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Abstract: Joint detection and tracking of weak underwater targets are challenging problems whose
complexity is intensified when the target is disturbed by reverberation. In the low signal-to-
reverberation ratio (SRR) environment, the traditional detection and tracking methods perform
poorly in tracking robustness because they only consider the target motion characteristics. Recently,
the kernel correlation filter (KCF) based on target features has received lots of attention and gained
great success in visual tracking. We propose an improved multi-kernel correlation filter (IMKCF)
tracking-by-detection algorithm by introducing the KCF into the field of underwater weak target
detection and tracking. It is composed of the tracking-by-detection, the adaptive reliability check,
and the re-detection modules. Specifically, the tracking-by-detection part is built on the multi-kernel
correlation filter (MKCF), and it uses multi-frame data weighted averaging to update. The reliability
check helps keep the tracker from corruption. The re-detection module, integrated with a Kalman
filter, identifies target positions when the tracking is unreliable. Finally, the experimental data pro-
cessing and analysis show that the proposed method outperforms the single-kernel methods and
some traditional tracking methods.

Keywords: active sonar; low signal-to-reverberation ratio; underwater target; tracking by detection;
kernel correlation filter

1. Introduction

Underwater target detection and tracking in active sonar systems has always been
a hot topic in underwater applications. The conventional approach to detect and track
underwater targets involves threshold detection, followed by data association and filtering
tracking [1–4]. However, practical sonar systems often encounter strong reverberation
interference. In this low signal-to-reverberation ratio (SRR) environment, only setting a
lower threshold can ensure that the target is not missed, but it also causes a lot of false
alarms [5,6]. The higher false alarm rate adversely affects target associations, thereby
increasing the risk of tracker drift during the tracking process.

In order to solve the problem of weak target detection and tracking in low SRR, the
methods commonly used at present can be categorized into three groups. The first group
involves traditional data association methods, such as joint probabilistic data association
(JPDA) [7,8] and multiple hypothesis tracking (MHT) [9,10]. However, these approaches
suffer from high computational costs when confronted with a high false alarm rate. The
second group focuses on methods based on random finite set (RFS) [11,12], which elimi-
nate the need for data association. These methods employ filtering techniques based on
the motion characteristics of the target. A crucial aspect of accurate tracking filtering is
establishing an appropriate motion model that aligns with the target’s motion type. The
filtering algorithms with multiple models (MMs) and the jump Markov system (JMS) have
been shown to be effective approaches for maneuvering target tracking [13–15]. In addition,
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Yue et al. established a multi-directional motion model set according to the motion char-
acteristics of the diver target [16]. However, due to the diverse underwater target motion
types, it is challenging to apply a single modeling method to all underwater targets of
interest. Furthermore, in environments with reverberation interference, the aforementioned
tracking methods face difficulties in accurately determining the target’s position solely
based on trajectory information. The third group involves deep learning methods, such as
Convolutional Neural Network (CNN) [17], Recurrent Neural Network (RNN) [18], and
Siamese Network [19]. These approaches typically require a substantial number of samples
for model training. However, in practical applications, it may not be feasible to collect a
sufficient amount of sample data.

Nevertheless, the kernel correlation filter (KCF) algorithm, proposed by Joao F. Hen-
riques et al., presents a promising solution for tracking multiple target types without the
need for predefined target motion models [20,21]. Presently, the KCF algorithm is primarily
used in the visual tracking field [22], and there has been no prior instance of its application
in underwater target tracking domestically or internationally. Hence, the primary contribu-
tion of this study lies in the application of the KCF algorithm to resolve the detection and
tracking challenges associated with underwater weak targets.

The effectiveness of single-feature-based tracking is limited due to the absence of
prior knowledge about the target in the model-free kernelized correlation filter (KCF) algo-
rithm [23–26]. To enhance robustness in tracking, researchers have explored multi-feature
fusion tracking methods [27–30], which leverage a shared kernel function with multiple
complementary features. However, these methods face challenges in achieving the optimal
solution because different features may require distinct kernel functions. To adaptively
use multiple complementary features, Tang et al. introduced multi-kernel learning (MKL)
into the correlation filtering algorithm to dynamically update multiple nonlinear kernels,
namely the multi-kernel correlation filter (MKCF) [31]. However, the MKCF algorithm only
utilizes adjacent frame information for filter updates, which could lead to model update
errors in the presence of reverberation occlusion. The second contribution of this paper is
to utilize weighted information from historical samples to adaptively solve the parameters
of multiple nonlinear kernels and make full use of multiple complementary features to
enhance the robustness and tracking accuracy of the long-term tracking process.

