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Abstract: The Yangtze River Basin (YZRB) and the Yellow River Basin (YRB), which are crucial for
ecology and economy in China, face growing challenges to ecosystem service (ES) functions due to
global population growth, urbanization, and climate change. This study assessed the spatiotemporal
dynamics of ESs in the YZRB and the YRB between 2001 and 2021, comprehensively encompassing
essential aspects such as water yield (WY), carbon sequestration (CS), soil conservation (SC), and
habitat quality (HQ) while also analyzing the trade-offs and synergies among these ESs at the grid
cells. The GeoDetector was employed to ascertain individual or interactive effects of natural and
anthropogenic factors on these ESs and their trade-offs/synergies. The results showed that (1) from
2001 to 2021, the four ESs exhibited significant spatial disparities in the distribution within two basins,
with the overall trend of ESs mainly increasing. YZRB consistently exhibited substantially higher ES
values than the YRB. (2) Complex trade-offs and synergies among these ESs were apparent in both
basins, characterized by distinct spatial heterogeneity. The spatial relationships of WY–CS, WY–SC,
CS–SC, and CS–HQ were mainly synergistic. (3) Precipitation, potential evapotranspiration, elevation,
land use and land cover (LULC), and slope influenced ESs in both basins. Notably, interactive factors,
particularly the interactions involving LULC and other factors, demonstrated more robust explanatory
power for ESs and their trade-offs/synergies than individual drivers. These findings significantly
affect the refined ecosystem management and sustainable development decision-making in large
rivers or regions.

Keywords: ecosystem services; trade-off/synergy; driving factors; InVEST model; Yangtze and
Yellow River Basins

1. Introduction

Ecosystems are the Earth’s support systems, playing key roles in the preservation
of biodiversity, the provisioning of resources, climate regulation, the maintenance of soil
health, pollution mitigation, habitat preservation, cultural enrichment, and the facilitation
of sustainable development [1–3]. Ecosystem services (ESs), as derivations and benefits
accrued directly or indirectly from the structure, processes, and functions of ecosystems by
humanity [4,5], principally encompass provisioning, supporting, regulating, and cultural
services [6]. However, with the increase in global population, the expansion of urbanization,
and the threat of climate change to ecosystems, the supply capacity and quality of ESs
are facing severe challenges (such as water scarcity, reduced food production, habitat loss,
etc.) [7,8]. Moreover, anthropogenic activities marked by the overexploitation of natural
resources perpetually disrupt the structural and functional aspects of ecosystems, leading
to a range of ecological challenges, such as atmospheric pollution, water contamination, soil
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erosion, climate warming, land degradation, and biodiversity decline [9–11]. To address
these challenges, researchers of geography, ecology, economics, and other disciplines have
particularly focused on the diverse relationships among ESs and the impact of multiple
factors on them, considering ESs key research priorities [12,13]. Therefore, a comprehensive
and in-depth study of ES driving mechanisms, relationships, and conservation measures
has become imperative.

The quantification of ESs is crucial in understanding the contributions of natural
ecosystems to the societal system and is a primary task in achieving regional sustainability.
Presently, ES assessments have transitioned from static evaluations (single points in time)
to dynamic analyses (multi-scale) of ecological processes, with an augmented emphasis
on the impact of ESs on human well-being [5,6,14]. The assessment methods predomi-
nantly employed include the value-based and the material-based approach. The former
employs methodologies rooted in mathematics and economics to directly or indirectly
assess ESs in monetary terms [5,15]. However, the quantification of the monetary value of
ESs is a complex process with significant disparities in evaluation methodologies [16–18].
Conversely, the material-based approach encompasses the energy-based method and bio-
physical modeling, which offers a comprehensive quantitative evaluation of various ESs
from a material perspective [19,20]. The energy-based method may encounter challenges
in practical implementation due to difficulties in data acquisition. In contrast, biophysical
modeling can provide a robust spatial representation of ESs and reveal the fundamental
mechanisms behind their provision.

With the development of remote sensing and geographic information technologies,
biophysical modeling methods based on multi-parameters, which provide dynamic spa-
tial support for the assessment of ESs [8], have been realized. Currently, ES assessment
models based on biophysical modeling mainly include Artificial Intelligence for ESs [21],
Land Utilization and Capability Indicator [22], Spatial Evaluation for the Natural Capital
Evidence [23], Social Values for the ESs [24], Toolkit for ES Site-based Assessments [25],
and Integrated Valuation of ESs and Tradeoffs (InVEST) [26]. Each model with unique func-
tionalities, varying simulation accuracy, and decision support should be selected compre-
hensively based on specific objectives, data availability, and regional requirements [27]. The
InVEST model integrates ecological production functions, economic evaluation techniques,
and versatile features like dynamic modeling, spatial analysis, multi-scale adaptability,
modularity, and scenario assessment. It has been widely applied in diverse disciplines
worldwide, including ecology, geography, and hydrology [28,29]. Although some studies
have indicated that the Soil & Water Assessment Tool (SWAT) was accurate or reliable, the
results obtained from the SWAT and InVEST models showed significant correlations [30,31].
Decsi et al. [32] argued that InVEST is the most efficient hydrological ES tool considering
computational demand, result reliability, and data and expertise requirements. Moreover,
one of its notable features is that all its modules are independent, allowing users to cus-
tomize data according to their research needs. This has demonstrated effectiveness in
assessing ESs such as water yield, water quality purification, soil retention, carbon storage,
and biodiversity conservation [33–35].

However, the various ESs, environmental heterogeneity, and human preferences lead
to interrelations characterized by trade-offs or synergies among these services [8,36]. Trade-
offs involve consuming one ES to enhance another, while synergies refer to situations where
two ESs increase or decrease simultaneously [36,37]. The trade-offs and synergies cannot
be directly quantified but are analyzed through changes in ES quantities as an intermediary
approach [38]. Statistical, spatial, and scenario analyses are common methods for studying
trade-offs and synergies [39,40]. Scenario analysis, however, requires further improvement
in terms of theoretical development and validation [40]. Statistical methods like correlation
coefficients can effectively reveal the mechanisms of relationships between ESs and provide
an intuitive analysis of the results but often focus on the overall difference of coefficients [41].
However, different regions have different environmental characteristics, and different
areas and social groups have different demands and dependencies on ESs, resulting in
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heterogeneity of the spatial distribution of ES relationships [42,43]. Understanding the
spatial heterogeneity of the trade-offs and synergies between ESs is essential for achieving
a refined ecosystem management [44]. Then, correlation analysis based on grid cells
combines spatial analysis methods and better represents the spatial relationships among
ESs regarding trade-offs and synergies [37,45]. Furthermore, the trade-offs and synergies
among ESs depend on the spatiotemporal scale [46]. However, previous studies on ESs at
spatial scales were conducted at global, national, regional, and watershed scales, whereas
ignoring the ESs relationships at the grid cells may affect these at large scales [46,47]. Time
scales were selected based on a single year or discrete time series (years with a specific
time interval) [12,46]. Although Local Indicators of Spatial Association (LISA) can identify
spatial relationships between ESs [48], they are often used to analyze ESs in single or dual
periods. Nevertheless, the relationships between ES systems are not static trade-offs or
synergies but can change due to external factors such as natural variations, climate change,
and human activities [8,49]. Focusing only on ESs for discrete years may overlook the
impact of continuous trade-offs and synergies, thereby affecting the accuracy of the analysis
results [50]. Therefore, it is necessary to investigate the relationships between ESs and their
driving mechanisms of continuous long-time series at the grid cells, which can provide
decision-makers with more specific and targeted information, formulating more effective
environmental management and resource utilization strategies.

