labeling data can increase the mAP of the CFD model by 20.09%, and when the target
domain labeling data reach 30%, the performance of the model is close to that of the target
domain data fully labeled. Furthermore, the experimental results of supervised training
by adding target domain labeled data of the same scale to the YOLOv5s model are also
recorded. Comparing the two models, it can be found that when 5% of the target domain
labeled data is added, the mAP of CFD increases by 6.27%, and the advantages of the
CFD model gradually decrease as the proportion of target domain labeled data gradually
increases. This shows that the CFD model exhibits its own advantages in the absence of
target domain labeling data. In particular, when 100% of the target domain labeled data is
added, the mAP of CFD increases by 0.44%.
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Table 4. Comparison experiments of added different scale target domain labeling data.

CFD YOLOv5s

Percentage Precision Recall mAP Precision Recall mAP

0 0.7237 0.6548 0.6854 - - -
5 0.9083 0.8348 0.8893 0.8134 0.7906 0.8266

10 0.9112 0.846 0.9117 0.86965 0.79424 0.86653
20 0.9372 0.8707 0.9434 0.9281 0.8297 0.9046
30 0.9486 0.9121 0.9643 0.9329 0.8561 0.9228
100 0.977 0.954 0.9880 0.9662 0.9469 0.9836

Experiments show that the detection performance of the model with only a small
number of target domain labeled data is comparable to that of the supervised algorithm.
This shows that SAR image ship detection based on unsupervised domain adaptation has
high research value and application prospects, which not only alleviates the significant
lack of SAR ship image annotation data and the high cost of dataset production but also
provides ideas for the application of semisupervised domain adaptation in SAR image
ship detection.

4.3.5. Image Generation Comparison Experiment

To verify the rationality of CycleGAN-SCA, we compare the results of image conver-
sion in the source domain of other image generation models. The visualization results of
various image generation models are shown in Figure 11, where CUT is the image genera-
tion method [53]. It can be seen from the figure that CycleGAN and CycleGAN-SCA can
correctly identify ship targets in optical images and generate higher quality pseudo-SAR
images than CUT image generation models. This shows that in SAR image ship detection,
the image generation module based on CycleGAN can effectively mitigate the domain
difference between the source domain and the target domain. In addition, the improved
CycleGAN-SCA produces ship targets that are closer to the original image in texture and
shape than CycleGAN.

The experimental results of the three image generation models are shown in Table 5;
CycleGAN has a great improvement in performance compared with CUT, and the mAP is
improved by 4.81%. The newly designed CycleGAN-SCA also improves the performance of
the model compared to CycleGAN, and the mAP is improved by 0.64%. Experiments show
that it is feasible and efficient to use CycleGAN-SCA to generate images between domains
to reduce domain differences in ship detection based on unsupervised domain adaptation.

Table 5. Comparative experiments of different image generation models.

Method Precision Recall mAP

CUT 0.6598 0.6292 0.6309
CycleGAN [41] 0.7311 0.6325 0.6790

CycleGAN-SCA 0.7237 0.6548 0.6854
The bold format is to highlight the results of our experiments.
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4.3.6. Comparative Experiments with Background Noise

SAR image background noise is a major factor affecting SAR ship detection. In order
to verify the robustness of CFD proposed by us, we added Gaussian noise, salt and pepper
noise and random noise to test images, respectively, and compared the performance of
CFD and existing unsupervised domain adaptation methods under these three background
noises. The experimental results are shown in Table 6. The analysis of the experimental
data in the table shows that, in the three background noises, the map obtained by CFD is
the highest. In particular, in the case of Gaussian noise, the map obtained by CFD is 15.72%
and 8.84% higher than that of DA and HTCN, respectively; in the case of salt and pepper
noise, the map obtained by CFD is 15.66% and 10.05% higher than that of DA and HTCN,
respectively; in the case of random noise, the map obtained by CFD is 15.35% and 11.21%
higher than that of DA and HTCN, respectively. Moreover, we found that the detection
performance gap between CFD and DA and HTCN is greater in the case of background
noise than that of no background noise. It proves that compared with other unsupervised
domain adaptation methods, CFD can better alleviate the impact of background noise on
ship detection, which reflects the robustness of CFD.

Table 6. Comparative experiments with background noise.

Gaussian Noise Salt and Pepper Noise Random Noise

Method P R mAP P R mAP P R mAP

DA [14] 0.6193 0.5264 0.5209 0.6137 0.5206 0.5123 0.6016 0.5327 0.5177
HTCN

[15] 0.6621 0.5964 0.5897 0.6465 0.5742 0.5684 0.6372 0.5826 0.5591

CFD 0.7210 0.6493 0.6781 0.7119 0.6368 0.6689 0.7145 0.6370 0.6712

The bold format is to highlight the results of our experiments.
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5. Conclusions

In this paper, CFD, a domain-adaptive SAR ship detection method based on cross-
domain feature interaction and data contribution balance, is introduced. This method does
not need to annotate SAR ship images and uses the existing optical dataset to efficiently
complete the ship detection task of SAR images, which solves the problem of the lack of
SAR image annotation data and expensive labeling cost. This method proposes a new
cross-domain image generation module, CycleGAN-SCA, designs a new SFE backbone and
LFE neck, and finally proposes E

1
2 IoU loss based on the idea of EIoU loss. CycleGAN-SCA

is a cross-domain image generation module that reduces domain differences by generating
high-quality pseudoimages. SFE is a self-attention feature extraction backbone network
that deeply mines the potential of image feature representation through global information
and rich context information and extracts ship target features more effectively. LFE is
lightweight feature recombination and neck enhancement that learns semantic features at
different scales to alleviate the problems of multiscale, few features and easy information
loss of ship targets. E

1
2 IoU loss is a simple and efficient regression frame loss that balances

the contribution of high-quality and low-quality samples in SAR image ship detection tasks,
strengthens the focus on low-quality samples, and improves the detection performance of
the model for small-size target ships.

CFD shows high performance when used on the self-built large-scale optical-SAR
cross-domain target detection dataset, and the experimental results demonstrate that our
method outperforms existing unsupervised domain adaptation methods, achieving an
optimal performance of 68.54%. Furthermore, with only 5% target domain labeled data,
our method improves by 6.27% compared to the baseline. These results validate the
effectiveness of our proposed method. CFD has effectively solved the problem of SAR
image data label dependence. In the future, we will pay more attention to the optimization
of the algorithm and improve the computational efficiency of the algorithm. We will
also explore how to make better use of SAR complex field data to extract more target
information. In addition, we will continue to deeply explore the mechanism and principle
of SAR and will further improve the ability to interpret SAR data.
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