In scenarios with low SRR, the involvement of non-target information in training
frames may result in error propagation during the model update phase, increasing the risk
of drift. Thus, it becomes crucial to assess the reliability of tracking results and identify a
more dependable result when the tracking outcome is unreliable.

In terms of assessing the reliability of tracking results, Bolme [32] computed the peak-
to-sidelobe ratio (PSR) score of the relevant response, comparing it with a fixed threshold
to determine reliability. However, this method exhibited limited effectiveness in complex
environments. Wang et al. (their tracker is abbreviated as RRLT) [33] proposed a more
effective reliability criterion for evaluating the confidence of the current tracking result.
This criterion adaptively updates the mean value of multi-frame PSR scores as a threshold,
thereby improving the accuracy of evaluation results in complex environments. Regarding
tracking methods, the long-term correlation tracker (LCT) employs an online random fern
classifier to generate potential target locations [34], while Wang [33] utilizes a particle
filter to generate numerous candidate target positions around the previous frame’s target
position. Nonetheless, neither LCT nor the random RRLT tracker can successfully re-detect
a target that has been obscured for an extended period [35]. The third contribution of this
paper entails a real-time assessment of target tracking result reliability and proposes an
effective re-detection module. The reliability check module adopts the approach outlined
by Wang et al. [33] to evaluate the reliability of both detection and tracking results obtained
using the MKCF. When the tracking result is deemed unreliable, the re-detection module
utilizes the historical reliability tracking result to drive the Kalman filter, predicting the
target candidate position. Subsequently, several candidate positions are generated around
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this predicted position, following a Gaussian distribution. Finally, a stringent replacement
criterion is applied to determine the final tracking result.

In summary, this paper presents an improved multi-kernel correlation filter (IMKCF)
algorithm for robust detection and tracking of weak underwater targets. A novel adaptation
of the KCF algorithm from visual tracking to the domain of underwater multi-motion weak
target detection and tracking is proposed. To address the issue of limited robustness in
single-feature tracking, the weighted information from historical samples is utilized to
adaptively resolve the coefficients of multiple nonlinear kernels. The MKCF algorithm is
analyzed from a maximum likelihood perspective to determine the target position based
on the maximum likelihood criterion. Real-time estimation of the target tracking result
reliability is performed, and an effective re-detection module is introduced. The efficacy of
the algorithm is validated through the analysis of sea trial data.

The rest of this article is organized as follows: Section 2 introduces the target model and
sonar measurement model. Section 3 reviews the KCF algorithm. Section 4 introduces the
framework of the IMKCF tracking-by-detection algorithm and introduces the components
of each module in detail. Section 5 analyzes the performance of the algorithm by processing
experimental data. Section 6 summarizes the work of this paper.

2. Model Establishment
2.1. Target Model

Given the position of the target xk at time k denoted by xpk and ypk , and the correspond-
ing velocities vxk and vyk , the state of the target can be represented by xk =

[
xpk , ypk , vxk , vyk

]
.

The evolution of xk is formulated as a first-order Markov process,

xk|k−1 = p
(

xk
∣∣∣xk−1

)
(1)

where the p is the a priori probability density function. The specific form of p is determined
by the target model.

2.2. Measurement Model

The algorithm employs raw sonar data measurements in range-azimuth format. When
the influence of noise is disregarded, the correlation between the range, angle of the sonar,
and position of the target is established. rk =

√
x2

pk
+ y2

pk

θk = arctan
( xpk

ypk

)
.

(2)

At time k, the resolution of the measurement area is Nr × Nb. With the sonar position
serving as the reference point or origin, the measurement area is characterized by a distance
range [Rmin, Rmax], which is discretized into Nr distance units, and an azimuth range
[θmin, θmax], which is discretized into Nb azimuth units.

Nr =
2(Rmax − Rmin)

c
× Fs, (3)

where Fs is the sampling frequency, and Nb can be determined by the azimuth resolution
unit ∆θ. The element zk(x, y) of the xth azimuth and yth distance cell in the measurement
zk is the signal echo intensity. zk(x, y) can be modeled as

zk(x, y) =
{

akh(x, y; xk) + wk if target is in (x, y)
wk otherwise

, (4)

where ak is the peak amplitude of the target, h is the point spread function, and wk is the
measured noise and reverberation of the sonar system at moment k.
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3. Preliminaries of the KCF Algorithm

The KCF algorithm involves three steps: training, detection, and updating. In the
training step, it aims to optimize the correlation filter parameter using the training feature–
label pairs {x i, yi}m

i=1. It maps the input x to a new space φ(x) with higher dimensions
and puts the φ(x) into the optimization process. The kernel function κ and the objective of
optimization are as follows.

