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Abstract: Given the large volume of remote sensing images collected daily, automatic object detection
and segmentation have been a consistent need in Earth observation (EO). However, objects of interest
vary in shape, size, appearance, and reflecting properties. This is not only reflected by the fact that
these objects exhibit differences due to their geographical diversity but also by the fact that these
objects appear differently in images collected from different sensors (optical and radar) and platforms
(satellite, aerial, and unmanned aerial vehicles (UAV)). Although there exists a plethora of object
detection methods in the area of remote sensing, given the very fast development of prevalent deep
learning methods, there is still a lack of recent updates for object detection methods. In this paper, we
aim to provide an update that informs researchers about the recent development of object detection
methods and their close sibling in the deep learning era, instance segmentation. The integration
of these methods will cover approaches to data at different scales and modalities, such as optical,
synthetic aperture radar (SAR) images, and digital surface models (DSM). Specific emphasis will be
placed on approaches addressing data and label limitations in this deep learning era. Further, we
survey examples of remote sensing applications that benefited from automatic object detection and
discuss future trends of the automatic object detection in EO.

Keywords: object detection; instance segmentation; panoptic segmentation; multispectral; SAR;
multi-modality; few-shot; zero-shot; language model; segment anything model

1. Introduction

With the development of remote sensing technology in recent decades, spaceborne
sensors with sub-meter spatial resolution (World-View2-4, Pleiades, etc.) achieved a compa-
rable image quality to airborne images [1] a few decades ago. With these sensors running
24/7, the volume of data has dramatically grown to the extent that automatic image in-
terpretation, or detection of objects, is becoming necessary. Objects of interest, such as
buildings, vehicles, ships, powerplants, tanks, and solar panels, are nowadays readily
detectable and could often be preformed repetitively given the frequent Earth observational
(EO) datasets. These geographically located objects arguably become one of the most
important information resources in many civilian applications and can be achieved at a
low cost, and accurate object detection approaches should be available [2,3]. The preva-
lence of deep learning in the computer vision (CV) community has dramatically boosted
this possibility by first demonstrating extremely well-catered results in everyday images
using a large capacity model with millions of labeled images [4,5]. This has excelled at
traditionally bounding box-based object detection and additionally driven newer classes of
detection, i.e., instance segmentation or panoptic segmentation (instance segmentation with
background), that establish object detection as the segmented object of interests containing
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well-delineated object boundaries at the instance level (See Figure 1 for the definition of
different types of object detection).
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Figure 1. Visual definition of (A) bounding box-based object detection (building); (B) instance
segmentation (building); (C) panoptic segmentation (combining both instance segmentation and
other background classes).

Object detection methods date back to early and traditional methods that rely on
hand-crafted and distinctive features, such as SIFT [6] and HOG [7], and match objects
of interest in the images based on object examples (template image). Then, bounding
boxes are extracted to describe the successful detections. As deep learning (DL) became
standard in many image-recognition problems, the traditional handcrafted feature-based
approach, at least in cases where sufficient labels could be found, was sooner superseded
by DL models with learnable features. It was shown that, as larger and larger datasets are
becoming more available [8–13], the performance of bounding box-based object detection
has dramatically improved and further developed into instance and panoptic segmentation
models where objects of interest are delineated at the individual pixel level [5,14,15].

As compared to everyday images, EO images are more diverse in content and data
modality, and most importantly, they possess much fewer community contributions to
labeled data. For example, typical CV images are mostly collected by citizen scientists or
researchers using cameras at the ground level; thus, they share similar scene structures
and can be well described as the number of training samples grown. However, the EO
assets can be diverse in terms of their modality (optical and SAR), resolution, and content,
making these well-consolidated approaches less applicable to EO data. For instance, it
is difficult to directly transfer existing deep learning methods to deal with optical and
SAR (synthetic aperture radar) images due to the highly diversified data across multiple
modalities and resolutions as well as the lack of designated training sets. The nature of EO
data with an overhead view inherently delineates objects on the ground (i.e., buildings,
vehicles, etc.) with relatively smaller sizes as compared to their background [16], oftentimes
taking up image footprints of fewer than 100 pixels, making them easily polluted by
noise and randomness due to their geographical diversity, object scale, morphology, and
sensor responses.

These challenges in EO make the object detection problem in this context much more
open to address. Therefore, in order to approach the problem in a more tractable manner,
researchers explored the use of multi-modal data to improve the discriminativeness of
features in the scarcity of data labels. This assumes that data from multiple sources, includ-
ing optical, SAR, and light detection and ranging (LiDAR) or photogrammetric data, can
help the algorithm better comprehend the object classes, especially when limited training
samples are available [17–19]. This, however, brings new challenges and solutions in DL
from multi-modal data, which leads to flows of efforts to address. In parallel, more and
more recent works consider leveraging the vast volume of both nature images in CV and
remote sensing images to perform so-called X-shot learning [20–25], harnessing the power
of pre-trained and fine-tuned networks to boost object detection performances [25,26]. This
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was further aided by using the nowadays well-developed language models to realize
automated object detection in a much larger label space, i.e., fine-grained object detection.

We found that, despite the rich literature on the topic of object detection in EO data,
there are no new surveys summarizing these emerging works in object detection with EO
data, and a comprehensive survey of such is critically needed. In this paper, we provide an
update and systematic synthesis of the current object detection methods for use in EO data,
with a specific focus on methods driven by DL, such as instance and panoptic segmentation,
as well as methods for use in the case of multi-modal data. We will also survey emerging
methods that integrate language models to further automate fine-grained object detection.
Compared to other review articles, we organize the object detection tasks from sensor and
imagery features including optical, SAR, and 3D data. In addition, we also include the
learning strategies for multi-modal source of remote sensing data and label imbalances and
categorical inconsistency issue, which few remote sensing review papers study. Our survey
will start by briefly introducing typical sensors and resolutions of EO data (Section 2),
then set up a commonly used framework to encapsulate the various emerging works
mentioned above, including multi-modal data, X-shot learning, and language models
(Section 3). In order to make the readers aware of the ever-growing dataset, we compiled a
short description of the most used datasets in the area (Section 4). Further, we provide an
overview of existing EO applications that significantly benefited from the ever-enhanced
object detection methods (Section 5). Finally, we conclude the review by providing our
thoughts on the status quo of the current efforts and future trends.

2. Overview of EO Sensors and Data

Early remote sensing land-cover and land-use products adapt a spatial resolution
varying from 100 m to 1 km per pixel [27], which is based on pixel-level classification.
With the development of sensor technologies, high-resolution and very high-resolution
(VHR) cameras and sensing devices are now readily available for a variety of platforms,
including satellite, airborne, and unmanned aerial vehicles (UAVs). From these high spatial
resolution images, ground object detection tasks can be achieved with aerial images, UAV
images, and space-borne images with a higher spatial resolution than 10 m [28], and many
more ground objects can be observed clearly from these images; then, researchers can
use multiple automatic methods to locate and recognize these ground objects by using
detection methods.

Remote sensing data for object detection can be divided into three categories: (1) 2D
passive data, which will collect the reflectance of natural light or thermal using optical
sensors and generate optical imagery; (2) 2D active data, which will actively transmit
signals and then collect the reflectance, such as SAR; (3) 3D data, such as from LiDAR
and photogrammetric data generated from 2D imagery. Both optical and SAR sensors can
capture ground objects with their unique features in images, and 3D data can also be repre-
sented in an image/raster format (height or depth map). Therefore, this introduces a great
level of flexibility when adapting image-based methods to different modalities. However,
different modality information from sensors may provide complementary information (e.g.,
the SAR data can generally penetrate clouds, providing information about the scene under
weathered conditions while the images are subject to strong speckle noise), and optical
images, especially spaceborne images, are constrained to cloud-free acquisitions but can
provide more object details with significantly less noise.