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Ser-
vice (IPBES) [51] assessment of natural factors and human activities influencing changes
in ecosystem functions and structures highlighted climate change as a primary driving
factor in any ecosystem domain, including terrestrial and freshwater ecosystems. Cli-
mate change impacts the supply of ESs by altering ecosystem structures and functions.
Global warming is predicted to increase extreme weather events, such as heavy rainfall and
extreme heat, posing threats to ESs related to climate regulation, nutrient cycling, soil for-
mation, and photosynthesis [12,52]. Land-use change, a result of human activities, directly
modifies ecosystem structures and functions by altering land types for development and
utilization [53]. Additionally, human activities such as population growth and urbanization
expansion increase the demand for ESs, leading to changes in the functionality of food
provision, habitat protection, soil conservation, and biodiversity [12]. Among various
methods for analyzing drivers, traditional methods like principal component analysis and
regression analysis face challenges in handling the spatial variability of driving factors. Ge-
ographically weighted regression model (GWR) and GeoDetector are the most commonly
used methods for exploring the driving mechanism of ecosystem spatial heterogeneity.
Most of the studies that have used the GWR model to investigate the factors affecting
the spatial heterogeneity of variables have been statistical analyses of the correlations
between variables and their effects, having lacked direct quantitative explorations of the
relationships and ignoring the interactions between the factors [54]. GeoDetector, a spatial
analysis method, adeptly identifies spatial variations and uncovers causal drivers, enabling
the assessment of individual spatial variances and the interrelation of spatial patterns
between two variables, thus facilitating the exploration of potential causal links between
them [45,55]. It has been widely used to analyze the drivers of ESs, urban expansion,
population distribution, vegetation change, extreme events, etc. [54,56,57].

The Yangtze River Basin (YZRB) and the Yellow River Basin (YRB) are China’s
two most important rivers; they are paramount to socio-economic development. Despite
its abundant natural resources, diverse economic and cultural activities, and significant
geographical advantages, the YZRB faces challenges from intensive human activities, com-
plex human-environment interactions, ecological fragility, and frequent droughts and
floods [58]. The YRB encompasses several vital ecological functional zones, such as Three
River Headwaters, Qilian Mountain, Qinling Mountain, etc. Still, it grapples with a poor
ecological foundation, severe water scarcity, significant soil erosion, weak resource and
environmental carrying capacity, and particularly prominent issues of imbalanced and
insufficient development across its provinces and regions along the river [12,59]. Therefore,
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the YZRB and the YRB were selected as the study areas, and meteorological data, soil data,
and multi-source remote sensing data were utilized as data sources, model simulations,
statistical methods, and GIS spatial mapping techniques, which were employed to achieve
the following specific objectives: (1) to explore the spatiotemporal trends in multiple ESs in
the YZRB and the YRB from 2001 to 2021, (2) to analyze the trade-offs and synergies among
these ESs at the grid cells of continuous time series, and (3) to reveal the influence of natural
and human factors on each ES and the associated trade-offs and synergies. The findings not
only provide policy recommendations for regional economic development and sustainable
resource management in the YZRB and the YRB but also serve as a significant case study
and profound insight for global efforts in managing large rivers, understanding the impacts
of climate change, preserving biodiversity, and achieving sustainable development goals.

2. Materials and Methods
2.1. Study Area

The Yangtze and Yellow Rivers, originating from the Qinghai–Tibet Plateau, have
obvious differences in geographical environments, climatic characteristics, and water
resources (Figure 1). The YZRB (24◦30′–35◦45′N, 90◦33′–122◦33′E) spans a total length of
6397 km, covering a total area of 1.8 million km2. The topography is three steps down from
west to east: (1) the first step includes the Southern Qinghai Plateau, the Western Sichuan
Plateau, and the Hengduan Mountains, with an elevation of 3500–5000 m; (2) the second
step is composed of the Qinba Mountains, Sichuan Basin, Yunnan–Guizhou Plateau, and
Hubei–Guizhou Mountains, with an elevation of 500–2000 m; and (3) the third step is the
Huaiyang Mountains, Jiangnan Hills, and the Middle and Lower Reaches of the Yangtze
River Plain, which are generally below 500 m above sea level. The geomorphological types
are diverse and complex, with mountain areas covering about 80% (https://www.resdc.cn/,
accessed on 1 June 2023). The climate is dominated by subtropical monsoons, which are
characterized as being hot and humid in summer and cold and dry in winter. The average
annual precipitation and temperature are about 1064 mm and 9.1 ◦C, respectively (https:
//www.nmic.cn/, accessed on 1 October 2022). The YRB (32◦10′–41◦50′N, 95◦53′–119◦05′E)
flows a total length of 5464 km, covering a total of 795,000 km2. The terrain is distributed
from west to east in lowered steps, with mountain areas accounting for about 70% (https:
//www.resdc.cn/, accessed on 1 June 2023). The YRB experiences a continental climate
characterized by significant differences in precipitation and temperature, with the average
precipitation and temperature of the whole basin over the past 20 years being 460.5 mm
and 2.4 ◦C, respectively (https://www.nmic.cn/, accessed on 1 October 2022).

The two basins also exhibit significant differences in human activities, such as land use
and land cover (LULC), gross domestic product (GDP), and population density (POD) [12].
The YZRB features a diverse and complex land cover, primarily grassland, forestland, and
cultivated land (Figure 1b). Regions with intense population activities, such as urban areas,
are mainly distributed along the Yangtze River, forming continuous urban agglomerations
with a relatively higher level of economic development [60]. In contrast, the YRB is
predominantly grassland, with fewer forests (shrubland types) (Figure 1b). Urban areas
in the YRB occupy less areas and are not obviously distributed along the Yellow River
due to spatial and natural resource limitations, resulting in relatively lower POD and
economic development [61]. These differences require a focus on sustainable economic
development in the YZRB and point out the importance of ecological conservation and
long-term environmentally friendly development in the YRB [12].

https://www.resdc.cn/
https://www.nmic.cn/
https://www.nmic.cn/
https://www.resdc.cn/
https://www.resdc.cn/
https://www.nmic.cn/
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Figure 1. Study area: (a) geographical location of two study areas; (b) LULC types; (c,d) elevation
distributions.