κ
(
xi, xj

)
=
〈

φ(xi), φ
(
xj
)〉

. (5)

min
w

m

∑
i=1

(
yi −

m

∑
j=1

ajκ
(
xi, xj

))2

+ λ∥w∥2, (6)

where w is defined as

w =
m

∑
i=1

ai φ(xi). (7)

The solution of (6) is given by employing the circulant structure for fast training and
testing,

α = F−1
(

F(Y)
F∗(Kxx) + λ

)
, (8)

where the * indicates the complex conjugate, and F and F−1 denote the Fourier transform
and the inverse, respectively. Kxx denotes kernel matrix.

In the detection step, we can compute the probability of a new input z being from the
target feature.

Y′ = F−1(F ∗ (Kxz)F(α)). (9)

In the updating step, the reference feature x and the correlation filter parameters are
calculated as follows

xt = zt × η + (1 − η)× xt−1, (10)

αt = αzt × η + (1 − η)× αt−1, (11)

where η is the learning rate.
As above, the KCF can be performed on general machines due to its high computa-

tional efficiency. However, the performance of KCF is related to the features extracted.
Making full use of multiple complementary features can improve tracking accuracy and
robustness. Therefore, in our proposed algorithm, to avoid the interference of different
features in the single kernel, we use MKCF to assign a kernel for each feature.

4. Improved MKCF Tracking-by-Detection

This study aims to tackle the challenge of detecting and tracking weak targets with
various motion types in shallow sea environments. We propose an IMKCF tracking-by-
detection algorithm, which consists of three components: the MKCF tracking-by-detection,
the adaptive reliability check, and the re-detection modules. The overall framework of the
proposed approach is depicted in Figure 1.



Remote Sens. 2024, 16, 323 5 of 16

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 17 
 

 

detection algorithm, which consists of three components: the MKCF tracking-by-detec-

tion, the adaptive reliability check, and the re-detection modules. The overall framework 

of the proposed approach is depicted in Figure 1. 

 

Figure 1. The IMKCF tracking-by-detection algorithm framework diagram. 

4.1. The MKCF Tracking-by-Detection 

Studies have shown that the incorporation of multiple kernels can improve the dis-

criminatory ability of classifiers in comparison to a single-kernel approach [36]. A preva-

lent approach is to employ a basis kernel, ��(� = 1, ⋯ , �) , and then view ����, ��� =

������, ���  as a composition of the basis kernels, where ����, ��� =

������, ���, ⋯ , �����, ����
�

 , � = (��, ⋯ , ��)� , ∑ ��
�
��� = 1 , and �� ≥ 0 . Therefore � =

∑ ����
�
��� , �� is the base core of group m , whose elements are ���

� = �����, ���. The 

optimization problem is used to minimize the loss, 

 


 



  

 

 

 

2

T

, ,
1 12

1

1
min min ,

2 2

   s.t.   =1, 0, 1, ,

M M

m m m m
m m

M

m m
m

b b F

b b m M

b b
y Κ Κ b

 
   

. 

(12)

The optimal solution can be expressed as Equation (13), and the * indicates the opti-

mal. 

   




 
1

* T

0

,
l

i i
i

f kx b x x
. 

(13)

The diagram of the MKCF tracking-by-detection algorithm is presented in Figure 2. 

Figure 1. The IMKCF tracking-by-detection algorithm framework diagram.

4.1. The MKCF Tracking-by-Detection

Studies have shown that the incorporation of multiple kernels can improve the discrim-
inatory ability of classifiers in comparison to a single-kernel approach [36]. A prevalent ap-
proach is to employ a basis kernel, km(m = 1, · · · , M), and then view k

(
xi, xj

)
= bTk

(
xi, xj

)
as a composition of the basis kernels, where k

(
xi, xj

)
=
(
k1(xi, xj), · · · , kM(xi, xj)

)T,
b = (b1, · · · , bm)

T, ∑M
m=1 bm = 1, and bm ≥ 0. Therefore K = ∑M

m=1 bmKm, Km is the
base core of group m, whose elements are km

ℶj = km
(
xi, xj

)
. The optimization problem is

used to minimize the loss,

min
α,b

1
2

∥∥∥∥y −
M
∑

m=1
bmKmα

∥∥∥∥2

2
+ λ

2 αT
M
∑

m=1
bmKmα = min

α,b
F(α, b)

s.t.
M
∑

m=1
bm= 1, bm ≥ 0, m = 1, · · · , M .

