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Abstract: Deep neural networks have achieved remarkable results in the field of polarimetric synthetic
aperture radar (PolSAR) image classification. However, PolSAR is affected by speckle imaging,
resulting in PolSAR images usually containing a large amount of speckle noise, which usually
leads to the poor spatial consistency of classification results and insufficient classification accuracy.
Semantic segmentation methods based on deep learning can realize the task of image segmentation
and classification at the same time, producing fine-grained and smooth classification maps. However,
these approaches require enormous labeled data sets, which are laborious and time-consuming.
Due to these issues, a new multi-modal contrastive fully convolutional network, named MCFCN,
is proposed for PolSAR image classification in this paper, which combines multi-modal features of
the same pixel as inputs to the model based on a fully convolutional network and accomplishes
the classification task using only a small amount of labeled data through contrastive learning. In
addition, to describe the PolSAR terrain targets more comprehensively and enhance the robustness
of the classifier, a pixel overlapping classification strategy is proposed, which can not only improve
the classification accuracy effectively but also enhance the stability of the method. The experiments
demonstrate that compared with existing classification methods, the classification results of the
proposed method for three real PolSAR datasets have higher classification accuracy.

Keywords: contrastive learning; fully convolutional network (FCN); polarimetric synthetic aperture
radar (PolSAR); image classification

1. Introduction

Although the ability of synthetic aperture radar (SAR) technology to acquire target
information is constantly improving [1], traditional SAR imaging systems are no longer
able to meet current needs. Polarimetric synthetic aperture radar (PolSAR) is a mi-
crowave active imaging radar that can achieve high resolution, with all-day, all-weather,
wide-area observation and imaging capabilities [2]. These features give PolSAR a unique
advantage in economic and military applications, among others [3–5]. Additionally, Pol-
SAR serves as a reliable source of observation data even under extreme meteorological
conditions. PolSAR image classification is one of the essential technologies to implement
intelligent interpretation of PolSAR images, which aims to classify each pixel point into a
specific terrain category with practical significance and has received extensive attention
from researchers.

With the rapid development of PolSAR technology in recent years, researchers have
proposed various algorithms for PolSAR image classification tasks [6–8]. In general, PolSAR
image classification techniques can be classified as supervised and unsupervised learning
approaches depending on whether the training samples require label information [9].
Unsupervised classification methods do not rely on labeled samples and usually extract
useful information for clustering by learning the internal structure and patterns of the
data, such as the K-means clustering algorithm [10] and spectral clustering algorithm [11].
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Compared with unsupervised classification methods, supervised classification methods,
such as the K-nearest neighbor algorithm [12], support vector machine algorithms [13],
and decision tree algorithms [14], usually make it easier to obtain higher classification
accuracy because they can utilize a large number of labeled data. Although supervised
methods have shown good results for PolSAR image classification, practical applications
face difficulties in obtaining labeled data because the process of acquiring the labeled data
is labor-intensive and costly [15]. Furthermore, the coherent speckle imaging principle of
PolSAR leads to low classification accuracy and severe noise in the classification results of
pixel-based PolSAR classification methods. In order to address the aforementioned issues,
this work focuses on methods for increasing classification result accuracy while minimizing
the impact of speckle noise on results with limited labeled data.

As deep learning technology advances quickly, deep neural networks are also being
used to solve the PolSAR image categorization problem [16–18]. Convolutional neural net-
work (CNN), as one of the main methods of deep neural networks, is useful for extracting
spatial characteristics from images and has a broad range of applications in the field of
PolSAR interpretation [19,20]. Wang et al., proposed a multi-channel fusion convolutional
neural network based on a scattering mechanism to address the high computational con-
sumption of the network [21]. Zhang et al. proposed a new convolutional neural network
learning-based PolSAR image classification method to solve the problem of scattering
diversity due to variations in polarimetric orientation angles [22]. However, PolSAR clas-
sification methods based on CNN are pixel-based classification methods. Although the
spatial relationship between pixels is considered, it is only based on the spatial relationship
of the neighborhood, and the noise reduction effect cannot be well achieved in the field of
PolSAR classification.