2.2. Data Source and Processing

Meteorological, soil, LULC, digital terrain model (DTM), net primary productivity
(NPP), and socio-economic datasets were selected in this study and developed using
the unified geographic coordinate system with a spatial resolution of 1 km (Table 1).
(1) The meteorological measurements were obtained from the CRU TS4.06 datasets after
the accuracy test of the measured station data, including monthly precipitation, potential
evapotranspiration, and mean temperature. The annual scale meteorological data between
2001 and 2021 were obtained from the monthly data (the correlation coefficients of annual
precipitation and temperature data were more than 0.9 (Figure S1)). (2) Soil datasets were
obtained from Harmonized World Soil Database (HWSD) version 1.2, including soil depth,
soil sand content, silt content, clay content, and organic carbon content. (3) The MCD12Q1
datasets based on the IGBP classification scheme were used as LULC data containing
17 main land cover types. (4) The elevation, slope, and aspect DTM data were acquired
from the Shuttle Radar Topography Mission Digital Elevation Model (SRTMDEM). (5) The
net primary productivity (NPP) data acquired from MOD17A3HGF version 6.1 were
preprocessed by HEG v2.15 (https://wiki.earthdata.nasa.gov/display/DAS/, last accessed
10 August 2023), MATLAB R2020b (https://it.mathworks.com/, last accessed 1 November
2023), and ArcGIS 10.5 (https://www.esri.com/, last accessed 11 January 2024) in terms
of splicing, format conversion, re-projection, and resampling. (6) Socio-economic data,
including GDP data in 2019 and POD data in 2020, were mainly used to analyze the driving
factors of each ES. Figure 2 shows the study flow chart. All data were transformed to a
uniform projection coordinate system (WGS_1984_UTM_Zone_48N) and were resampled
to a spatial resolution of 1 km.

https://wiki.earthdata.nasa.gov/display/DAS/
https://it.mathworks.com/
https://www.esri.com/
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Table 1. The essential data for this study.

Dataset Spatial Resolution Period Data Source

Annual precipitation
0.5◦ 2001–2021

Climate Research Unit Time Series version 4.06, CRU
TS4.06 (https://crudata.uea.ac.uk/cru/data/hrg/,

accessed on 12 October 2022)
Annual evapotranspiration

Average annual temperature

Soil data 1 km 2013 HWSD v1.2 (https://data.isric.org, accessed on
13 March 2023)

LULC 500 m 2001–2021 MCD12Q1 (https://search.earthdata.nasa.gov/search,
accessed on 20 March 2023)

DTM 90 m - SRTMDEM (https://www.gscloud.cn/, accessed on
29 March 2023)

NPP 500 m 2001–2021
MODIS MOD17A3HGF Version 6.1

(https://search.earthdata.nasa.gov/search, accessed on
24 March 2023)

GDP 1 km 2019 Resource and Environment Science and Data Center
(https://www.resdc.cn/, accessed on 29 July 2023)

POD 1 km 2020 WorldPop Hub (https://hub.worldpop.org/, accessed
on 22 July 2023)

Watersheds - - Nine major watersheds in China
(https://www.resdc.cn/, accessed on 7 October 2022)

LULC: land use and land cover; DTM: digital terrain model; NPP: net primary productivity; GDP: gross domestic
product; POD: population density.
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2.3. Methods
2.3.1. ES Assessment Methods

Water yield (WY), carbon sequestration (CS), soil conservation (SC), and habitat quality
(HQ) were selected to evaluate ESs in the YZRB and the YRB. All ES models from 2001 to
2021 were output at the YZRB and the YRB grid cells with a spatial resolution of 1km.

(1) The InVEST WY model is a quantitative evaluation method based on the Budyko
hydrothermal coupling equilibrium assumption [62], which provides an effective method
for WY estimation at high spatial resolution and different scales [63]. The results can be
presented as shapefiles, tables, and grid maps. The WY is obtained by subtracting the total

https://crudata.uea.ac.uk/cru/data/hrg/
https://data.isric.org
https://search.earthdata.nasa.gov/search
https://www.gscloud.cn/
https://search.earthdata.nasa.gov/search
https://www.resdc.cn/
https://hub.worldpop.org/
https://www.resdc.cn/
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actual evapotranspiration from the total precipitation per unit area [64]. The quantitative
description is as follows:

Yx =

(
1 − AETx

Px

)
× Px, (1)

AET(x)
P(x)

= 1 +
PET(x)

P(x)
−
[

1 +
(

PET(x)
P(x)

)w]1/w

, (2)

PET(x) = Kc(x)× ET0(x), (3)

w(x) =
AWC(x)× Z

P(x)
+ 1.25, (4)

AWC(x) = min(MaxSoilDepthx, RootDepthx)× PAWCx, (5)

PAWC = 54.509 − 0.132sand% − 0.003(sand%)2 − 0.055silt%−
0.006(silt%)2 − 0.738clay% + 0.007(clay%)2 − 2.688OM%+

0.501(OM%)2,
(6)

where Equations (1)–(6), Yx, AETx, and Px are the total annual WY (mm), the annual evapo-
transpiration (mm), and the average annual precipitation (mm) of grid unit x, respectively;
AETx

Px
is the ratio of annual evapotranspiration to average annual precipitation; PET(x)

represents the potential evapotranspiration; ET0(x) and Kc(x) represent the reference crop
evapotranspiration and its coefficient, respectively; w(x) represents a nonphysical empir-
ical fitting parameter of natural climate-soil properties; AWC(x) is the available water
content of plants and is used to determine the amount of water stored and released by
the soil for vegetation growth, which is calculated as the difference between the field
water holding capacity and the wilting point; Z is the Zhang parameter that, when set
as 7, aligns the average annual WY simulated by InVEST model with the runoff depth
results published in the bulletin (http://www.cjw.gov.cn/zwzc/zjgb/cjlyjxnzhszygb/,
accessed on 1 July 2022; http://www.yrcc.gov.cn/other/hhgb/, accessed on 1 July 2022;
http://www.mwr.gov.cn/sj/tjgb/szygb/, accessed on 1 July 2022); PAWCx is the plant
available water content, which is determined by the mechanical composition of the soil
and the root depth of the vegetation [65]; MaxSoilDepthx is the maximum soil depth;
RootDepthx is the root depth; and sand, silt, clay, and OM are equal-weight additions of
the upper (0–30 cm) and lower layer (30–100 cm) of the contents of sand (%), silt (%), clay
(%), and organic matter (%) in the soil, respectively. In addition, the biophysical parameters
of the annual WY module used are listed in Table S1, and the raster data input to the
InVEST WY module is shown in Figure S2.

(2) NPP is used to evaluate CS services. Since vegetation captures an average of
1.63 units of carbon per unit of NPP, the following relationship exists between NPP and
CS [66]:

CS = 1.63 × NPP, (7)

where CS is the annual carbon sequestration capacity (unit: KgC/m2/a) and NPP is the
annual NPP data.