(12)

The optimal solution can be expressed as Equation (13), and the * indicates the optimal.

f ∗(x) =
l−1

∑
i=0

αib
Tk(xi, x). (13)

The diagram of the MKCF tracking-by-detection algorithm is presented in Figure 2.
In order to achieve localization robustness, the MKCF tracking-by-detection algorithm

uses the weighted average of historical samples to update the training coefficients α and b.
The optimization function is represented by

Fp
(
αp, bp

)
≡ 1

2

p

∑
j=1

M

∑
m=1

β
j
muj,m

F(α,b), (14)

where βj is the weight of the sample optimization function of the jth frame, uj,m
F(α,b) =∥∥∥yc − bm,pKj

mαp

∥∥∥2

2
+ λbm,pαT

pKj
mαp,j = 2, · · · , p,β1

m = (1− γm)
p−1,βj

m = γm(1− γm)
p−j,

αp =
(

α0,p, · · · , αl−1,p

)T
, bp =

(
b1,p, · · · , bM,p

)T,
M
∑

m=1
bm,p = 1, p is the number of historical
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frames, γm ∈ (0, 1) is the learning rate, and Kj
m is the Gram matrix of kernel m. The new

optimization problem is
min
αp ,bp

Fp
(
αp, bp

)
s.t.

M
∑

m=1
dm,p = 1

dm,p ≥ 0, m = 1, · · · , M.

(15)

First, given bp to solve αp, the above optimization problem becomes an unconstrained
optimization problem. Let ∇αp Fp

(
αp, bp

)
, then,

αp =

(
p

∑
j=1

M

∑
m=1

β
j
m

((
bm,pKj

m

)2
+ λbm,pKj

m

))−1

·
p

∑
j=1

M

∑
m=1

β
j
mbm,pKj

myc. (16)

The efficient evaluation can be achieved through the utilization of FFT.

Ap ≡ F
(
αp
)
=

p
∑

j=1

M
∑

m=1
β

j
mF
(

bm,pkj
m

)
⊙ F(yc)

p
∑

j=1

M
∑

m=1
β

j
mF
(

bm,pkj
m

)
⊙
(

F
(

bm,pkj
m

)
+ λ

) . (17)

Set

Ap =
AN

p

AD
p

=

M
∑

m=1
AN

m,p

M
∑

m=1
AD

m,p

. (18)

when p = 1,
AN

m,1 = F
(

bm,1k1
m

)
⊙ F(yc)

AD
m,1 = F

(
bm,1k1

m

)
⊙
(

F
(

bm,1k1
m

)
+ λ

)
.

(19)

when p > 1,

AN
m,p = (1 − γm)AN

m,p−1 + γmF
(

bm,pkp
m

)
⊙ F(yc)

AD
m,p = (1 − γm)AD

m,p−1 + γmF
(

bm,pkp
m

)
⊙
(

F
(

bm,pkp
m

)
+ λ

)
.

(20)

The optimal solution α∗p can be attained by means of the aforementioned iteration.
Subsequently, when presented with the task of solving bp given αp, the optimization
problem outlined earlier transforms into a constrained optimization problem. To address
this issue, we initially posit it as an unconstrained optimization problem and subsequently
demonstrate that the resulting solution bp conforms to the prescribed constraint conditions.
Let ∇bp Fp

(
αp, bp

)
, then,

bm,p =

p
∑

j=1
β

j
m

(
Kj

mαp

)T(
2yc − λαp

)
2

p
∑

j=1
β

j
m

(
Kj

mαp

)T(
Kj

mαp

) , (21)

where m = 1, · · · , M, let

bm,p =
bN

m,p

bD
m,p

. (22)
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when p = 1,

bN
m,p = (1 − γm)bN

m,p−1 + γm

(
Kp

mαp

)T(
2yc − λαp

)
bD

m,p = (1 − γm)bD
m,p−1 + 2γm

(
Kp

mαp

)T(
Kp

mαp

)
.