However, semantic segmentation methods, such as fully convolutional network
(FCN) [23], U-net [24], and DeepLab [25,26], can realize segmentation and classification
tasks at the same time. These segmentation networks have shown promising results in
the field of fine-grained image categorization [27] and have been used in other fields
such as object detection and remote sensing [28–31]. Ni et al. proposed a random
region-matching segmentation method to achieve high segmentation accuracy [32]. Jing
et al. proposed a polarimetric space reconstruction network thereby addressing the
underutilization of PolSAR data features [33]. Inspired by this, this article studies the
problem of PolSAR image classification based on image semantic segmentation. As
a typical representative of semantic segmentation methods based on deep learning,
FCN substitutes convolutional layers for fully connected layers in the network design,
achieving end-to-end pixel-level classification. Compared to CNN, FCN is widely used
in the field of image segmentation [34]. Therefore, this article focuses on the FCN-based
PolSAR image classification method.

The spatial relationship of PolSAR images can be effectively taken into account
by semantic segmentation approaches, which also lessen the impact of speckle noise
on the classification results. However, obtaining a substantial amount of labeled data
remains a significant challenge for training semantic segmentation methods in PolSAR
classification tasks. In the last few years, with the continuous maturation of deep learning
theory, a number of methods have been proposed to solve small-sample problems in the
field of PolSAR classification [35–37]. As a self-supervised learning method, contrastive
learning uses the intrinsic characteristics of data as a supervised signal to reduce the
need for labeled data and has achieved remarkable success in the field of machine
learning [38,39]. Inspired by the aforementioned, this study introduces a contrastive
learning approach based on the FCN model to address the PolSAR image classification
problem under limited labeled data, which reduces the requirement of labeled samples
for the network by means of contrastive learning.

In contrastive learning, the construction of positive and negative samples is very
important. Negative samples are created from distinct categories, while positive samples
are created from the same category. PolSAR data have rich physical properties and
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multi-modal characterization properties, which is helpful in constructing positive and
negative samples. Polarimetric target decomposition is an important feature extrac-
tion method among the various polarimetric feature extraction methods in this field.
Common polarimetric target decomposition methods include Pauli decomposition [40],
H/A/α decomposition [41], Freeman decomposition [42], and so on. However, based
on a single polarimetric feature, it is challenging to effectively distinguish the feature
target information of PolSAR images, and different polarimetric features have certain
complementary effects. Therefore, this paper combines multi-modal polarimetric target
decomposition methods and utilizes various polarimetric features simultaneously to
achieve a more comprehensive description of PolSAR terrain targets. Moreover, the ra-
tional combination of these features can enrich the information in the feature description,
thus enhancing the robustness of the classifier.

In addition, a classification strategy with pixel overlap between neighborhood win-
dows is proposed to further improve the classification accuracy and increase the stability of
the proposed method. The sliding window method was chosen to classify the whole-view
PolSAR images. Setting different initial positions for the sliding window results in different
datasets and differences between the classification result maps obtained. Moreover, there
are overlaps between the classification result maps, and the pixels at these overlapping
positions are classified multiple times. Finally, the category of pixels is determined by the
majority voting method to increase the correctness of the classification results. Thus, the
contributions of this paper can be summarized as follows:

1. A pixel-level semantic segmentation method is proposed that can effectively reduce
the impact of speckle noise and improve the regional consistency of classification
results for the PolSAR image classification task.

2. Combining contrastive learning and semantic segmentation methods, a multi-modal
contrastive fully convolutional network is proposed, which can achieve better terrain
classification with limited labeled samples.

3. To further enhance the classification accuracy and boost network stability, a classifi-
cation strategy with overlapping pixels in the neighborhood window is introduced.
Experimental findings demonstrate the effectiveness of this strategy in significantly
improving the classification accuracy of the proposed method.

The remaining sections of this article are arranged as follows: The proposed framework
of PolSAR image classification is presented in Section 2. The experimental design and
parameter analysis are presented in Section 3. Section 4 analyzes the experimental results
of the two sets of PolSAR data. Section 5 provides the conclusions.