(3) SC reflects the different resistance of different land use types to soil erosion and
the different soil retention capabilities under different conditions. SC (t/(hm2·a)) equals
the difference between potential and actual soil erosion, and the study calculates soil
conservation based on the InVEST Sediment Delivery Ratio model:

SC = RKLS − USLE, (8)

RKLS = R × K × LS, (9)

ULSE = RKLS × C × P, (10)

Ri = 0.0534 × p1.6548
i , (11)

http://www.cjw.gov.cn/zwzc/zjgb/cjlyjxnzhszygb/
http://www.yrcc.gov.cn/other/hhgb/
http://www.mwr.gov.cn/sj/tjgb/szygb/


Remote Sens. 2024, 16, 411 8 of 25

K =
(

0.2 + 0.3 × exp
(
−0.0256 × sand

(
1 − silt

100

)))
×
(

silt
clay+silt

)0.3
×(

1 − 0.25 × oc
oc+exp(3.72−2.95×oc)

)
×
(

1 − 0.7 × sn
sn+exp(22.9×(1−sand/100)−5.51)

)
× 0.1317,

(12)

C =


1, f vc = 0

0.6508 − 0.3436lg( f vc)
0, f vc > 78.3%

, 0 < f vc ≤ 78.3%, (13)

where in Equations from (8) to (10), RKLS and USLE represent potential soil erosion
and actual soil erosion, respectively; R is the rainfall erosion factor (MJ·mm/(hm2·h·a)),
which was calculated by the rainfall erosivity model based on the annual average rainfall
estimation in China [67]; pi is the annual rainfall (mm) (Equation (11)); K is the soil
erodibility factor (t·h/(MJ·mm)), which was calculated by erosion-productivity impact
calculator proposed by Williams and Arnold [68] (Equation (12)); LS is the slope–slope
length factor; C is the vegetation and management factor, which was calculated using the
method proposed by Cai et al. [69], in which f vc in Equation (13) is the vegetation cover;
and P is the management factor (soil conservation measure factor), which was designed
to the YZRB and the YRB concerning relevant studies and combination with the LULC
(Table S2). In addition, in Equation (12), sand, silt, clay, and oc represent the content of sand,
silt, clay, and organic carbon in the upper layer of soil (0–30 cm), respectively (unit: %).

(4) The InVEST HQ module combines information about land cover types and biodi-
versity threats to generate an HQ map, which can intuitively evaluate the regional HQ and
the level of degradation. It is calculated as follows:

Qx,j = Hj

(
1 −

(
Dz

xj

Dz
xj + kz

))
, (14)

Dxj = ∑R
r=1 ∑Yr

y=1

(
wr

∑R
r=1 wr

)
ryirxyβxSjr, (15)

where Qx,j is the HQ of grid x in land cover type j, with value ranges from 0 to 1, and the
closer the value is to 1, the higher the HQ; Hj indicates the habitat fitness of land cover
type j. The k is the half-saturation constant, which is generally set to 1/2 of the maximum
habitat degradation value. In this study, a consistent k value of 0.13828, representing 1/2 of
the maximum degradation value of the habitat in 2001, was configured across all InVEST
models for the same landscape. The z was a normalized constant, and the default value was
2.5. Dxj represents the habitat degradation degree of grid x in land cover type j. R represents
the number of stress factors; Yr indicates the number of grids occupied by stress factor r.
wr represents the weight of the stress factor r, which is between 0 and 1; ry represents the
stress factor value of the grid (0 or 1); irxy represents the threat degree of grid x to stress
factor y; βx represents the accessibility level of the grid; and Sjr represents the sensitivity
of habitat type to stress factor. The parameters of HQ threat factors and sensitivity in the
YZRB and the YRB are shown in Table S3 and Table S4, respectively.

2.3.2. Trend Analysis

The Sen’s Slope and Mann–Kendall (M–K) trend tests were utilized to identify annual
trends and significance in the WY, CS, SC, and HQ. Sen’s and M–K trend tests are non-
parametric methods that do not require a specific distribution test for sample data; thus,
a combination of the two methods will not be affected by missing values and outliers.
Moreover, they are flexible in trend analysis and provide significant tests for long-time
series data. The Sen’s slope is calculated as follows:

β = mean
( xj − xi

j − i

)
, ∀j > i, (16)
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where β is the changing trend of each ES, and xi and xj are the ES values of time i and j,
respectively; β >0 indicates an increasing trend, and β < 0 indicates a decreasing trend.
After identifying the change trends using Sen’s slope method, the significance of the trend
results was tested using the M–K method, which is calculated as follows:

Z =


S√

var(S)
, (S > 0)

0, (S = 0)
S+1√
var(S)

, (S < 0)
, (17)

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
xj − xi

)
, (18)

var(S) =
n(n − 1)(2n + 5)

18
, (19)

sgn
(
xj − xi

)
=


1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

, (20)

where n is the length of the time series. The significance tests of change trends were
judged based on Z-value, i.e., |Z| ≥ 1.65, |Z| ≥ 1.96, and |Z| ≥ 2.58 indicated statistical
significance at α = 0.1 (slightly significant), α = 0.05 (moderately significant), and α = 0.01
(highly significant), respectively.

2.3.3. Trade-Offs/Synergies Analysis

This study used Pearson’s correlation coefficient (R) to measure the trade-offs and
synergies relationship between the two ESs from 2001 to 2021:

R =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

, (21)

where xi and yi are two different ESs, respectively; x and y are the mean values of the
corresponding ES, respectively; and n represents the number of years (n = 21). R > 0
indicates a synergistic relationship, while R < 0 indicates a trade-off relationship.

2.3.4. GeoDetector Analysis

The GeoDetector [70,71] can detect spatial differences and reveal the driving forces
behind statistical methods. It has been widely used in various research fields [72–74].
Therefore, the factor detector and interaction detector of GeoDetector were used to explore
the degree of explanation of different driving factors to the spatial heterogeneity of ESs and
whether the interaction factors increase or weaken the degree of interpretation of spatial
heterogeneity of ESs, respectively. The calculation results of the factor detector include
q-statistic and p-value, where the former is the influencing coefficient of the driving factor
on the ES and the latter is the significance of the q-statistic results. The calculation of the
factor detector is as follows:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 , (22)

where the value q is strictly within [0,1] and the larger the q-statistic is, the stronger the
impact of the driving factor on the ES. σ2 is the variance of the ES; h (1, . . ., L) is the
stratification of variable Y or factor X, i.e., classification or partition. N and Nh are units in
layer h and the whole area, respectively.

The interaction detector can identify the interpretation degree of ES by the inter-
action results between different driving factors, which was evaluated by first calculat-
ing the q-statistics of factors X1 and X2 on ES, and then calculating the q-statistics on
ES during the interaction. The interaction relationships include nonlinear weakening
(q(X1∩X) < Min(q(X1),q(X2))), single factor nonlinear weaken (Min(q(X1),q(X2)) < q(X1∩X)
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< Max(q(X1),q(X2))), bi-factor enhancement (q(X1∩X) > Max(q(X1),q(X2))), independent
(q(X1∩X) = q(X1) + q(X2)), and nonlinear enhancement (q(X1∩X) > q(X1) + q(X2)).