(23)

when p > 1,
bN

m,1 =
(
K1

mα1
)T
(2yc − λα1)

bD
m,1 = 2

(
K1

mα1
)T(K1

mα1
)

.
(24)

The FFT method enables the rapid calculation of Kp
mαp as F−1

(
F*
(

kp
m

)⊙
F
(
αp
))

=

F−1
(

F*
(

kp
m

)⊙
Ap

)
. Subsequently, the optimal solution can be attained through the

aforementioned iteration. Finally, the solution is verified to conform to the prescribed
constraint conditions.

The kernel function employed in this algorithm utilizes a Gaussian kernel, and the
elements within the kernel matrix can be computed using the following formula,

km
(
xi, xj

)
= exp

(
− 1

σ2
k

(∥∥xi − xj
∥∥2
))

. (25)

The exponent within the exponential function exp(·) used in this study is determined
by the negative normalized Euclidean distance between xi and xj. The higher the similarity
between xi and xj in Euclidean space, the greater the value of km

(
xi, xj

)
. This function is

commonly known as the likelihood function in filter-based tracking [37]. It enables the
calculation of a value that represents the likelihood of the measured real target given any
measurement. Based on the maximum likelihood estimation criterion, the target position is
estimated by determining the peak position yp of the correlation response y.
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Figure 2. The diagram of the MKCF tracking-by-detection algorithm.

4.2. The Adaptive Reliability Check

In the correlation filter response map, a single peak is observed, and the sharpness
of the peak corresponds to the reliability of the tracking result. The work conducted
by Bolme [34] has proposed the idea that the peak-to-sidelobe ratio (PSR) possesses the
potential to serve as an indicator of the sharpness of the response peak. The PSR is
defined as

Sp =
max

(
Rp
)
− µp

σp
, (26)
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where Rp represents the response map calculated by the correlation filter at frame p, and µp
and σp are the mean and standard deviation of Rp, respectively. In cases where the tracking
result is unreliable, as exemplified in Figure 3, the response map may exhibit multiple
peaks with low values, resulting in a significant decrease in the PSR. Therefore, the PSR
can serve as an indicator of tracking result quality to a certain degree.
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It is not suitable to pre-define a constant threshold to judge the reliability of the current
tracking because the PSR fluctuates between different values due to the uncertainty factor in
different scenarios. In order to mitigate the impact of fluctuations in the PSR, we utilize the
historical frames to compute the average score to determine the reliability of the tracking
results. We combine the PSR values of the historical frames to C =

{
S2, · · · , Sp−1

}
with

the mean of M. Furthermore, we introduce a small coefficient τ1, whereby the PSR Si of
the ith frame is stored in C if Si < τ1 · M and discarded otherwise. Finally, the evaluation
criteria of the MKCF algorithm adaptively changes from frame to frame as the average of
the multi-frame PSR is computed.

We check the reliability of the tracking result in each frame. The tracking result is
deemed unreliable if Si < τ1 · M (“Unreliability Check” in Figure 1). On the other hand,
the tracking result is likely to be reliable if it satisfies Si > τ2 · M (“Reliability Check”
in Figure 1) and the coefficient τ2 is higher than τ1. Once the initial tracking result is
determined to be unreliable, the re-detection module is initiated.

4.3. The Re-Detection Module

This section provides an introduction to the re-detection module, which plays a crucial
role in generating candidate target locations and determining whether to substitute the
initial tracking result with the optimal candidate target location. A key component of this
module is the implementation of the Kalman filter, which utilizes reliable tracking results
from the current frame for filter updates. Assuming that the motion between adjacent
frames adheres to a linear Gaussian distribution as prior knowledge, the motion model in
the Kalman filter can be established as a uniform linear motion model.

In cases where the track result is deemed unreliable, the target positions from the last
reliable tracking results are saved and used to drive a Kalman filter, providing an estimated
position positionp for the current target position with the variance in ψ

(
positionp

)
. Subse-

quently, N random locations gj(j = 1, · · · , N) are generated around the location positionp,

following a Gaussian distribution with the mean positionp and the variance ψ
(

positionp

)
.

With gj as the center, N target candidate bounding boxes Bj are generated. For the obtained

Bj, their response maps Rj
p are generated by Equation (6) and the maximum values of

these maps, qj = maxuRj
p(u), are also computed. Suppose q∗j is the maximum among

{q1, . . . , qN}. The best candidate bounding box of the target B∗
j and the best candidate
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location of the target g∗j are determined accordingly. Finally, the decision of whether the
best candidate location g∗j replaces the initial tracking result is determined through the
following two steps.