Therefore, understanding the imaging characteristics of these sensors is necessary to
make full use of their potential. In the following subsections, we provide an overview of the
characteristics of data from different sensors, including optical data, SAR, and LiDAR data.

2.1. 2D Passive Data: Optical Sensors and Images

Optical data are the most common source in remote sensing, which captures the
reflected energy of the ground primarily from solar radiation. Spaceborne sensors are one
of the preferred means to effectively reconstruct ground objects at the global level [29].
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Currently, this is made possible with high-resolution satellite imagery (between 0.3–10 m
ground sampling distance (GSD)). Most satellite sensors contain both panchromatic band
and multispectral bands, in which the panchromatic band covers the entire visible and
near-infrared range. Because it does not need to share pixels to store information from
multiple bands, it can be made with a higher resolution. The multispectral bands store
spectral information for individual and narrower ranges; they are designed with a lower
resolution. Such a setup allows for users to extrapolate multispectral information by
using the panchromatic image. This is performed through pan-sharpening [30], which
essentially fuses the high-detailed panchromatic image with the high-spectral resolution
multispectral image to produce high-resolution multispectral images. Oftentimes, the
spatial and spectral resolution of the data may decide the level of granularity in the object
categories. For example, cars usually take up tens of pixels in satellite images with a 0.3 m
GSD, while for images with a GSD of 5 m or lower, cars are at sub-pixel level; hence,
they are not detectable. In addition, spectral information may play an important role in
identifying certain objects. For example, the near-infrared (NIR) band is the pivot for
vegetation detection [31,32]; from the physical sensing perspective, the chlorophyll of the
vegetation has a unique reflectance response for NIR. Moreover, spaceborne platforms have
complex data logistics; since data transmission on the spaceborne platforms is subject to
power and bandwidth [33], it has been more often recognized that on-board processing
with light detection networks is important to perform on-demand and selective data and
result transmission [34,35].

Airborne sensors are mounted either on manned airplanes or UAVs, which, as com-
pared to those of spaceborne platforms, can capture data with a higher resolution. The
common spatial resolution for aerial-based sensors is 0.1–0.3 m GSD (or National Agricul-
ture Imagery Program (NAIP) with 1 m GSD), and for UAV-based sensors, it is smaller than
0.1 m GSD. Aerial and UAV platforms are often more flexible given that the sensor suites
and flight design can be made based on specific project requirements per flight campaign.

In summary, Figure 2 lists spatial and spectral resolution ranges of the sensors on three
platforms, i.e., satellite, airborne platform, and UAV. Depending on specific application
scenarios and the size of the object of interest, users opt to use the appropriate sensors (and
platforms), which cover object sizes from centimeters to meters.
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2.2. 2D Active Data: Synthetic Aperture Radar Data

Synthetic aperture radar (SAR) provides an active observation solution to capture
ground objects by using the microwave and measuring the backscattered signal. SAR
sensors can capture scenes under all weather conditions, i.e., penetrate certain air elements
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(clouds and fog) and ground matters (leaves, snow, and sand). Given the imaging physics
of SAR, its imagining-level preprocessing is often more complex; as SAR is a side-looking,
ranging device (radar-image plane), the positioning of the backscattered returns in the
image depends on how far away the target is from the antenna along the slant plane [36].
Typical SAR sensors for ground object detection tasks can reach a higher spatial resolution
of 10 m and can reach 1 m for airborne SAR and sometimes spaceborne SAR (Table 1 lists
the example of SAR systems in use). In addition, since SAR operates at the microwave
level, it can measure signals with different polarizations (vertical and horizontal), which
is specifically useful to differentiate ground objects with their surface properties [37,38].
For example, rough surfaces tend to scatter radar waves, while smooth surfaces tend to
produce more specular reflections. SAR imagery of smooth surfaces tends to receive no
signals, while the intensity of the received signal (a fraction of the emitted strength) may
grow as the surface roughness increases. This feature allows for SAR imagery to easily
differentiate objects on water surfaces, such as ships and oil spills. Ships create waves
with distinct roughness patterns, while oil spills typically dampen waves and thus create a
smoother surface. Such patterns can be robustly detected using simple algorithms [39–42];
therefore, they are widely used in practice. In addition, SAR signals are sensitive to 3D
structure or height changes for ground objects due to the geometry mechanism of side-view
radar waves and the shadowing and layover effects of radar, which benefit the detection of
3D structural changes of the object. However, one of the biggest challenges of SAR data
is the well-known and undesired speckle effects of the signal, where the return signals
are randomly influenced by each other, causing challenges for many of the detection
algorithms [43,44].

Table 1. SAR sensor information with spatial resolution and band coverage.

Sensor
Spatial Resolution (GSD)

Band InformationStaring
SpotLight SpotLight Ultrafine StripMap

TerraSAR-X 0.25 m 2 m 3 m X-band: 9.65 GHz
COSMO-SkyMed 1 m 3 m X-band: 9.6 GHz

Sentinel-1 5 m C-band: 5.405 GHz
Geofen-3 1 m 3 m 5 m C-band: 5.4 GHz

RadarSat-2 1 m 3 m C-band: 5.405 GHz
ALOS PALSAR-2 1–3 m 3 m L-band: 1.27 GHz

ICEYE 1 m 3 m X-band: 9.75 GHz
Capella-2 0.5 m 1 m 1.2 m X-band (9.4–9.9 GHz)

2.3. 3D Data: LiDAR and Photogrammetry Data

Three-dimensional information from remote sensing is also significant to assist remote
sensing-based object detection. Object height will bring crucial information on the geometry
of the objects to better differentiate them into different categories [45,46]. Three-dimensional
information can be acquired using remote sensing techniques, such as LiDAR (mostly
airborne), photogrammetry, and SAR interferometry/tomography. These approaches
generally produce 3D information in the form of point clouds. To facilitate an existing
image-based object detection framework, this 3D information is typically converted into a
raster format (height or depth map) through projection. Then, this height/depth map is
used either as an additional band or source for the input of a detection framework.

LiDAR adapts nanometer wavelengths (laser) to obtain the backscatter as a point
with distance and intensity information. It either measures the time of flight of the laser
pulse or the phase differences for distance measurements. With a single scan, the result-
ing measurements contain millions of points, forming point clouds that characterize the
accurate geometry of the surface. The point spacing (spatial resolution) for airborne LiDAR
usually has a range of 0.05–0.1 m. Object detection approaches directly on LiDAR have
been intensively investigated in the computer vision (CV) community, e.g., in automated
driving [47]. Similar approaches were used for airborne or UAV-borne LiDAR. More often
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in a remote sensing context, LiDAR data are integrated into an image-based object detection
pipeline, and a necessary conversion is required from an unevenly distributed point cloud
to a raster format, such as a depth map or an elevation map [48,49].

In addition to LiDAR, there are other methods to generate 3D information. For
example, 3D photogrammetric point clouds are generated based on dense stereo matching
using multi-view optical remote sensing images [50–57]. InSAR (Interferometric SAR),
although considered image-based 3D, uses a completely different mechanism to derive
3D. Instead of deriving 3D using perspective parallaxes, it uses the phase shifting of
microwaves through interferences to derive topographic information [58]. Generally,
LiDAR produces the most accurate topographic information, although it is expensive to
acquire. Three-dimensional information derived with photogrammetry depends on the
sensors and resolution, but InSAR-based topographic information is relatively coarse and
is often used as the foundational terrain layer for orthorectification, e.g., the Shuttle Radar
Topography Mission (SRTM) DEM.