2. Proposed Classification Framework

The proposed approach is divided into two primary parts, as depicted in Figure 1.
The multi-modal features are first extracted, and the sample pairs are constructed se-
quentially, in the first part. Next, the created sample pairs are fed into the MCFCN
network, which is trained by self-supervision, and the model parameters of the trained
FCN in the pink dashed box are saved. In the second part, the trained parameters from
the first part are transferred and a few labeled samples are used to fine-tune the trained
FCN. Then, the PolSAR data are classified using the pixel-overlapping classification
strategy. Finally, for pixels that have been classified multiple times, a majority voting
approach is applied to determine the final category, thus improving the correctness of
the classification results.



Remote Sens. 2024, 16, 296 4 of 20
Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. The whole framework of the MCFCN. 

2.1. PolSAR Features 
In general, a 3 × 3 polarimetric coherency matrix or polarimetric covariance matrix 

can be used to represent each pixel point in a PolSAR image. The polarimetric coherency 
matrix can be written as follows: 
















=

333231

232221

131211

TTT
TTT
TTT

T . (1) 

In the T matrix, the elements T11, T22, and T33 on the main diagonal are real and the 
remaining elements are imaginary. T12, T13, T23 are the conjugate complexes of T21, T31, and 
T32, respectively. In PolSAR interpretation, the feature information of each pixel is typi-
cally represented by a nine-dimensional feature vector transformed by the coherency ma-
trix. Therefore, the diagonal elements and the real and imaginary sections of the upper 
triangle elements of the T-matrix are extracted in this paper to represent the feature infor-
mation of each pixel, as shown in Equation (2). 

11 22 33 12 12
1

13 13 23 23

[ , , ,Re( ), Im( ),
Re( ), Im( ),Re( ), Im( )]
T T T T T

t
T T T T

=
 

(2) 

The vector t1 is used as an anchor for which it is crucial to construct suitable positive 
samples. Usually, positive sample pairs are considered to be similar or related sample 

Figure 1. The whole framework of the MCFCN.

2.1. PolSAR Features

In general, a 3 × 3 polarimetric coherency matrix or polarimetric covariance matrix
can be used to represent each pixel point in a PolSAR image. The polarimetric coherency
matrix can be written as follows:

T =

T11 T12 T13
T21 T22 T23
T31 T32 T33

. (1)

In the T matrix, the elements T11, T22, and T33 on the main diagonal are real and the
remaining elements are imaginary. T12, T13, T23 are the conjugate complexes of T21, T31, and
T32, respectively. In PolSAR interpretation, the feature information of each pixel is typically
represented by a nine-dimensional feature vector transformed by the coherency matrix.
Therefore, the diagonal elements and the real and imaginary sections of the upper triangle
elements of the T-matrix are extracted in this paper to represent the feature information of
each pixel, as shown in Equation (2).

t1 =
[T11, T22, T33, Re(T12), Im(T12),

Re(T13), Im(T13), Re(T23), Im(T23)]
(2)
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The vector t1 is used as an anchor for which it is crucial to construct suitable positive
samples. Usually, positive sample pairs are considered to be similar or related sample pairs.
Because PolSAR data are rich in physical properties and multi-modal characterization
properties, the positive samples are constructed from the components of the polarimetric
target decomposition. Three decomposition methods, Pauli decomposition, Freeman
decomposition, and H/A/α decomposition, are chosen. Table 1 lists the input features
selected for this paper. For each pixel, a three-dimensional vector is obtained by all three
decomposition methods. We combine these three three-dimensional vectors into a nine-
dimensional vector t2, which can be expressed as:

t2 =
[∣∣∣a|2,

∣∣∣b|2,
∣∣∣c|2, Phs, Phd, Phv, H, A, α

]
. (3)

Table 1. Selected input features.