In the study, nine driving factors of natural environmental factors and socio-economic
factors were selected based on previous studies [12,63], specifically including aspect
(ASPECT), elevation (DEM), slope (SLOPE), LULC, potential evapotranspiration (PET),
precipitation (PRE), temperature (TEM), GDP, and POD. The GD package in R 4.3.1
(https://CRAN.R-project.org/package=GD, accessed on 26 August 2023) was used opti-
mally to discretize continuous variables (nine driving factors) and to complete the analysis
of ESs’ driving mechanisms.

3. Results
3.1. Spatiotemporal and Trend Changes of ESs
3.1.1. Spatiotemporal Changes of ESs

Figures 3 and 4 show the spatial distribution and temporal changes of four ESs (WY,
CS, SC, and HQ) in the YZRB and the YRB from 2001 to 2021. In the YZRB (Figure 3),
the average annual WY gradually increased from west to east (upstream to downstream),
with the eastern part of the basin reaching a high average WY of up to 1678 mm. The CS
showed fluctuating increasing changes from 2001 to 2021, with a multi-year average CS of
0.935 KgC/m2 and the lowest and highest values mainly distributed in the northwest and
southwest, respectively. High-SC values were predominantly in the central YZRB, with a
multi-year average of 3952.38 t/km2. High-HQ areas were primarily located in the western
region, with a multi-year average value of 0.652.
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In the YRB (Figure 4), the average WY increased from north to south, but the highest
value was only 599 mm, which is much smaller than that in the YZRB. The CS decreased
gradually from southeast to northwest, with a multi-year average value of 0.525 KgC/m2.

https://CRAN.R-project.org/package=GD
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The SC decreased mainly from southwest to northeast, with a multi-year average value
of 443.37 t/km2. The average HQ was lowest in the northern regions with barren type,
followed by the southern regions with croplands. Conversely, high-HQ areas were mainly
located in the central areas where grasslands and some forests were distributed. In sum-
mary, the ESs displayed noticeable differences across different basins during the same
period or within the same basin at other times.
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and (p) HQ from 2001 to 2021.

3.1.2. Trend Changes of ESs

Significant spatial disparities of the four ESs were observed in both basins using the
Sen’s slope and the M–K trend test (Figure 5). In the YZRB, the increasing trends of WY
exhibited high (α = 0.01) and moderate significance (α = 0.05), accounting for 9.24% and
12.74%, respectively, mainly in the central regions (e.g., eastern Sichuan, central Chongqing,
and southern Jiangxi). Conversely, highly significant decreases were primarily distributed
in the western YZRB (e.g., western Sichuan and northwest Yunnan). The CS increasing
trends accounted for approximately 83.44%, with 38.15% exhibiting highly significant
increases (e.g., eastern Sichuan and southern Qinghai). Nevertheless, the CS decreased
across 14.83% of the YZRB, with highly and moderately significant decreases observed in
only 1.40% and 1.52%, primarily in the southern YZRB. The SC increasing trends accounted
for 79.12% of the YZRB, including highly (11.40%) and moderately (12.39%) significant
increases, mainly in the central and eastern regions. However, 1.83% of the area exhibited a
significant SC decrease, mainly in the northern part. The HQ increased in 47.72% of the
YZRB, primarily in the central region (24.91% highly significant). However, approximately
33.62% of the YZRB exhibited decreasing HQ trends, with 11.96% experiencing highly
significant decreases.
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In the YRB, the WY exhibited highly and moderately significant increases, totaling
10.11% and 22.06%, mainly in the south (e.g., southeastern Qinghai and southern Gansu).
The CS of 94.84% area experienced increasing trends, with 62.88% showing highly sig-
nificant (α = 0.01) increases (e.g., Shaanxi, eastern Shanxi, and eastern Gansu). The SC
increased across 89.29% of the YRB, with 7.28% displaying highly significant and 18.80%
moderately significant increases, primarily in the southern regions. The HQ of 29.82% of
the YRB displayed improvements, mainly in the north (18.10% highly significant), while
35.65% exhibited decreases, primarily in the southern urban and agricultural zones (21.86%
highly significant). Four ESs of both basins showed an overall improvement trend.

3.2. Trade-Offs/Synergies Analysis of ES

Figure 6 illustrates the trade-off and synergistic relations among ESs in the YZRB
and the YRB. The relationship of WY–CS indicated coexistence synergy and trade-off
dynamics. In the YZRB, synergies (61.04%) were mainly distributed in the central regions
(e.g., eastern Sichuan, Chongqing, Hubei, and Jiangsu), whereas trade-offs (37.02%) were
primarily concentrated in western Sichuan and southern Jiangxi. In the YRB, 86.69% of
the area exhibited a positive correlation, with significant synergy regions mainly in the
north and east. For WY–SC, the positively correlated areas covered 92.28% and 89.36%
of the YZRB and the YRB, respectively, with the strongest correlation in the (0.8–1) range,
signifying a robust synergy where an increase in one ES promoted the other. For WY–HQ,
negatively correlated areas accounted for 55.04% and 48.31% of the YZRB and the YRB,
respectively, whereas positively correlated areas constituted 38.11% and 34.29%, indicating
a trade-off relationship as the primary interaction. Some regions exhibited an ineffective
trade-off/synergy relationship, possibly attributed to stable land cover and unchanging
HQ values. For CS–SC, negative correlations covered 32.25% and 6.18% of the YZRB
and the YRB, respectively, distributed in the western regions (e.g., western Sichuan) and
southeastern areas (e.g., Jiangxi) of YZRB. Positive correlations covered 61.26% and 86.81%
of the YZRB and the YRB, respectively, mainly located in the northern and eastern regions
of the YRB and eastern Sichuan, Chongqing, and Hubei of the YZRB. For CS–HQ, the
YZRB featured an interplay of trade-off (37.19%) and synergy (55.12%) relationships, with
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a higher synergy in the central YZRB. In the YRB, synergy (44.45%) prevailed in the north,
whereas trade-off (38.09%) dominated the south. For SC–HQ, trade-off areas comprised
35.48% (YZRB) and 43.29% (YRB) of their respective basin areas, whereas synergy areas
covered 53.03% (YZRB) and 35.96% (YRB). However, these relationships in both basins
were primarily characterized by weak trade-offs and synergies scattered across regions.
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3.3. Driving Factors Analysis in Different ESs