3. An Overview of Remote Sensing Object Detection and Segmentation

Object detection aims to find the location and category of all interesting objects in
images or 3D data; often, the results are in the form of bounding boxes. Instance seg-
mentation [14,59] aims to delineate the extracted boundaries of the individually detected
objects. When the background object/scene categories are of interest, panoptic segmenta-
tion [15] can be employed to extract the background categories where these objects sit. In
remote sensing datasets, the processes of image-based object detection and segmentation
are employed to extract pertinent feature information from optical or synthetic aperture
radar (SAR) images, 3D data, or 2D data with height information. Due to the inherent
characteristics of sensors, remotely sensed data exhibit greater diversity in terms of object
scale, spectral reflectance, morphology, etc.; therefore, it poses unique challenges in object
detection and related tasks.

A typical object detection and segmentation pipeline for both traditional and deep
learning methods contains three major steps: proposal generation, feature extraction, and
object classification (and segmentation), which will be introduced in Section 3.1. The
performance of traditional methods, such as SVM [60] and a decision tree [61], highly relies
on the quality of human-designed features and their limitations in terms of their model
simplicity. Instead, the prevalent deep learning approaches nowadays are gaining enough
thrust in a promising direction as they can easily achieve a much better performance than
traditional methods, which will be introduced in Section 3.2.

Remote sensing imagery has special physical characteristics in terms of data accessibil-
ity and label distribution; often, both data and labels are relatively limited as compared
to ground-level images (in the CV community). Therefore, utilizing muti-modality data
is one of the necessary paths. The recently developed sensor systems allow for the si-
multaneous collection of both images and LiDAR point clouds, such as the commercial
solution Citymapper [62] or the researcher-designed solution [63,64]. Oftentimes, the 3D
information can also be derived through stereophotogrammetry. Therefore, it is possible
to combine the image and the 3D information (e.g., DSM). Moreover, most optical remote
sensing images typically include more than just visible (RGB) bands, allowing for the
detection of a wider range of reflectance features of ground objects, which is in Section 3.3.

Despite the recent boost of community-contributed datasets, the label for EO datasets
is still insufficient to develop object detection models at the global scale. Existing EO
datasets suffer the label imbalances and categorical inconsistency. i.e., different label defini-
tions across different datasets, and oftentimes, inaccuracy due to the citizen/crowdsource
contributions lack quality control (e.g., the OpenStreetMap (OSM) [65,66]). Therefore, many
object detection tasks still need to be operated on given weak labels (noisiness, imbalance,
open-set [67,68]). Therefore, methods to perform object detection under weak supervision
are necessary (detailed in Section 3.4). Furthermore, there is a growing trend in multi-modal
interaction in human–machine teaming to enable a context-driven, text-based search, which
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utilizes language models to interact with detected remote sensing objects, and details of
this topic are discussed in Section 3.5.

3.1. Common Pipeline for Object Detection in EO Data

The general framework to detect objects in an image with both traditional and deep
learning image processing methods follows a cascade workflow, including (1) object pro-
posal generation, (2) feature extraction, and (3) object classification, as shown in Figure 3,
with various pre-processing or post-processing depending on the input and required output.
Typical image pre-processing includes color normalization, image size scaling and clipping,
or other methods to normalize images and improve the image quality. Pre-processing is also
necessary for deep learning-based methods for object detection and instance segmentation.
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Instead of assuming a window center on every pixel being a potential object candidate,
proposal generation uses methods (often lightweight and efficient) to detect the region of
interest (ROI), where potential candidates are. The traditional proposal generation method
will adopt the sliding windows with a very efficient first pass of feature description and
decision (e.g., intensity feature, template matching, or shallow classifiers) [69,70], where
the subsequent detection will be based.

The feature extraction will discover color, texture, or height features inside a proposal
using feature detectors such as Haar [71], HOG [7], SIFT [6], SURF [72], ORB [73], and so on.
In optical (multispectral) images, features including color, texture, and edge information
may be used to identify objects. In addition, in SAR images, features such as backscattering
intensity and texture may be used instead. In the DSM/DEM raster, features can be height
and height gradients or more complex shape indices [74].

In the object classification or decision step, the classifier is trained to distinguish the
object class based on the feature inside the proposal. Typically, the classifier can be any
common supervised classification method, such as SVM [60,70], a decision tree [61,75],
random forest [76,77], or more complex deep learning models [78,79].

The post-processing may include heuristic steps that filter out small patches, remove
duplicated detections, etc., to keep the results in compliance and, at the same time, eliminate
possible false positives. Examples of techniques, such as connected component analysis (for
small object removal), non-maximum suppression (for removing duplicated detections), or
confidence-based filtering (removing objects with low posterior confidence scores), can be
applied in this process.

When the exact boundaries of the individual objects are desired, segmentation ap-
proaches, such as instance segmentation and panoptic segmentation, can be further applied.
Traditional image segmentation will group similar (color or features) pixels for a certain
class, which will first segment the foreground and background within the bounding box
(such as K-means [80], mean-shift [81], or supervised methods [70,82]), then segment
multiple classes that the bounding box should contain.
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Deep learning-based methods still follow the same object detection framework (as
shown in Figure 3), while it uses a convolutional layer to replace the feature extraction
step and a regional proposal network (RPN) to replace the proposal generation step in
the traditional method framework, which have been shown to outperform traditional
methods [83].

3.2. Deep Learning Methods for Object Detection in EO
3.2.1. Object Bounding Box Prediction

Traditional object detection algorithms rely on handcrafted features and cascaded
frameworks, as partly discussed in Section 3.1. The cascaded framework (Figure 3), which
consists of object proposal generation, feature extraction, and object classification, has been
inherited by two-stage deep learning methods. In these methods, an end-to-end deep
neural network replaces feature extraction and classification, while another neural network
replaces the object proposal generator. These approaches were reported to have significantly
improved the object detection performance and speed. Another class of methods performs
object detection and classification in a single stage: instead of using sliding windows or
selective search algorithms to find object proposals, single-stage methods use a grid-based
approach to cover the entire image and perform object detection and classification in a
single pass through a deep neural network.

Two-Stage Object Detection Methods

Among the two-stage object detection methods, the most famous representative is the
region-based convolutional neural network (R-CNN) [5] and its variant/derived methods.
The detection method can be divided into the region proposal stage and classification stage.
In the first stage, selective search algorithms are applied to generate region proposals,
which can be then passed to the classification network in the second stage. The R-CNN
family of algorithms is known for its high accuracy, but it is computationally expensive,
as it requires multiple forward passes through the CNN for each prediction. Most of its
variants focus on improving speed and reducing computational efforts. Fast R-CNN [84]
is a successor to R-CNN. To avoid feeding every region into the classification network, it
applies feature extraction on the entire image and then crops feature maps according to
region proposals, which has significantly improved the efficiency of the approach. Faster
R-CNN [85] uses a region proposal network (RPN) to replace classical selective search
algorithms to reduce the running time in the first stage. However, faster R-CNN still needs
to pass each region into a fully connected network, a computational step. R-FCN [86]
addresses the problem by introducing full convolutional architecture that further boosts
the speed without a performance loss.

In remote sensing research, modifications are proposed to adapt the characteristics of
overhead imagery. Remote sensing images are taken at a distance; thus, the size of most
ground objects is small in their pixel footprints. Ren et al. [87] adjusted the RPN network
to provide more anchors and modified the feature extraction network to provide high-
resolution feature maps. In addition, the introduced contextual detection model utilized
surrounding information to boost the performance of small object detection. Bai et al. [88]
improved faster R-CNN by using a dense residual network (DRNet) as the backbone
network and borrowed the ROI align method [14] to facilitate building detection in remote
sensing images.