(1) If it does not meet the reliability check Si > τ2 · M, the initial tracking result is used;
(2) If it meets the reliability check Si > τ2 · M, we compute the correlation response at

the initial tracking location, and the highest response value is recorded as kp. If (27) is met,
the initial tracking result is replaced with g∗j .

q∗j ≥ γ × kp, (27)

where γ is the penalty parameter, and the * indicates the optimal. If the above equation is
not satisfied, the initial tracking result is not replaced.

5. Experimental Results

In this section, we apply the proposed method on two test scenarios and compare it
with the traditional tracking methods and the original KCF algorithms. All the algorithms
are implemented in MATLAB 2018b, utilizing an Intel i5-6200U CPU with a main frequency
of 2.3 GHz and 8 GB of memory. We make a Table 1 to summarize the abbreviations of
various algorithms.

Table 1. The abbreviations of various algorithms.

Algorithm Abbreviation

Multiple Hypothesis Tracking MHT
Joint Probabilistic Data Association JPDA

Probability Hypothesis Density PHD
Multi-Feature Kernel Correlation Filter MF-KCF

Multi-Kernel Correlation Filter MKCF
Improved Multi-Feature Kernel Correlation Filter IMF-KCF

Improved Multi-Kernel Correlation Filter IMKCF

5.1. Evaluation Metrics

Evaluation metrics of performance are discussed below.
(1) Root-mean-square error (RMSE) and precision: the average distance error between the

estimated position and the actual position, defined as (28). Given a threshold M, the centroid
position is properly estimated if its RMSE is less than M. The RMSE accuracy is defined as the
percentage of the total number of frames for which the location is correctly estimated.

RMSE =

√
m

∑
i=1

[(
x̂i

k − xk
)2

+
(
ŷi

k − yk
)2
]
/m, (28)

where m is the number of Monte Carlo experiments.
(2) Intersection over union (IOU) and precision: IOU is defined as (29). A larger IOU

value indicates a more accurate estimation of the target. Given a threshold N, the target box is
considered correctly estimated if its IOU is greater than N. The IOU accuracy is defined as the
percentage of the total number of frames for which the target box is correctly estimated.

IOU =
E ∩ G
E ∪ G

, (29)

where E denotes the area of the estimated target and G denotes the area of the real target.
Operator ∩ represents intersection and ∪ means the union.

(3) Frames Per Second (FPS): The number of frames processed per second, the greater
the FPS; the higher the efficiency of the algorithm.
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5.2. Test Scenarios and Parameter Settings
5.2.1. Test Scenarios

In order to verify the effect of the proposed algorithm on tracking targets exhibiting
different types of motion, we have designed two scenarios. Notably, both the ball and the
diver have equivalent target strength, with the difference lying in their respective motion
types. The experiment used a GPS device to record the actual motion trajectory of the
target. The GPS device is soft-connected to the target and floats on the ocean directly above
the target.

(a) Maneuvering target: As shown in Figure 4a, the small boat drags the ball to perform
a turning motion. Figure 5a is the sound speed profile of the experiment. The actual
trajectory of the target is plotted in Figure 5b, represented by the red line. Subsequent
to the 70th frame, the SRR is lower than 0 dB for the majority of frames within this
specific scene.
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Figure 5. (a) Sound speed profile. (b) The actual trajectory of maneuvering target in acoustic image.

(b) Diver target: As represented in Figure 4b, the closed diver moves in a Z-shaped
manner. The sound speed profile is shown in Figure 6a. The actual trajectory of the target
is plotted in Figure 6b, represented by the red line. In this scene, the SRR surpasses 0 dB for
the majority of frames, indicating a higher quality data set.
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Figure 6. (a) Sound speed profile. (b) The actual trajectory of diver target in acoustic image.

5.2.2. Parameter Settings

In this paper, we use the histogram of oriented gradient (HOG) and invariant moment
features. The HOG feature has nine gradient orientations, and the cell size is 4 × 4. In
the KCF, it uses a single Gaussian kernel with parameter σ = 0.5 and the learning factor
η = 0.01. It is worth noting that the multi-feature KCF (MF-KCF) trains the tracker based
on the above features’ fusion. The MKCF uses two Gaussian kernels with parameters
σ1 = 0.3 and σ2 = 0.3 and learning factors η = 0.0175 and η = 0.018, respectively. Both
methods employ a regularization parameter of λ = 10−4 [38]. In the adaptive reliability
check module, the coefficients τ1 and τ2 are 0.75 and 0.9, respectively.