In this study, GeoDetector factor detection was employed to analyze the impact of
nine dependent variables on four ESs (taking 2021 as an example), revealing effecting
coefficients (q-statistic values) and significance levels (p-value, all < 0.0001) (Figure 7). For
WY, PRE and PET remained the most influential driving factors in both basins, playing
significant roles in WY services, whereas the contributions of SLOPE, GDP, and ASPECT to
the WY in both basins were relatively limited. In addition, the overall influence of each
driving factor on WY was more significant in the YZRB than in the YRB. For CS, DEM,
PET, PRE, and LULC were the critical factors in the YZRB, with DEM having the most
significant influence (q = 0.345), whereas other factors showed a slight impact (q < 0.1).
LULC, PET, and PRE were primary factors in the YRB, but their influence was relatively
low (q < 0.2), and other factors had small contributions (q < 0.1). For SC, SLOPE was the
leading factor in both basins. In the YZRB, LULC, DEM, and TEM were also influenced
factors, whereas other factors had a minor impact (q < 0.1). In the YRB, PET, PRE, and
LULC played an influential role in SC, but their influence was limited (q < 0.2). For HQ,
LULC was the dominant factor in the YZRB and the YRB, with high q-values (0.91 and 0.92,
respectively). In summary, the factor detection results highlighted variations in dominant
factors across ecosystems.
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The interaction detection (Figure 8) revealed that pairs of driving factors had a more
significant influence on ESs than individual factors. For WY, LULC∩PRE (LULC∩PET) had
the most significant influence in the YZRB and the YRB, each with a q-value of 0.947 and
0.868, respectively, closely followed by DEM∩PRE (DEM∩PET). Additionally, 9 (YZRB)
and 13 (YRB) pairs of driving factors exhibited nonlinear enhancement, primarily involving
the interaction between aspect or slope and other factors. For CS in the YZRB, the most
significant interaction was DEM∩LULC (q = 0.453), followed by LULC∩TEM (q = 0.447).
Moreover, the interaction between TEM, ASPECT, or SLOPE and most factors significantly
boosted CS services in a nonlinear enhancement. For CS in the YRB, LULC∩PRE and
LULC∩PET had the most substantial interaction (q = 0.203), while interactions between
SLOPE or ASPECT with any factor enhanced the explanatory power through nonlinear
enhancement. For SC in the YZRB, interactions demonstrated nonlinear (9 pairs) and bio-
factor (25 pairs) enhancements, among which SLOPE∩PRE and SLOPE∩PET had significant
impacts with q-values of 0.428. For SC in the YRB, interactions were mainly nonlinear
(29 pairs) or bio-factor (6 pairs) enhancements, with SLOPE∩PRE and SLOPE∩PET being
the most robust driving factor pairs. For HQ in the YZRB, interactions mainly strengthen
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HQ by nonlinear (11 pairs) or bio-factor (24 pairs) enhancements, with LULC∩DEM having
the most effective influence (q = 0.973), followed by interactions of LULC with PET, PRE,
and TEM, each at q = 0.972. For HQ in the YRB (Figure 8h), the most potent interactions
were LULC∩DEM and LULC∩TEM, both with q-values of 0.961, followed by LULC∩PET
and LULC∩PRE, both at q = 0.958.
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3.4. Driving Factors Analysis of Trade-Offs/Synergies in Different ESs

Factor detection results demonstrated that varying driving factors influence trade-
off/synergy relationships between ESs in the YZRB and the YRB, with generally more
notable impacts in the YZRB (Figure 9). For WY–CS in the YZRB, DEM, LULC, PET, PRE,
and TEM played major roles, with respective q-values of 0.212, 0.182, 0.227, 0.227, and 0.249,
while in the YRB, only PRE and PET had q-values exceeding 0.1. For WY–SC, WY–HQ, and
SC–HQ, LULC had higher q-values than other factors in both basins. Specifically, q-values
in the YZRB were 0.324, 0.172, and 0.170 for the three relationships, while in the YRB, they
were 0.284, 0.151, and 0.144, respectively. For CS–SC, key factors were LULC, DEM, PET,
PRE, and TEM, similar to those influencing the WY–CS relationship. However, for CS–HQ,
driving factors had limited impact in the YZRB, with q-values all being below 0.1, whereas
LULC, PRE, and PET were the primary drivers in the YRB. Typically, LULC emerged as a
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dominant factor shaping trade-offs and synergies among ESs in both basins, underscoring
its crucial role in ES dynamics.
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Interaction detection revealed that except for the PRE∩PET, which independently
explained trade-offs/synergies in six ES pairs, interactions among other driving factors
increased explanatory power for these pairs (Figure 10). For WY–CS, LULC∩TEM had
the most significant influence in the YZRB (q = 0.356), while LULC∩PRE and LULC∩PET
were dominant in the YRB (q = 0.234). The WY–SC in the YZRB showed 23 pairs of factors
with nonlinear enhancements in explanatory power, primarily driven by influential LULC
interactions, notably LULC∩TEM (q = 0.416). The WY–SC in the YRB had 30 pairs of factors’
nonlinear enhancements, the most significant being LULC∩PRE and LULC∩PET (q = 0.368).
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For WY–HQ, LULC∩PRE and LULC∩PET had the most significant explanatory power, with
q-values of 0.223 (YZRB) and 0.184 (YRB). For CS–SC in the YZRB, most factor interactions,
except for ASPECT and SLOPE∩POD, generally strengthened the explanation nonlinearly,
with LULC∩PRE and LULC∩PET having the most significant influence (q = 0.356). For
CS–SC in the YRB, DEM∩PET and DEM∩PRE had the most significant impact (q = 0.324).
For CS–HQ, YZRB had 26 pairs increasing explanation nonlinearly, but the highest q-value
was only 0.105 (LULC∩TEM). YRB had 14 pairs increasing explanation nonlinearly, with
LULC∩PRE and LULC∩PET having the most considerable influence on CS–HQ (q = 0.280).
For SC–HQ, LULC∩PRE and LULC∩PET were more explanatory, with q-values of 0.206
(YZRB) and 0.179 (YRB).
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4. Discussion
4.1. Explanation of Influencing Factors on Spatio-Temporal Dynamics of ESs

Factor detectors were used to analyze the driving forces of four ESs, revealing that
different dominant factors influence each ES. In this study, the WY was influenced by
multiple factors, including precipitation, potential evapotranspiration, elevation, tempera-
ture, and LULC (Figure 7), which constituted a complex process driven by the coupling of
these various factors [64]. Climate factors had a more significant impact on WY services
than anthropogenic factors [12,75], particularly the direct influence of precipitation on WY
(Figure 7a,c). The WY from 2001 to 2021 all showed increasing changes with increasing
precipitation grades (Figure S3), and both exhibited similar spatial distribution patterns,
with regions receiving higher precipitation (e.g., eastern YZRB) generally having higher
WY (Figure S2a). Furthermore, existing research has shown a close relationship between
potential evapotranspiration and actual evapotranspiration, both of which influence WY
services [64], corroborating the findings of our study. The influence of LULC on WY, while
individually less significant than climate factors in both basins, was notably strengthened
by its interaction with precipitation (Figure 8a), which is consistent with the findings of
Yang et al. [76].