Single-Stage Object Detection Methods

YOLO [89] is a state-of-the-art system for object detection, which has been widely
used due to its speed and accuracy. First, YOLO uses a single neural network to perform
both classification and localization. In the process of the YOLO pipeline, it divides the
image into a grid and predicts the bounding boxes, class probabilities, and confidence
scores for each grid cell, which can be easily scaled and accelerated by distributing multiple
tasks to computing nodes, such as clusters or clouds. The grid partition also makes it
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compatible with remote sensing applications where the tiling/partitioning schema was
the most common strategy in large imagery processing. Second, the YOLO networks are
highly efficient and can be beneficial to process large-format remote sensing images. Lastly,
YOLO has a large community of researchers and industrial developers who continue to
improve and expand the system. The YOLO system was initiated in 2015 and finished in
2018 [90,91], and then, the community continued pushing the boundary of the algorithm to
be more accurate, more efficient, and more robust [92–95]. As of the date of submission,
the latest version YOLOv8 [96] is known for its improved accuracy and speed compared
to its predecessors. YOLO was known to be less effective on small objects. A single-shot
detector (SSD) [97] addressed YOLO’s inability to detect small objects by incorporating
anchor (prior boxes) ideas from faster R-CNN and utilizing a fully convolutional network
for detection instead of fully connected layers.

To apply the YOLO methods or similar kinds to remote sensing datasets, modifications
are also necessary. Improving the performance of small object detection is common sense.
YOLO-Fine [98] is modified based on YOLOv3, which performs detection on multiple
levels of the pyramid (scales). The authors discard low-res levels in the original network
architecture and replace them with high-res levels, and the backbone was carefully pruned
to relieve the computational burden without performance dropping. SSS-YOLO (small ship
detection in SAR image with YOLO) [39] also removed low-res levels and proposed the
path argumentation fusion network (PAFN) to exploit shallow features that capture more
local texture and patterns. To detect objects with different orientations, BiFA-YOLO [99]
introduced a bi-directional feature fusion module (Bi-DFFM) to aggregate features across
different levels and integrated angular classification to predict the orientation of the region
of interest (ROI) box.

3.2.2. Instance Segmentation in EO Data

Instance segmentation, as introduced earlier, also plays an important role in remotely
sensed image analysis. Like object detection, instance segmentation will identify and
localize individual interesting objects, while it will additionally delineate the boundary
of individual objects by assigning labels to individual pixels. In addition, compared to
another related task–semantic segmentation, instance segmentation separates the same
object class with individual instances. An instance segmentation technique produces an
image where each pixel has a class label corresponding to individual objects.

There are two main categories of methods for instance segmentation, which either
starts from detection or starts from segmentation; detection-and-segmentation, like what
the name entails, aims to detect interesting objects first and then segment pixels in the
proposed window. Segmentation-and-detection, on the other hand, first classifies the label
of each pixel at the pixel level and then segments (unsupervised) the pixel into instance-level
objects. Besides these two categories with two stages, there are also several single-stage
methods in instance segmentation, and self-attention-based methods use a transformer
structure [100–102]. In the following subsections, we further introduce the details of
instance segmentation and then common methods applied in remote sensing images.

Detection-and-Segmentation Methods

Detection-and-segmentation methods start from the object detection framework
(Section 3.2.1) to first detect objects with bounding boxes. Recent methods mostly use
R-CNN [5]-based approaches and their variants. R-CNN-like methods generate region
proposals with selective search algorithms first and then adapt CNN to classify the object’s
category. Mask R-CNN [14] added a mask branch to the faster R-CNN architecture [85],
which predicts a binary mask for each object. The mask branch is layered on top of the
detection pipeline to enable the generation of proposals using external object proposal
methods (such as area proposal networks or selective search), which are then sent through
the CNN backbone to produce a set of features. The class label, bounding box coordinates,
and mask for each proposal are then predicted using these attributes.
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Another network developed from faster R-CNN is MaskLab [103], which includes
parallel branches for object detection and instance segmentation as well. Compared with
mask R-CNN, MaskLab includes a semantic segmentation branch that can refine the object
mask, and a shared feature pyramid network (FPN) in MaskLab ensures three branches
perform at the same time to reduce the time cost. Cascade mask R-CNN [104,105] extended
mask R-CNN, which uses a cascade of CNNs to refine the object proposals and the mask
of segmentation. In the cascade mask R-CNN method, distinct CNN is used at each stage
of the cascade to improve accuracy and reduce false positive results. HTC (hybrid task
cascade) [106] is another instance segmentation method based on R-CNN, which leverages
both local and global context information to further recognize objects with various sizes and
shapes, and as a result, it produces results with improved accuracy over the original R-CNN.

When applying these methods to remote sensing data, existing works mostly adapt
the models with additional components to remotely sense specific tasks and their data;
CNN-based methods are the most popular models. Zhao et al. [107] used mask R-CNN and
the following boundary vectorization and regularization to extract building footprints from
optical satellite images instantly, Yekeen et al. [108] adapted mask R-CNN with ResNet as
the backbone and FPN to detect marine oil spill from SAR images, [109] proposed semantic
boundary-aware unified multitask learning ResFCN to segment vehicle objects from optical
aerial images, and Su et al. [110] developed HQ-ISNet based on cascade mask R-CNN
utilizing multi-level feature maps from SAR images to detect ships.

Segmentation-and-Detection Methods

Segmentation-and-detection methods first perform semantic segmentation on images
and then detect the class for each segment. For example, the dynamic instantiated net-
work (DIN) [59,111] proposes using a semantic segmentation subnetwork and instance
segmentation subnetwork to dynamically instantiate segmented pixels with a shape term
and global term to solve nearby instance issues. Based on the semantic segmentation in
images, the shape and features within the segment can be extracted and used to separate the
individual instances. SSAP (single-shot instance segmentation with affinity pyramid) [112]
uses affinity pyramids to capture the spatial relationships between pixels, then detects the
instance without a proposal generation. For segmentation-and-detection methods, the capa-
bility for distinguishing adjacent instances for the same class depends on the segmentation
performance based on the image feature.

Single-Stage Methods

By combining the object detection and semantic segmentation task into a single net-
work, single-stage methods aim to obtain instance-level masks to achieve both speed and
performance robustness. Similar to YOLO methods (Section 3.2.1), YOLO-based object de-
tection methods can be extended to instance segmentation task, which is named YOLACT
(You Only Look At CoefficienTs) [100]. It is developed as a single-stage instance segmenta-
tion with a single feedforward pass network. By predicting a set of coefficients for each
object, YOLACT creates instance segmentation masks that are then computed using a
collection of prototype masks that have been previously learned. By learning the objects’
location and shape information, SOLO (segmenting objects by locations) [113] predicts
instance categories, starting by dividing the image as grids, then analyzing the grid cover
object geometric center to identify object semantic categories with a classification branch
and predict an object instance-level mask with a mask branch.

Self-Attention Methods

With the development of the NLP field, the self-attention-based network has gained
great interest in image understanding. Vision transformer [114] is among the first network
architectures that intensively use the self-attention mechanism, first used in image recog-
nition. DETR [101] is the first end-to-end object detection framework with a transformer
structure. Given that the transformer architecture is based on patch-based encoding, it has
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its limitations on multi-scale and high-resolution images, the Swin transformer [102,115]
was proposed to address these issues by using a hierarchical architecture and a shifting
window to capture various resolution and scale information, which, as a result, has im-
proved the accuracy and efficiency to segment an object. Based on the DETR structure,
MaskFormer [116] uses a mask classification model with a transformer structure to simulta-
neously perform semantic segmentation and instance segmentation, Mask2Former [117]
further enhanced the capability and efficiency of MaskFormer by replacing cross-attention
with masked attention in the transformer and using multi-scale features as attention to deal
with small objects that the original MaskFormer falls short in.