Features Description

Anchor T11, T22, T33, Re(T12), Im(T12),
Re(T13), Im(T13), Re(T23), Im(T23) Extracted from the coherency matrix

|a|2, |b|2, |c|2 Pauli decomposition
Positive sample Phs, Phd, Phv Freeman decomposition

H, A, α H/A/α decomposition

2.2. Fully Convolutional Network

A fully convolutional network (FCN) is a special kind of convolutional neural network.
In fully convolutional networks, convolutional layers are used instead of fully connected
(FC) layers in CNN, making all the sub-layers in the whole network structure convolutional
layers. The cross-layer connections in the network allow features from different layers to
be fused, and the information from multiple layers can be combined during classification
and prediction.

Figure 2 displays the framework of the fully convolutional network model that is
employed in the experiments. The input of the model is n pieces with a size of 20 × 20-pixel
nine-dimensional subgraphs. The subgraphs are first downsampled three times to reduce
their size sequentially from 20 pixels to 10 pixels, then to 5 pixels, and finally to 3 pixels.
The downsampling operation consists of two convolutional operations and a max pooling
operation. Next, the number of channels is changed to the number of categories using
a 1 × 1 convolution kernel without changing the size of the feature map. Then, the first
upsampling operation is performed, which does not change the number of channels but
only changes the size of the feature map, and the size of the feature map obtained in the
previous step is enlarged from 3 pixels to 5 pixels by deconvolution. The results of the
second downsampling are processed using a 1 × 1 convolution kernel and the results are
connected across layers with the results of the first upsampling. A second upsampling
operation is then performed on the connected result to enlarge the size to 10 pixels. Then,
the number of channels is changed to the number of categories using a 1 × 1 convolution
kernel for the first downsampling result, and the result obtained is connected across layers
with the second upsampling result. Finally, deconvolution continues to be used to upsample
the results after the cross-layer connection, and the size is enlarged to match the original
subgraph. A labeled map is obtained which has a size of 20 × 20 and a number of channels
for the number of categories. A categorization operation is implemented for each pixel in
the window.
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2.3. Multi-Modal Contrastive Fully Convolutional Network (MCFCN)

Contrastive learning is a self-supervised learning method that utilizes similarities and
differences between positive and negative samples to extract meaningful information rep-
resentations [43]. Both positive and negative sample pairs are unlabeled data. Contrastive
learning enables learning of the underlying relationships between these unlabeled data,
thereby addressing the issue of high demand for labeled samples in the network.

This paper proposes a multi-modal contrastive fully convolutional network to address
the PolSAR image classification problem with limited labeled data. The multi-modal
contrastive pre-training task and the terrain classification task constitute the two phases of
the training procedure. Figure 1 depicts the network model structure. Before contrastive
learning, the construction of positive and negative samples is carried out. The nine-
dimensional vector t1 and the nine-dimensional vector t2 corresponding to the same pixel
are selected as the positive sample pairs. The feature vectors between different pixels
are negative samples. In this way, the multi-modal characterization of the same pixel is
introduced. By learning the similarity between multi-modal positive samples and the
difference between negative samples, an encoder h is learned that satisfies Equation (4).

S
(
h(x), h

(
x+
))

>> S
(
h(x), h

(
x−
))

(4)

The x and x+ in the formula are a pair of positive samples, and x and x− are a pair of
negative samples. S() denotes the similarity evaluation method. Using the method of the
dot product to evaluate the similarity, it can be expressed as:

S(A, B) = AT B. (5)

Then, the positive and negative sample pairs are fed into the encoding module to
obtain the feature vector f. The operation in the encoding module is the same as the
operation in the FCN mentioned in the previous section. The feature vector f is then sent
to the projection module. The projection module is a multilayer perceptron (MLP). Full
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connection, batch normalization, and RELU activation are performed sequentially in the
projection module, and finally, the output feature g is obtained.

The training of the first stage network is then finished by calculating the loss using the
contrastive loss function and updating the gradient. The following is the commonly used
formula for the contrastive loss function:

L = −Ex,x+ ,x−

log
exp

(
h(x)Th(x+)

)
exp

(
h(x)Th(x+)

)
+ exp

(
h(x)Th(x−)

)
. (6)

In Equation (6), E means to compute the expectation for the latter equation. Then, in a
batch, with modality i as the reference, the loss function of a set of positive sample pairs
(i,j) is calculated as follows:

Li,j = − log
exp(zi · zj/τ)

∑2N
k=1,k 6=i exp(zi · zk/τ)

, (7)

where τ is the temperature hyperparameter and N is the size of the batch. Each subgraph
in a batch has its positive sample pair, so there are 2N samples in total. The z in Equation
(7) represents the feature vector obtained after passing through the encoder h. The zi is
denoted as h(xi). The zj is denoted as h(xj).