Elevation and LULC were the main factors affecting CS in the YZRB and the YRB,
respectively. The distribution of CS in the YZRB exhibited an initially increasing trend and
then a decreasing trend with rising elevation (Figure S4). Higher elevation in natural forests
reduces human disturbance, resulting in longer vegetation growth, greater biomass, and in-
creased CS capacity. However, in unaffected or secondary forests, higher elevations decline
above-ground biomass and CS capacity [77]. Hu et al. [78] identified that elevation signifi-
cantly impacted the CS in the Sichuan Basin. Regarding the YZRB, the interaction between
LULC and elevation significantly improved the explanatory power for CS. Sha et al. [79]
indicated that LULC significantly impacts CS and emissions. Kafy et al. [80] demonstrated
that a decrease in vegetation cover reduces CS capacity, underscoring the importance of
effective land use planning and management strategies to minimize the environmental
impacts of human activities on CS capacity. In the YRB, increased CS was mainly observed
in vegetation regions, with LULC changes from 2001 to 2021 showing growth in grasslands,
forests, and croplands, among other vegetation cover types (Figure S5).

Slope emerged as the primary factor explaining SC, and the maximum SC capacity in
both basins was observed in areas with slopes exceeding 25◦ (Figure S6), with SC capacity
increasing with slope steepness [12,81]. The interaction between slope and precipitation
held substantial explanatory power for SC, aligning with the results of Li et al. [82]. How-
ever, some studies suggested that soil erosion could intensify with steeper slopes [56], as
high-slope areas were more susceptible to erosional forces, potentially affecting SC. Human
activities, like land expansion, could disrupt soil and water conservation environments,
altering spatial patterns of SC and impairing its effectiveness [83]. Therefore, ongoing
support for ecological engineering initiatives, especially those targeting slope restoration,
remained crucial to bolstering SC capabilities in priority conservation areas.

LULC wielded a dominant influence on HQ, with deciduous and broadleaf forests
showing the highest quality, followed by water bodies, permanent wetlands, and grass-
lands, whereas cultivated land demonstrated the lowest quality (Figure S7). Previous
research consistently affirmed that forests, shrublands, and grasslands were associated
with higher HQ due to their favorable ecological conditions and reduced habitat fragmen-
tation, making them suitable for diverse flora and fauna. Increasing the extent of these
land types significantly enhanced HQ services [34]. However, human-induced land cover
changes, like urban expansion and cultivation, reduced patch connectivity and landscape
fragmentation, resulting in lower HQ in areas with intense human activities, especially in
croplands [82]. Changes in LULC from 2001 to 2021 in both basins showed a significant
expansion of forests and a slight cropland reduction in the YZRB (Figure S5), aligning with
the overall upward trend in HQ.
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4.2. Explanation of Trade-Offs/Synergies among ESs

Several ESs exhibited both synergistic and trade-off relationships in both basins. In
the YRB, ESs like WY–CS, WY–SC, CS–SC, and CS–HQ exhibited stronger synergistic
relationships, whereas trade-offs were dominant in WY–HQ and SC–HQ. Similarly, in
the YZRB, most ESs primarily exhibited synergistic relationships, except for the trade-
off dominance in WY–HQ. In the YRB, increased multi-year precipitation contributed
to greater WY, promoting plant growth, biomass, and, subsequently, CS, indicating a
synergistic relationship between WY and CS. In the YZRB, particularly in southern Sichuan,
reduced multi-year precipitation decreased WY, leading to an increasing trade-off of WY–
CS. Previous research indicated that expanding vegetation cover could enhance CS, but
increasing evapotranspiration and decreasing available groundwater could reduce WY [84].
In addition, higher WY, through changes in land use or agricultural practices, may reduce
carbon storage and increase carbon emissions. The synergistic relationship between WY
and SC stemmed from similar biophysical linkages and soil-hydrological processes [12].
The increased vegetation cover from 2001 to 2021 improved HQ (Figure S7) and raised
regional surface evaporation, intensifying the trade-off of HQ–WY [85]. The synergistic
relationship of CS–SC corresponded with previous findings [49], as increased vegetation
cover enhanced CS capacity and reduced rainfall erosion, improving SC capacity [86].
However, extensive afforestation could introduce a trade-off relationship for CS–SC [87].
Combining the spatial distribution and transition of LULC in the YRB (Figures S2e and S5),
conversions of grasslands to croplands in the south reduced HQ and enhanced trade-
offs of SC–HQ and WY–HQ. In addition, increasing SC measures often require changes
in land use patterns (such as the construction of dams or shelterbelts), which lead to
habitat fragmentation and adversely affect the migration and reproduction of wildlife,
thereby reducing HQ. Conversely, in the northern YRB, conversions of bare lands into
grasslands increased HQ and CS, fostering synergistic interactions. The YZRB transition
from grasslands to forests promoted synergy in CS–HQ and SC–HQ.

The YZRB and the YRB displayed differences in trade-offs and synergies among ESs,
guiding relevant management and policies. The YZRB, with diverse vegetation, abundant
water resources, and a developed economy, fosters mutual ES enhancement. Collaborative
efforts optimize resource allocation and ES provision, especially in regions with pronounced
synergies. It is imperative to monitor the trade-off relationship between WY and HQ to
ensure sustainable water resources and biodiversity conservation. Trade-offs, characterized
by uniform land cover, water scarcity, and weaker economic development, especially in
WY–HQ and SC–HQ, were more evident in the YRB. Ensuring adequate water resources
during dry seasons is vital for maintaining HQ, while effective SC measures can reduce
pollutants and improve HQ. Collaboration, especially in the northern and eastern YRB,
supports sustainable ES supply and regional economic development.

4.3. Spatiotemporal Scale Effects

The relationships among ESs change over time [50]. However, most studies on ESs and
their trade-offs/synergies have been static (single year) or discrete time series, which may
lead to misinterpretation of the interrelationships between ESs. The correlation coefficient
approach, which considers long-time data, can effectively investigate the dynamic evolution
of ESs over time and avoid misjudging the unexpected factors and time lag effects in the
long-time evolution of ecosystems [88]. Abundant remote sensing and reanalysis data
provide critical data for ES spatial evaluation of continuous time series [89]. Therefore, this
study explored the continuous long-time series analysis of ESs and their spatial relationship
characteristics by combining multi-source remote sensing data and other fundamental data,
which made the results more credible.

The relationships among ESs have been shown to vary at different spatial scales.
Xu et al. [90] showed that most of the relationships between ESs were robust at all scales, but
there may be a tendency for the correlations of ESs at the pixel scale to be more significant
than at the county scale. Wang et al. [91] found that the significance of correlations among
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ESs varied with spatial scales, e.g., CS and HQ showed trade-offs at the pixel scale but
synergies at the county scale. The interaction of LULC with other drivers was a major
factor driving the relationship between ESs (Figure 10). In contrast, the change of LULC
caused by increasing a specific area (such as forest land) at the pixel scale may lead to
an increase in developed land in the same area, thus affecting the supply of ESs at the
county scale [47]. The relationships among ESs at large scales could not represent these
relationships at the more micro-scale. Therefore, the quantification of trade-offs and
synergies of continuous time series at the grid cells was a further supplement to the overall
trade-offs and synergies at a large scale, which was not only conducive to grasping the trade-
offs and synergies across the entire study object but was also conducive to understanding
their spatial relationships, which could provide a reference basis for the implementation of
more accurate management measures in the basin areas.