For networks designed for remote sensing data, researchers are going to use the
benefits of self-attention methods to deal with large amounts of similar sources of Earth
observation imagery. Numerous recent studies also include transformer structures in
the instance segmentation task; for example, Xu et al. [118] proposed a local perception
Swin transformer (LPSW) backbone to improve the performance for small-scale objects
from optical satellite images, and Fan et al. [119] developed an efficient instance segmen-
tation paradigm (EISP) based on a Swin transformer and context information flow (CIF)
and confluent loss function for refining the predicted masks based on both optical and
SAR images.

3.2.3. Panoptic Segmentation in EO Data

Panoptic segmentation [15] simultaneously segments individual objects of the fore-
ground and the background pixels. In remote sensing images, the background class is
mostly bare land, impervious surfaces, or vegetation in different scenarios.

Most panoptic segmentation methods first perform the semantic and instance seg-
mentation for each class, then merge all segmentation as the final panoptic segmentation
result. Panoptic FPN (feature pyramid network) [120] builds on the FPN architecture
(originally for semantic segmentation). It uses a shared backbone network to generate
feature maps at multiple scales and has separate semantic segmentation and instance
segmentation branches. The semantic segmentation branch produces a pixel-wise semantic
label map, while the instance segmentation branch produces a set of object detection boxes
and corresponding masks. Mask R-CNN panoptic [121] builds based on the mask R-CNN
instance segmentation model and adds a new branch in the network to predict all pixels
with semantic labels without belonging to any instance.

In remote sensing images, the background pixels take a significant amount over
the entire image, and individual object counts are often significantly more than those in
everyday images. Moreover, there are significantly fewer labeled datasets available for
panoptic segmentation. Carvalho et al. [122] utilized semantic segmentation and separation
based on borders to achieve a semantic to panoptic segmentation. To deal with temporal
changes, such as forests or croplands, U-TAE (U-net with temporal attention encoder) [123]
was introduced to utilize time series satellite images to combine spatial convolution and
temporal attention to segmented croplands.

3.3. Object Detection with Multi-Modal Data

Remote sensing imagery has rich spectral information compared to classic RGB images,
as mentioned in Section 2.1. Besides multispectral information, geometric information
about terrain can be derived from multiple very high-resolution (VHR) satellite imageries
with stereo-matching methods [50,124]. The height information derived from satellite
stereopsis has been demonstrated effective for classification [125–127].

Multi-modal data can be used for object detection through several levels of fusion. First,
the source data can be directly fused at the data level by normalizing all source images into
the same range and then combining them into multi-band raster images [54,128]. Next or
alternatively, data can be fused with their features using PCA [129] or other decomposition
methods to extract the main features from different sources, and then, the first several
layers can be adapted to generate a multi-band image at the feature level. Multi-modality
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at both data and feature levels can be directly used in most object detection and instance
segmentation methods by adapting the input channel to multi-band images and feature
maps [126,130]. Finally or alternatively, decision-level fusion can be performed, which
involves training separate models for each data modality, using all decisions from models
through majority or weighted averages, etc. [131].

Most of the current studies utilize optical (multi-spectrum) images for different spa-
tial and spectral resolutions. Typically, VHR satellite or aerial imagery has relatively few
spectrum bands (PlanetScope PSD or NAIP: 4 bands for blue, green, red, and NIR), while
medium-high resolution satellite images, such as Sentinel-2 and Landsat series, provide
sufficient spectrum coverage (more than eight bands). Multi-source image fusion was
proven capable of significantly improving the accuracy of object detection or segmenta-
tion [130,132]. Different data modalities can be complementary to each other; for example,
SAR images can penetrate clouds and capture weathered ground scenes, which significantly
improves the data availability for applications, such as the change detection of objects.
Moreover, geometry information, such as DSM/DEM, is less affected by illumination
changes and can be used to robustly characterize objects. For example, the multi-source
change detection UNet++ network (MSCDUNet) [19] has been developed as a multi-level
feature fusion module used to extract and combine various spatial and channel features to
detect built-up area change detection from multispectral, SAR, and VHR data. For vehicle
detection based on visible imagery and DSM, multi-source active fine-tuning vehicle detec-
tion (Ms-AFt) has been proposed, which combines transfer learning, segmentation, and
active classification into one cohesive system for auto-labeling and detection [131].

3.4. Meta-Learning for X-Shot Problem and Unsupervised Learning in Object Detection

X-shot learning methods were developed in the computer vision and machine learning
community to address occasions that labeled data are lacking, which has a great practical
value in remote sensing-based object detection. For example, few-shot problems require the
model to learn features from only a few ground truth labels, and zero-shot problems need
a trained object detector to identify object categories that were not present in the training
data. This can occur in real-world scenarios where new object categories may appear that
were not previously known or observed during training or where there are insufficient
labels for certain categories in the collected EO datasets.

In traditional object detection, the model is trained to recognize specific object cate-
gories from a predefined set of classes. However, in the zero-shot problem, the model is
asked to detect objects from categories that were not included in the training set. This is a
challenging problem because the model has no prior knowledge or examples of the new
categories and therefore cannot rely on direct, supervised learning. Meta-learning [133,134]
is introduced to learn from learning by adapting to new tasks or domains based on the
prior learned knowledge from similar domains. Due to the similarity of ground objects for
man-made or natural categories, meta-learning methods will help to find a similar category
for unrecognized objects in remote sensing object detection tasks.

MAML (model-agnostic meta-learning) [135] is a gradient-based meta-learning algo-
rithm that first initializes the model weights by learning from existing labels, which can
then be adapted to new tasks with a few gradient updates. Typically, the initialized weights
for well-performed backbone networks (e.g., a ResNet) can be learned/used, and then, the
object detection head (e.g., a faster R-CNN) can be fine-tuned on new object classes. The
fine-tuning can be performed based on a small set of labeled examples for the new object
class, then using these examples to update the object detection head parameters in a few
gradient steps.

Training a model with limited data will likely introduce overfitting issues [136]; in the
few-shot problem, models tend to perform poorly once they can only access a few samples
per seen class. Prototype-CNN (P-CNN) [136] has been designed to solve these issues by
using prototype-guided RPN to highlight the regions for foreground objects and PLN to
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provide class-aware prototypes for guiding, which can produce superior proposals for the
detection head.

Unlike the zero-shot learning task, which uses labeled data for training, in contrast,
unsupervised learning aims to predict data without labels. Exemplar-FreeSOLO [137] was
developed as an unsupervised instance segmentation approach, which employs an exem-
plar knowledge abstraction module for unsupervised object extraction and an exemplar
embedding contrastive module to boost the instance segmentation network’s discrimina-
tive ability using contrastive exemplar guidance. Cut-and-LEaRn (CutLER) [138] was an
approach for unsupervised object detection and instance segmentation, which explores
the knowledge that self-supervised representations can discover objects [139] and uses
MaskCut to take an unlabeled image and discover multiple objects as binary masks, then
uses a dynamic loss dropping strategy to learn from masks.