To address the issue of high-frequency noise caused by abrupt edges in samples after
the cyclic shift, this study uses the Hanning window when processing sample features. The
application of the Hanning window aids in smoothing boundaries and minimizing inter-
ference from background information, consequently enhancing overall tracking accuracy.
Furthermore, due to the potential decline in detection and tracking performance associated
with an excessive search area in the KCF, it becomes necessary to restrict the size of the
search area. Hence, the search area is limited to 2.5 times the size of the target box [39].

5.3. Data Processing and Analysis
5.3.1. Comparison with Traditional Tracking Algorithms

In this section, a comparison is made between the proposed algorithm and three
commonly used algorithms in underwater target detection and tracking: MHT, JPDA, and
PHD. To minimize target loss during thresholding, a relatively low threshold is adopted in
the data preprocessing stage. It should be noted that this approach can lead to an increased
probability of false alarms, resulting in an increased number of false targets, thereby adding
difficulties of data association and computational costs.

The outcomes of data processing for maneuvering and diver targets are depicted in
Figures 7 and 8. Analysis of these figures reveals that the proposed IMKCF algorithm
consistently maintains a relatively low RMSE across the majority of frames in both maneu-
vering and diver target tracking processes, when compared to the other three algorithms.
This superior performance can mainly be attributed to two factors. Firstly, our response
map, which is based on target features, effectively identifies target areas. Secondly, the
re-detection module with a Kalman filter estimates a reliable target location when the
tracking result is deemed unreliable.
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Figure 7. (a) RMSE with maneuvering target. (b) RMSE with diver target.
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Figure 8. (a) RMSE precision with maneuvering target. (b) RMSE precision with diver target.

As shown in Figure 7, in the tracking of maneuvering targets, the three traditional
tracking algorithms perform poorly, particularly the PHD and MHT algorithms. Both
exhibit significant tracking drift at approximately 100 frames. The JPDA and PHD algo-
rithms demonstrate satisfactory performance in tracking the diver target, while the MHT
algorithm experiences tracking drift at about 70 frames. The JPDA algorithm excels in
cluttered environments as it does not require prior information about the target and clutter,
allowing for successful target tracking. Nevertheless, because this study focuses on a
single-target tracking scenario, the JPDA algorithm performs relatively well. In contrast,
the MHT algorithm necessitates prior information about the target and clutter, and the
computational complexity increases exponentially with the clutter density. To enhance
computational efficiency, we set a smaller value for N-scan pruning, but this compromises
the tracking performance of the algorithm. The PHD algorithm, which is based on RFS
theory, avoids the intricate correlation process associated with traditional methods and
exhibits high computational efficiency. In the data processing of the two scenarios, we
assume a uniform linear motion model for both the MHT and PHD algorithms. However,
this motion constraint is not robust in low SRR environments, leading to the failure of the
PHD algorithm in tracking maneuvering targets. Our proposed method surpasses these
algorithms by utilizing multiple features and incorporating reliability estimation to identify
a reliable re-detected target for self-correction.

Figure 8a,b display the percentage of frames within a given RMSE threshold for the
error between the estimated position and the true position of the maneuvering target
and the diver target, respectively. Analysis of these figures demonstrates that the IMKCF
algorithm outperforms the other three tested algorithms in terms of RMSE precision.
Specifically, when the RMSE threshold is set at 5, the IMKCF algorithm achieves an accuracy
rate close to 80%, while the other algorithms only have approximately 50% accuracy when
the RMSE threshold is 10.

5.3.2. Comparison with Original KCF Algorithms

In this section, a comparative analysis is conducted between the proposed algorithm
and three original KCF algorithms, namely, MF-KCF, improved MF-KCF (IMF-KCF), and
MKCF. Figure 9 illustrates the target position in the final frame and tracking outcomes
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for all four algorithms. It can be observed from the figure that both the MF-KCF and
MKCF algorithms fail to track the maneuvering target. Conversely, the IMF-KCF and
IMKCF algorithms, incorporating adaptive reliability checks and a re-detection module,
successfully track the target. At approximately the 70th frame, target tracking is inter-
fered with by reverberation, and the training samples are contaminated, resulting in error
propagation during model training and subsequent tracker drift. The IMKCF algorithm
checks real-time reliability on target tracking results and re-detects the target position when
deemed unreliable, preventing frame drift. The versatility of the re-detection module is
demonstrated by its successful implementation in both algorithms.
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Figure 9. Track results (frame = 127).