2.4. Procedure of the MCFCN

To improve the precision and robustness of the suggested approach, a sliding window
method is proposed. Instead of classifying each pixel in turn, this method can classify all
pixels within the window at the same time. The window size in the experiments is set to
w × w. As shown in Figure 3, rectangles with solid black borders represent the true size of
the dataset, and rectangles with dashed borders represent the filled size. The pixels between
the black solid and dashed lines are obtained by mirror filling. The five small rectangles
with colors in Figure 3 represent sliding windows with a step size of w pixels. These sliding
windows have different initial positions, with the last four being positioned by sliding up
and down along the two diagonal directions of the first blue sliding window, with a sliding
step of 1/4 of the diagonal length. As the initial position of the sliding window is selected
differently, the resulting datasets are different, and different classification results will be
obtained. A total of five classification result maps of the same size will be obtained, and
they will have overlapping parts. A majority voting approach is used to determine the final
pixels to address the issue of multiple classifications of overlapping parts.

In our proposed method, multi-modal features are first extracted from the polari-
metric coherency matrix and polarimetric target decomposition method so that each
pixel corresponds to two feature vectors t1 and t2, which represent the multi-modal
features. For the same pixel, the feature vector t1 is defined as the anchor, and the feature
vector t2 is defined as a positive sample. The feature vectors between different pixels
are defined as negative samples. Constructed pairs of positive and negative samples
are fed into the first stage of the model, which uses a contrastive loss function for self-
supervised pre-training to extract high-level semantic features. Then, the parameters of
the pre-trained model are preserved. In the terrain classification stage, the pre-trained
network parameters from the first stage are used and transferred to the classification
network model through parameter initialization. A small amount of labeled data is
chosen to fine-tune the network so that PolSAR images can be classified with a limited
number of labeled samples. Eventually, five datasets are generated based on the pixel
overlapping classification strategy, and each dataset has its map of classification results
called subgraphs. A majority voting method is applied to the subgraphs to determine
the final labels and obtain the final classification results.
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The whole procedure of the MCFCN method is shown as Algorithm 1.

Algorithm 1 The Whole Process of the MCFCN.

Training process:
Input: Randomly select the labeled PolSAR dataset.
1: Extraction of multi-modal features from polarimetric coherency matrix by polarimetric target
decomposition methods.
2: The whole-view PolSAR image is segmented into a number M of size w × w pixels and a
multi-modal positive and negative sample set U is constructed.
3: Combining contrastive learning with FCN to construct a multi-modal contrastive fully
convolutional network (MCFCN).
4: The MCFCN model constructed in step 3 is trained in a self-supervised manner using the
positive and negative sample set U, and the parameters of the model are saved.
5: The labeled data are used to fine-tune the network model trained in step 4 to obtain the final
network model.
Testing process:
1: Multiple differentially PolSAR image datasets to be classified are obtained in a sliding window
manner.
2: The data obtained in the previous step are classified using the network trained in the training
process to obtain multiple classification results.
3: A majority voting method is used on the multiple classification results obtained to determine
the final label.
Output: Final label map.
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3. Experimental Design
3.1. Experimental Data

In this section, the validity of the approach proposed in this paper is verified using
three PolSAR datasets. The first dataset is a PolSAR image of the San Francisco area, which
is acquired by RadarSAT-2 and has 1300 × 1300 pixels. This dataset has five different
terrain classes: developed areas, high-density urban, low-density urban, vegetation, and
water. Figure 4a displays the San Francisco Pauli RGB image, and Figure 4b displays the
ground truth image. The Flevoland dataset is the second dataset, which is an image of the
Flevoland region of the Netherlands acquired by the C-band Radarsat-2. The dataset has a
size of 1400 × 1200 pixels and contains four terrain categories: water, farmland, forest, and
buildings. Figure 5a displays the Pauli RGB image for this dataset, and Figure 5b displays
the ground truth image. The third dataset is the San Francisco II dataset with a size of
900 × 1024. There are a total of three terrain categories in this dataset: water, urban, and
vegetation. Figure 6a displays the Pauli RGB image for the San Francisco II dataset, and
Figure 6b displays the ground truth image.
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3.2. Experimental Design