3.5. Language and Foundational Models in EO Object Detection

Developing large models for interpreting EO data without reworking data labeling is
a consistent need. This requires the use of various close-to-automated means to generate
labels with minimized human effort. It uses approaches such as the use of language models
to aid the human–machine interaction for labeling, question, and answering [140–142]
as well as large foundational models for pre-processing, such as unsupervised image
segmentation, e.g., segment anything model (SAM) [143]. The unsupervised segmentation,
with some visual prompts to guide the labeling process, can obviously reduce the amount
of needed labor for annotating objects.

3.5.1. General Language Model for Object Detection

Language models can create the natural interactive means between humans and
machines and have the capability to produce symbolic representations of images to improve
interpretability, which can subsequently be used to train vision models to recognize objects
within images. CLIP (contrastive language–image pre-training) [144] is a pre-trained
model using an extensive dataset comprising both natural language and imagery. Within
this dataset, each image is accompanied by a corresponding caption or alternative form
of description. The CLIP model is designed to encode images and text into a shared
embedding space, where images and their associated descriptions are positioned nearby.
In addition, language models have the potential to enhance object detection tasks by
augmenting them with additional contextual information relevant to an image. Other
multi-modal models integrating large language models recently, such as BEiT-3 [145] and
InternImage [145], separately achieved the SOTA performance in object detection and
segmentation tasks.

Natural language models can also be used to generate complicated scene descriptions
in order to generate labeled-image generation through generative models. For a description
generation from an EO image, Zhang et al. [146] and Sumbul et al. [147] adapted the
combination of CNN and long short-term memory (LSTM) networks and weight associated
them with the attribute and image to describe the features in remote sensing data. In
addition, a ChatGPT-assistant method [148] is also able to benefit image-based tasks,
including edge detection, line extraction, and image segmentation in remote sensing
data. Remote sensing visual question answering (RQA) [141] is established to utilize a
visual model to extract contextual information, which is then transformed into textual
format and subsequently incorporated into a language model. In addition, the mode can
be used to perform image processing, including image clipping, feature extraction, and
segmentation [149].

3.5.2. Foundational Model for Object Detection

SAM [143] is one of the most well-known foundational models for image segmentation.
It is a prompt-based model and is pre-trained on proprietary datasets developed by Meta,
which can perform unsupervised segmentation in images, even using visual prompts
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(i.e., point or polygon). Practically tested on many images, it was proven to have good
generalization capabilities. Therefore, SAM can be a promising approach to processing
EO imagery from diverse geographical contexts [142,148,150]. Osco et.al [148] combined
one-shot training with a general example produced from a text prompt to improve the
performance of the SAM model for remote sensing imagery, which also reduces the need for
manual annotation for remote sensing data. Their experiments show that SAM for remote
sensing can segment different images with spatial resolution (UAV, aerial, and satellite). In
addition, SAM is also used to assist zero-shot learning by pre-segmenting images before
assigning semantics. It can help detect uncommon or unseen ground objects or special
objects with a different feature to the same type from EO datasets to reduce the effort
in reintroducing a large number of new samples. Wang et al. [151] attempted to obtain
pixel-level remote sensing imagery annotations using SAM to quickly create additional
data based on six different public sources.

Figure 4 presents a qualitative comparison of the performance (mAP) of various
deep learning object detection methods on the COCO test-dev datasets [9], including
fast R-CNN [84], faster R-CNN [85], SSD [97], mask R-CNN [14], YOLOv3 [91], cascade
R-CNN [104], YOLOv4 [92], Swin trasnformerV2 [102], YOLOv7 [95], BEiT-3 [145], and
InternImage [140]. Generally, newly developed transformer-based methods tend to outper-
form traditional CNN-based approaches when applied to large datasets, and language and
foundational models will be the state-of-the-art methods in object detection tasks.
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4. An Overview of Commonly Used Public EO Datasets

In this section, we introduce object detection and instance segmentation datasets
for remote sensing data, including optical, SAR, and other multi-modality 3D data, such
as DSM and DTM. Due to the fast development of methods and active contributions
from the science community, datasets have developed from image-only EO datasets to
multi-modality images with both optical and SAR images and more hard-to-collect optical
images + DSM paired datasets, with semantic labels. Table 2 shows a summary of detailed
information for each EO dataset.
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Table 2. Datasets for object detection and instance segmentation tasks.

Dataset Name Sensor Type Image Spatial
Resolution Task Year Domain

(Categories Number)
Image Number &
Instance Number

DLR 3K Vehicle [152] Optical 0.02 m Object detection 2015 Vehicle (2) 20 (14,235)

DOTA [153] Optical 0.3–1 m Object detection 2018 Multi-class (14) 2806 (188,282)

DIOR [154] Optical 0.5–30 m Object detection 2020 Multi-class (20) 23,463 (192,472)

xView [155] Optical 0.3 m Object detection 2018 Multi-class (60) 1127 (1 million)

HRSID [156] SAR 1–5 m
Object detection

and instance
segmentation

2020 Ship 5604 (16,951)

SSDD [157] SAR 1–15 m Object detection 2021 Ship 1160 (2456)

UAVDT [158] Optical \(UAV) Object detection 2018 Multi-class (14) 80,000 (841,500)

FAIR1M [159] Optical 0.3–0.8 m Object detection 2022 Multi-class (37) 42,796 (1.02
million)

iSAID [160] Optical \(aerial) Instance
segmentation 2019 Multi-class (15) 2806 (655,451)

NWPU VHR-10 [161] Optical 0.08–2 m
Object detection

and instance
segmentation

2016 Multi-class (10) 800 (3775)

SpaceNet MVOI [162] Optical 0.46–1.67 m
Object detection

and instance
segmentation

2019 Building 60,000 (126,747)

SemCity Toulouse
[163] Optical 0.5 m Instance

segmentation 2020 Building 4 (9455)

DeepGlobe 2018
(road) [164] Optical 0.5 m Instance

segmentation 2018 Road 8570

DeepGlobe 2018
(building) [164] Optical 0.3 m Instance

segmentation 2018 Building 24,586 (302,701)

IARPA CORE3D [165] Optical + DSM +
DTM 0.3 m Instance

segmentation 2018 Building 154 multi-stereo

CrowdAI mapping
challenge [166] Optical 0.3 m Instance

segmentation 2018 Building 341,058

2023 IEEE GRSS DFC
[167] Optical + SAR 0.5 m Instance

segmentation 2023 Building roof (12) 3720 × 2 (194,263)

PASTIS [123] Optical + SAR 10 m
Object detection

and Panoptic
segmentation

2021 Agricultural parcels
(time series) 2433 (124,422)

SAMRS [151] Optical 0.3–30 m
Object detection

and Panoptic
segmentation

2023 Multi-class (37) 105,090
(1,668,241)

4.1. Object Detection Datasets

Early-stage datasets, frequently pertaining to the transportation industry, concentrate
only on a particular class. As opposed to cars, which are detected using DLR 3K Vehicle,
VEDAI (vehicle detection in aerial imagery) [152], ships are detected using SAR imagery
by SSDD (SAR ship detection dataset) [157]. In general, open challenges and datasets have
a big impact on the subjects that academics investigate. The xView dataset [155] provided a
large World-View 3 image-based dataset with 60 fine-grained classes, including building,
transportation, and landmark categories, and dealt with challenges, including occlusion,
varying lighting conditions, and objects with different sizes and orientations.