To further elucidate tracking performance under low-SRR scenarios, Figure 10 presents
the frame-by-frame RMSE and IOU of maneuvering target tracking. Higher IOU values
and lower RMSE values signify more accurate tracking outcomes. As shown in Figure 10,
both the MF-KCF and MKCF algorithms lose track of the targets around the 70th frame.
The IMKCF algorithm outperforms the IMF-KCF algorithm, exhibiting relatively low RMSE
and high IOU values across most frames, indicating superior accuracy. This improvement
can be attributed to the MKCF tracking-by-detection module, which enables the algorithm
to make full use of the complementary features and improve tracking accuracy.
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Figure 10. (a) RMSE. (b) IOU.

Figure 11a depicts the RMSE precision. The figure reveals that when the RMSE
threshold is set at 10, the IMKCF algorithm achieves nearly 100% precision, while the other
three algorithms fall below 60%. Additionally, Figure 11b demonstrates the IOU precision.
Notably, when the IOU threshold is set at 0.5, the IMKCF algorithm attains nearly 100%
precision, whereas the other three algorithms exhibit less than 60%. The results show that,
compared with the single-kernel correlation filter, the correlation filter based on multiple
kernels has greater advantages in tracking accuracy.
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Figure 12 illustrates the PSR curve during the tracking process of the MKCF and
IMKCF algorithms. It can be observed that the PSR of the MKCF algorithm experiences
a significant decline around the 70th frame, whereas the PSR of the IMKCF algorithm
fluctuates steadily throughout the tracking process. These findings indicate that the PSR
score serves as an indicator of tracking result reliability, and the adaptive reliability check
and re-detection modules within the IMKCF algorithm play a vital role in enhancing
tracking robustness.
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5.3.3. Algorithm Efficiency

Table 2 displays the PFS and average RMSE of the above algorithms. The results
indicate that the PHD algorithm has the highest FPS and computational efficiency but
exhibits the poorest tracking accuracy. In contrast, the KCF algorithms exhibit relatively
lower computational efficiency but has higher tracking accuracy compared to the classical
filtering algorithm. The analysis suggests that MKCF exhibits a slight improvement in
computational efficiency when compared MF-KCF. This implies that the incorporation of
an additional kernel in kernel correlation filtering does not result in a significant increment
in computational cost. Moreover, the results demonstrate that IMKCF achieves superior
tracking accuracy in comparison to both IMF-KCF and MF-KCF. Notably, Table 2 reveals
that the inclusion of a re-detection module can lead to an increase in computational cost, as
it carries out target re-detection when the tracking results are deemed unreliable.

Table 2. FPS and the average of RMSE.

MHT JPDA PHD MF-KCF MKCF IMF-KCF IMKCF

FPS 7.2 107.1 122.3 22.3 27.2 11.3 14.2

RMSEaver 44.82 10.26 50.83 19.94 33.52 9.6 3.86

6. Conclusions

In this paper, we propose an IMKCF algorithm to solve the challenging problem
of detecting and tracking weak targets with varying movements in a complex marine
environment. The IMKCF algorithm consists of three modules: the MKCF tracking-by-
detection, the adaptive reliability check, and the re-detection modules. The MKCF tracking-
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by-detection module employs a multi-frame data weighted average technique to adaptively
update the coefficients of multiple kernels, thereby enhancing tracking accuracy. We
conduct a comprehensive analysis of the MKCF algorithm using a maximum likelihood
perspective and prove that the target location can be precisely determined based on the
location of the maximum value of the correlation response. The remaining two modules
work collaboratively to improve the robustness of target tracking. In particular, the previous
reliable tracking results are utilized to drive a Kalman filter, generating a position estimate
when the tracking result is considered unreliable. A decision is then made about whether
to replace the original target position with the estimated one.

In data processing, we extracted HOG features and invariant moment features to
train the proposed IMKCF algorithm, which has been compared with traditional tracking
algorithms and original KCF algorithms. The experimental results demonstrate that our
proposed algorithm not only exhibits the capability of effectively tracking underwater
targets with diverse motion types but also achieves long-term robust tracking in low-SRR
environments. Moreover, the tracking accuracy of our algorithm surpasses that of the
single-core correlation filter. Currently, the method proposed in this paper is only suitable
for single-target tracking. In future research, we plan to delve deeper into the challenges
of multiple weak underwater target tracking. Additionally, we aim to mine more target
feature information to enhance the algorithm’s robustness.
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