4.4. Limitations and Suggestions

The accuracy of InVEST model outcomes relies highly on the input data’s precision
and the module parameters’ configuration. Some parameters, such as the biophysical
parameters for the WY and SC modules and the threat and sensitivity parameters for the
HQ module, are based on existing research. The inherent uncertainties in these parameters
can spread into the simulated ES results [36]. Validating these input parameters through
field observations can reduce their potential uncertainties and obtain more reliable results,
whereas field observations are expensive and typically cover only relatively small areas.
The accuracy of this study’s results may also be affected by the LULC data of the MCD12
product, as previous research has shown that complex mountainous terrain and its associ-
ated terrain- and elevation-related pixel mixing challenges can introduce uncertainties in
such data sets [92]. Although the changes in ESs and their driving mechanisms are explored
based on the pixel scale, the spatial resolution of the output data is 1 km × 1 km, and
higher spatial resolution data should be collected in the future as the input data to InVEST
to simulate ESs more accurately. The YZRB and the YRB span diverse climates, vegetation
types, and landscapes, but four typical ESs cannot fully represent the overall ecological
conditions. Furthermore, ESs are influenced by natural factors and human activities, and
the omission of certain factors in current research may lead to variations in ESs. Finally, this
study ignores the contribution of human activities to climate factors in analyzing ES drivers.
Frequent human activities (such as fossil fuels, greenhouse gases from agricultural and
industrial activities, and aerosol emissions) increase the frequency and severity of extreme
precipitation events [93], further affecting ESs [94]. Therefore, in the future, it is essential
to explore additional factors to understand the drivers (including anthropogenic climate
change) behind the trade-offs and synergies of ESs.

Some suggestions are as follows: (1) Emphasize integrated land use planning to bal-
ance ecological, productive, and residential spaces, optimize urban land use efficiency, and
consider the ecological impact of urban expansion. (2) Conduct scenario analyses to assess
the potential impacts of various land use and management strategies on ESs, facilitating
informed decision-making and sustainable land use planning. (3) Understand how urban
green networks improve landscape connectivity and can enhance ecosystem functions,
biodiversity, and related aspects. (4) Encourage interdisciplinary research involving ecolo-
gists, geographers, economists, and policymakers to provide a holistic understanding of
the complex relationships within ESs.

5. Conclusions

This study employed the InVEST model to estimate WY, SC, and HQ, as well as NPP to
calculate CS. Then, it examined their spatiotemporal changes between 2001 and 2021 in the
Yangtze and Yellow River Basins. Using GeoDetector for factor and interaction detection,
we identified the influence of natural factors and human activities on the four ESs and their
trade-offs/synergies. The main conclusions are as follows:
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(1) From 2001 to 2021, except for HQ in the YRB, the ESs in both basins showed an
overall increasing trend, and the spatial analysis of the ESs revealed different patterns, with
ES values being consistently higher in the YZRB. The highest values of WY, CS, SC, and HQ
in the YZRB were concentrated in the eastern, southwestern, central, and western regions,
whereas the highest values of WY, CS, SC, and HQ in the YRB were concentrated in the
southern, southeastern, southwestern and central grass-covered areas, respectively.

(2) Complex trade-off and synergy relationships were observed among the four ESs,
with distinct spatial heterogeneity. WY–HQ and SC–HQ in the YRB and WY–HQ in the
YZRB were mainly trade-offs, whereas other ESs exhibited synergistic primary relationships.
Notably, the most pronounced synergy was shown between WY and SC, with 90% of the
study area exhibiting a positive correlation.

(3) Precipitation and potential evapotranspiration were the dominant factors influenc-
ing WY. Elevation and LULC were the primary drivers of CS in the YZRB and the YRB,
respectively. Slope and LULC played leading factors in SC and HQ in both basins, respec-
tively. Interactions with slope enhanced the explanatory power for SC. The most crucial
aspect is that LULC and its interaction with other factors strengthened the explanatory
power for WY, CS, HQ, and six pairs of ES trade-off/synergy relationships.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/rs16020411/s1, Figure S1: Accuracy of CRU precipita-
tion and temperature from 2000 to 2020 (n = 7098); Figure S2: The raster data input to the InVEST
water yield module; Figure S3: The annual average changes of WY in the YZRB (a) and the YRB (b)
under different precipitation gradient grades (unit: m); Figure S4: The annual average changes of CS
in the YZRB (a) and the YRB (b) under different elevation gradient levels (unit: m); Figure S5: The
transition of LULC based on MCD12Q1 in the YZRB and the YRB from 2001 to 2021; Figure S6: The
annual average changes of SC in the YZRB (a) and the YRB (b) under different slope gradient levels
(unit: ◦); Figure S7: The annual average changes of HQ in the YZRB (a) and the YRB (b) under differ-
ent LULC types. Table S1: Biophysical parameters used in the InVEST water yield model; Table S2:
Biophysical parameters used in the InVEST Sediment Delivery Ratio model; Table S3: The threat
factor parameters of habitat quality (HQ); Table S4: The sensitive parameters of habitat quality (HQ).

Author Contributions: Conceptualization, Y.Y.; methodology, Y.Y.; software, Y.Y.; validation, Y.Y.;
formal analysis, Y.Y.; investigation, Y.Y.; resources, Y.Y. and L.B.; data curation, Y.Y.; writing—original
draft preparation, Y.Y.; writing—review and editing, Z.X., L.B. and H.D.; visualization, Z.X.; supervi-
sion, L.B.; project administration, H.D.; funding acquisition, Y.Y. and H.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Scientific Research Foundation Project of Yunnan
Provincial Department of Education, grant number 2022J0977, the Nanjing Normal University
Doctoral Dissertation Excellent Topic Funding Program, grant number YXXT21-042, and the China
Scholarship Council, grant number 202206860014.

Data Availability Statement: The data presented in this study are contained within the article.

Acknowledgments: We are greatly grateful for the support of the funds and projects. We are also
very grateful to the anonymous reviewers and editors for their thoughtful review comments and
suggestions which have significantly improved this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviation

ASPECT aspect
CS carbon sequestration
DEM elevation
ES ecosystem service
GDP gross domestic product
GWR geographically weighted regression
HQ habitat quality
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HWSD Harmonized World Soil Database
InVEST Integrated Valuation of ESs and Tradeoffs
LISA Local Indicators of Spatial Association
LULC land use and land cover
M–K Mann–Kendall
NPP net primary productivity
PET potential evapotranspiration
POD population density
PRE precipitation
R Pearson’s correlation coefficient
SC soil conservation
SLOPE slope
SWAT Soil & Water Assessment Tool
TEM temperature
WY water yield
YRB Yellow River Basin
YZRB Yangtze River Basin
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