Generalization is necessary to aim for in learning models. Therefore, datasets should
be large in volume and diverse in sensors and scenes. DOTA (dataset for object detection
in aerial Images) [153] offers a multi-scale, multi-class object detection dataset that contains
different spatial resolution images with 188,282 instances. Northwest Polytechnical Univer-
sity proposed DIOR [154], a large-scale remote sensing dataset with 23,463 images, 190,288
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labeled object instances, and 20 object classes, including an airport, a baseball or basketball
court, a bridge, a chimney, a dam, an expressway service area, an expressway toll station,
a harbor, a golf course, a ground track field, an overpass, a ship, a stadium, a storage
tank, a tennis court. Moreover, several datasets with fine-grained labels have been created
for the detailed research of types. FAIR1M [159], a brand-new benchmark dataset called
FAIR1M for fine-grained object recognition in high-resolution remote sensing imagery,
which contains more than 1 million instances and more than 40,000 images, collect images
with a resolution of 0.3 m to 0.8 m resolution remote sensing photos from various platforms
that are dispersed throughout numerous nations and regions. By using oriented bounding
boxes, all items in the FAIR1M dataset are tagged with to 5 categories and 37 fine-grained
subcategories. However, since single classes can be easily retrieved from such datasets,
they are also routinely utilized for the identification of ships, cars, and airplanes, all of
which are classes that are frequently present in multi-class datasets.

4.2. Instance and Panoptic Segmentation and Multi-Task Dataset

Since object detection and instance and panoptic segmentation are similar tasks, to
determine a wider generalization, some datasets also provide the object detection ground
truth to test the performance of object detection and segmentation meanwhile. The high-
resolution SAR image dataset (HRSID) [156] includes a label format for both object detection
and instance segmentation. One hundred thirty-six panoramic SAR imageries with a
ranging resolution from 1 m to 5 m are cropped to 800 × 800 pixels SAR images, with a
ca. 25% overlapping ratio. Optical remote sensing imageries are also available to reduce
noise. CrowdAI dataset [166] focused on building domains. The training and testing set
each had 280,741 and 60,317 patches with 300 × 300 pixel tiles that were taken from the
RGB channels of satellite images, respectively, with annotations in the common objects
in context (COCO) [9] format. The SAMRS dataset [151] utilizes SAM and pre-existing
RS (remote sensing) object detection datasets to create an efficient pipeline for generating
a comprehensive RS segmentation dataset. This dataset is designed for tasks such as
semantic segmentation, instance segmentation, and object detection, either independently
or in conjunction with each other.

Multi-modal datasets containing more than only optical or SAR imagery have also
been collected to utilize the potential of large models to produce wide use and accurate
models by adapting 3D and text data. IEEE Geoscience and Remote Sensing Society (GRSS)
data fusion contest 2023 [167] provides building detection and instance segmentation. With
the help of high-resolution optical satellite imagery and SAR pictures, this collection focuses
on the identification and categorization of different building roof types. The provided
dataset includes seventeen cities from six different continents. There are twelve fine-
grained, pre-defined roof types in the categorization task. Another multi-modality dataset
is CORE3D [165], which also focuses on buildings. This dataset provides both LiDAR-
derived and multi-view stereo matching-derived DSM, which help to detect the boundaries
of building and the roof structure of building instances. The PASTIS dataset [123] is a
benchmark dataset for the panoptic and semantic segmentation of agricultural parcels using
satellite time series data. The dataset encompasses the entirety of the French metropolitan
territory, accompanied by comprehensive annotations that include instance indices and
semantic labels for each individual pixel. Each patch represents a time series of variable
length consisting of Sentinel-2 multispectral images, and Sentinel-1 SAR data are also
available for panoptic segmentation.

5. Applications of EO Object Detection

EO object detection is a fundamental task to many applications. Out of many of the
enabling applications, in this section, we summarize several common applications divided
into three broad categories, including (1) urban and civilian applications, (2) environmen-
tal/ecological monitoring, and (3) agricultural and forestry applications. A summary of
these applications as shown in Table 3.
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Table 3. An overview of the application that benefit from RS object detection.

Domain Application Area of Focus Sensors and Data

Urban and civilian
applications

Traffic density, urban mobility PlanetScope Multispectral Images

Maritime security, ship detection SAR

Impact assessment of Hurricane, flood,
infrastructure Optical Satellite

Powerlines monitor and management UAV, airborne LiDAR data

Structural Health Monitoring (SHM),
bridges/buildings UAVs, satellites, infrared, ultraviolet

Environmental–ecological
monitoring and management

Wildlife migration, animal counting GeoEye-1’s Panchromatic Satellite

Wildlife conservation, species identification Camera traps, UAV-mounted cameras, social
media

Marine ecosystem, debris monitoring UAVs, AUVs (Autonomous Underwater
Vehicle), IR cameras

Ocean oil spill tracking and response ENVISAT ASAR, Hyperspectral Imaging

Agricultural and forestry
applications

Bale counting and monitoring UAVs

Tree counting, invasive plant detection Satellites, Hyperspectral Imaging

Locust migration routes, outbreak prediction Satellite data, DEM.

Classify tree species (pine, birch, alder) and
identify standing dead trees UAVs, LiDAR, Multispectral Imaging

5.1. Urban and Civilian Applications

Understanding transportation patterns: EO object detection helps understand trans-
portation patterns, port activities, and the daily operations of cities and coastal regions.
Chen et al. [168] used PlanetScope multispectral images to capture traffic density at the city-
level to understand how COVID-19 impacts were reflected by the urban traffic. They used a
morphology-based car extraction algorithm to collection a city-level, on-road vehicle count
for five major cities, including New York, Rome, New Delhi, Wuhan, and Tokyo. Despite
the fact that the PlanetScope data resolution (3–5 m) of the images is barely sufficient to
extract vehicle counts, they showed that the detected patterns (traffic density) respond well
to the local COVID shut-down policy; thus, it can serve as a great tool to perform objective
measurements for policy compliance without needing to go over an expensive and labor
intensive surveying process. Other similar studies, using higher resolution images, such as
Maxar data [169], can be found in [170–172] to detect the number of cars in the parking lots
or on roads.

Ship Detection: Ship detections are also one of the most used applications. Chen et al. [173]
developed YOLO infused with an attention mechanism to enhance ship detection speed
using GF-1 and -2 optical imageries. It distinguishes ships across various scales and
movement states within complex environments, such as the ocean, harbor, and island,
in various lighting conditions, offering improvements for efficient maritime surveillance
and prompt rescue responses. Chang et al. [40] take advantage of SAR images, which are
particularly effective due to their abilities to penetrate cloud cover and provide reliable
imaging regardless of weather conditions. This application is used for uninterrupted ship
tracking when optical satellites fall short due to atmospheric disturbances. It helps monitor
territorial waters for illegal fishing, smuggling, or human trafficking and monitor ship
traffic in and around ports to optimize docking, loading, and unloading [39,156,157].

Rapid disaster response and management: Remote sensing has been a valid means
for the rapid assessment of disasters and post-disaster action planning. Typically, once a
natural disaster occurs, remote sensing images, such as those from a satellite, or aerial/UAV
images are collected rapidly for analyzing its impact [152,174], such as collapsed buildings
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or blocked roads, to best optimize rescue operations. Real-time imaging is also proposed
to identify any possible victims and those partially covered by debris [175,176]. In these
applications, object detection techniques are the key. For example, Zheng et al. [177]
applied object detection on damaged building assessments with satellite imagery and
semantic segmentation in 19 disaster events from 2011 to 2019, including earthquakes,
wildfires, volcanoes, storms, flooding, and tsunamis. Pi et al. [174] explored the role of
object detection in the wake of the hurricanes that besieged the United States from 2017 to
2018, in which the focuses are on flood areas, building roofs, cars, debris, and vegetation.