In the experimental section, the proposed approach is contrasted with the other seven
PolSAR classification methods in order to confirm the validity of the approach used in
this paper. The first three methods are classical classification methods: CNN, U-net,
and FCN. The structure of the FCN network is consistent with the FCN structure in our
proposed method. In addition, three other classification methods (CL-CNN, CL-FCN,
and MCFCN*) are set up to verify the effectiveness of every component of the suggested
approach (MCFCN). CL-CNN represents a classification method that combines CNN and
contrastive learning. CL-FCN represents a classification method that combines FCN and
contrastive learning. MCFCN* represents a classification method that does not use a pixel-
overlapping classification strategy based on the MCFCN method. Finally, a new PolSAR
classification method based on deep learning called the WT [44] algorithm is also chosen to
compare with our method.

In the experiment, random samples without labels are chosen during the contrastive
learning training process. In fine-tuning the classifier, five percent of the labeled samples
are chosen at random to be trained. The model is trained in both the first and second stages
using the Adam optimization algorithm. In the first stage, the initial learning rate is set to
1 × 10−3. The weight decay is set to 1 × 10−7. The temperature hyperparameter is set to
0.7. In the second stage, the initial learning rate is set to 1 × 10−3. The weight decay is set
to 1 × 10−5. Finally, the classification performance is measured using the Kappa statistic
and overall accuracy (OA) for the evaluation of the classification results.

3.3. Parameter Analysis
3.3.1. Effect of the Number of Labeled Samples

The number of training samples is an important parameter in this method. The
training process of supervised learning in the second stage is significantly impacted by the
number of labeled examples. This parameter can reflect the effectiveness and stability of
the proposed method. Just the percentage of labeled samples is changed in this section in
order to observe the effect of this parameter on the Kappa and overall accuracy (OA) of the
classification results.

The initial 10% of unlabeled samples are chosen at random to begin the contrastive
learning training process. Self-supervised training uses unlabeled samples to learn a priori
knowledge for feature extraction. In the second stage of supervised training, 0.2–18% of
labeled samples are utilized, which enables fine-tuning of the classifier.

The OA and Kappa vary according to the number of labeled samples in the San
Francisco I dataset, as shown in Figure 7, where the Kappa is represented by the blue
dashed line and the OA by the red dashed line. Figure 7 shows that as the number
of labeled samples increases, so do the OA and the Kappa. The overall classification
accuracy is 85.76% and the Kappa coefficient is 77.50% when there are 0.2% of labeled
samples. The overall classification accuracy is 98.29% and the Kappa coefficient is 97.42%
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when the proportion of labeled samples is 18%. The accuracy of classification increases
with the percentage of labeled samples, indicating the efficacy of the approach presented
in this paper. From Figure 7, it can also be observed that the OA and Kappa increase
faster when the percentage of labeled data is relatively low. The OA increases by 11.65%,
from 85.76% to 97.41%, when the percentage of labeled samples increases from 0.2% to
5%. Kappa increases from 77.50% to 96.09%, an increase of 18.59%. However, the increase
rates of the OA and the Kappa slow down as the percentage of labeled samples increases.
As the percentage of labeled samples increases from 5% to 18%, the OA increases from
97.41% to 98.29%, an increase of only 0.88%, and the Kappa increases from 96.09% to
97.42%, an increase of only 1.33%. This phenomenon also indicates that the method
is reasonable. In addition, when the proportion of labeled samples is only 0.2%, the
OA can reach 85.76%, which can also show that the method is a reasonable and valid
classification method.
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Similarly, the same experiments are performed on the RadarSAT-2 Flevoland dataset.
Figure 8 represents the overall classification accuracy and the variation in Kappa for the
classification results on the RadarSAT-2 Flevoland dataset. The red curve represents the
OA and the blue curve represents the Kappa. In Figure 8, the same pattern as in Figure 7
can be observed. First, as the percentage of labeled samples increases, the OA and the
Kappa coefficient increase. Second, the OA and Kappa increase more quickly when the
proportion of labeled samples is relatively low, and they increase more slowly when the
proportion of labeled samples increases. The OA increases by 21.96%, from 73.19% to
95.15%, as the percentage of labeled samples increases from 0.2% to 5%. Kappa increases
from 63.45% to 93.39%, an increase of 29.94%. However, the OA increases by only 0.92%,
from 95.15% to 96.07%, when the proportion of labeled samples increases from 5% to 18%.
Kappa increases from 93.39% to 94.63%, an increase of only 1.24%. Again, these phenomena
justify the validity of the methodology. Therefore, 5% labeled samples were chosen for the
experimental part of this paper.
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3.3.2. Effect of the Size of Sliding Window