Structure and utility monitoring: Satellite remote sensing imagery can detect indi-
vidual buildings [178–180], and images of higher resolution (centimeter level), such as
those from UAV, are nowadays used in structural damage detection and structure health
monitoring due to the fact that they are flexibile enough to assess and collect imaging
information that is traditionally difficult for human inspectors to access. For example, Park
et al. [181] deployed UAVs to capture thermal images of cracks on concrete, with attention
to recording parameters, such as air temperature, humidity, and illuminance. Bai et al. [182]
employed UAVs and UGVs (un-manned ground vehicles) for object detection on cracks
for field inspections. They curated a dataset comprising a large number of labeled images
utilized for the training and validation phases; it was shown that the effectiveness and
efficacy of object detection is well versed to human inspection in real applications.

Another common use of object detection is on utility inspection, specifically on mon-
itoring of power transmission lines. Monitoring powerlines to ensure they have a safe
distance from tree branches is essential for maintenance, but it is traditionally labor in-
tensive since it covers very large areas and is difficult/risky to access for a full inspection
by a human inspector. It was noted that the satellite images and UAV images coupled
with object detection techniques can be used to perform the detection of, for example,
overgrown vegetation in proximity to transmission lines that could cause disruptions, fires,
or tower damage to ensure clearance at the vicinity of the powerline [183]. Other data
modalities, such as ultraviolet imaging and thermal imaging [184], were also explored to
detect more sophisticated powerline related issues, such as abnormal discharge locations
and overheating components [185].

5.2. Environmental–Ecological Monitoring and Management

Studying wildlife migration: Detecting and tracking animal populations have great
implications on wildlife migration. Field sampling has been the primary means to provide
an estimate, and recently, it was proposed to use satellite and UAV images to perform
sampling and tracking, where object detection is the key approach for image analyses. For
example, Xue et al. [186] employed the GeoEye-1’s panchromatic satellite to detect large
mammals in extensive open spaces. This approach demonstrates about a 20% improvement
over the traditional threshold-based method, which underscores its potential for enhancing
wildlife monitoring and conservation efforts. WildBook [187] is a Python-based platform
developed by an international wildlife conservation organization—WildMe [188]. It was
designed for object detection on wild animal preservations using camera traps, vehicular-
or UAV-mounted cameras, and photographs contributed by social networks. These data
are labeled and fed into networks for animal instances and species identification to answer
biological and ecological questions about animal behaviors and migration patterns. The
platform had utilized over 49,000 labeled photographs from various national parks in
Kenya, facilitating studies on animal behavior and migration [189,190] that were not
feasible before due to data limitations.

Debris detection on rivers and coastal areas: Researchers also use object detection
techniques to assist environmental applications, such as debris detection in rivers. For
example, Watanabe et al. [191] introduced object detection for debris monitoring using
satellite-, UAV-, and AUV-based images with multi-modality data (optical and infrared)
both on the surface and under water. They were applied at the Ishikari River estuary,
Hokkaido, Japan, in September 2018 with the aim to support conservation efforts by
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identifying the most affected areas and types of debris. Identifying hazardous debris, such
as plastic waste or toxic substances, helps in preventing potential health risks to humans
and ecosystems.

Oil spills detection: Oil spills pose severe environmental issues and require rapid
detection to localize the impacted regions. The work of [41,42,192] focus on the use of
ENVISAT advanced synthetic aperture radar (ASAR) imagery for object detection vessels
and oil slick. The case studies include images captured during notable ecological disasters,
such as the Deepwater Horizon blowout in the Gulf of Mexico, the Hebei Spirit oil tanker
collision off South Korea’s west coast, and incidents over the Black Sea, where the employed
studies show effectiveness in using remote sensing methods for oil spill detection and
tracking. Such applications are not only vital for mitigating the detrimental effects of
oil spills but also enhance preparedness and strategic response, allowing for effective
prioritization of remediation locations in future environmental assessments.

5.3. Agriculturical and Forestry Applications

Remote sensing imaging and analysis have been widely used in the agriculture and
forestry sectors. With the use of satellite, UAV, and ground-level images, it was used for a
crop yield analysis, forest management, invasive species identification [193,194], etc.

Forest management: Object detection-based species and tree counting are crucial for
forest management. As an example, it can be used to count palm trees [195] in tropical
regions, where they are grown or planted for palm oil, plywood, furniture, and paper
production. Accurate counting is necessary for yield prediction, growth monitoring, and
productivity optimization. It is also used for invasive plant detection since biological
invasions can disrupt ecosystems. In the work of [196,197], hyperspectral images are
used to detect individual plants and analyze their ecological niches, leading to a better
understanding and prediction of the survival and proliferation patterns of species. The
application of this technology has helped reduce the spread of invasive species and protect
local biodiversity. In tree canopy detection utilizing 3D information, both the combination of
tree top identification from DSM and multispectral imagery [128], along with the isolation of
individual trees and the classification of leaf and wood components from point cloud data,
enables the effective detection of individual trees [198]. In the 2018 Chornobyl Exclusion
Zone study [199], an octocopter equipped with a LiDAR system and multispectral cameras
was used to classify multiple tree species (pine, birch, alder) and identify standing dead
trees. This approach, using the 3D deep neural network PointNet++ [200] and integrating
multispectral data, achieved a remarkable 90.2% accuracy, showcasing its potential in
forest ecosystem and health assessments. Studies on these areas have made significant
achievements in forest and orchard management.

Agricultural applications: Other than typical crop-yield estimation applications [194,201],
object detection has been used to optimize the agriculture industry. For example, at a higher
resolution, remote sensing-based object detection was used for bale counting to automate and
optimize the inventory estimation [202,203] and space and storage utilization. Their applica-
tion automates the inventory process of bales, providing accurate counts and reducing manual
labor. Moreover, beyond lower resolution-based, large-scale crop estimation [201,204,205],
nowadays, precision agriculture utilizes tractor-mounted sensors, such as LiDAR and stereo
images, to perform 3D object detection for individual corn plant counting, health moni-
toring (growth rate) [206], and weed control by detecting weeds in the field using optical
images [207].

6. Conclusions

In this review, we provided an overview of the recent progress of deep learning-based
object detection and segmentation structures, their characteristics, and how to apply these
methods to remote sensing imagery. We introduce a common pipeline of object detection
methods for both traditional and deep learning methods and illustrate the popular networks
and categories for object bounding box prediction, instance segmentation, and panoptic
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segmentation. Based on the characteristics of Earth observation sensors and the imagery
captured by these sensors, adjusted object detection methods designed for remote sensing
are introduced as well. Multi-source sensors (optical, SAR, LiDAR, and photogrammetric)
provide the accessibility to capture various physical features for ground objects from Earth
observation; therefore, the usage and integration of these multi-modal data are important
to receive a better performance in object detection and segmentation.

With various datasets from different types of sensors and the distribution of different
labels, label imbalance and inconsistency have been a challenge. Multi-modality (including
text), meta-learning, and the language description of objects help to align different datasets
to solve X-shot and inconsistency problems. Besides the above contribution, we also
reviewed popular datasets and applications for remote sensing object detection and instance
segmentation to guide researchers to the overall applications.

As compared to everyday images used in the CV community, ground objects in remote
sensing imagery usually take fewer pixel footprints with diverse distribution and are
disparate with landforms and morphology in terms of different geographical locations.
Thus, it is still challenging to create a general object detection or instance segmentation that
performs well for various regions and various sensors. It has been recognized that large
foundational models may serve for this purpose, a good example of which to base the idea
on is the recently popular segment anything model (SAM). In addition, another potential
direction, as being mostly practiced now, is to develop task-specific networks in different
fields, such as for agriculture, urban planning, traffic, disaster, pedestrian, etc., conditional
on more community contributions of labeled datasets as well as more automated means to
generate high-quality labels.
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