The proposed network model uses an image block with the same size as the sliding
window as its input during training, and its output is the category of each pixel in the
sliding window. A crucial parameter in the experiment is the size of the sliding window.
We only vary the size of the sliding window in this section and observe the effect of this
parameter on the OA and Kappa.

Figure 9 illustrates the variation in OA and Kappa values corresponding to different
sliding window sizes on the first dataset. The red solid line in Figure 9 represents the OA
and the blue solid line represents the Kappa. Seven sizes of sliding windows have been cho-
sen for the experiments, and Figure 9 shows that as sliding window size increases, OA and
Kappa first increase and subsequently decrease. The sliding window size of 20 × 20 gets
the best classification results, 96.09% for Kappa and 97.41% for OA. When the size is small,
the window contains fewer pixels, and then it contains less information about spatial
relationships, resulting in poorer classification. However, the total number of segmented
pixel blocks reduces as the sliding window size increases when it exceeds 20 pixels. Then,
the number of training samples decreases when there is the same proportion of pixels,
which leads to a poorer classification effect. In summary, a 20 × 20 sliding window size is
selected for the experiments.
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3.3.3. Effect of the Batch Size

In this section, we only change the batch sizes on the San Francisco dataset and observe
the impact of this parameter change on the experimental results OA and Kappa. The batch
size determines the direction of gradient descent and is an important parameter in network
training. Theoretically, when the batch size is large, the GPU can process more samples
in parallel and the network converges faster, but the memory requirement is increased
at the same time. Although the reduction in the number of training times accelerates the
convergence of the network, the loss curve is relatively smooth, and the accuracy increases
steadily, a larger batch size introduces less noise, which can cause the model to fall into a
local optimal solution and poor generalization ability, resulting in a low actual accuracy.
When the batch size is small, more noise will be introduced, which can be regarded as a
regularization mechanism, thus helping to reduce the risk of overfitting, but it will lead to
slower convergence of the model and larger oscillations in the loss and accuracy curves.
Therefore, we need to choose an appropriate batch size for the experiment.

During the training process of the second stage, keeping other parameters constant
and increasing the batch size from 4 to 42, the changes in OA and Kappa are shown in
Figure 10. Our experimental results are also consistent with the theoretical analysis above.
When the batch size is small, both OA and Kappa values are low. As the batch size increases,
the OA and Kappa values increase and then decrease. When the batch size grows from 4
to 12, OA grows from 96.55% to 97.59% and Kappa grows from 94.80% to 96.35%. When
the batch size is 12, both OA and Kappa reach their peak values. When the batch size is
between 8 and 32, the OA values of the classification results are all above 97%, the Kappa
values are all above 95.5%, and the changes are relatively smooth. In this interval, when the
batch size is 32, the OA value is the lowest, 97.17%, and the Kappa value is also the lowest,
95.72%. As the batch size grows from 12 to 42, the OA value and Kappa value decrease: the
OA value decreases from 97.59% to 96.77%, and the Kappa value decreases from 96.35% to
95.11%. After the above analysis, we chose a batch size of 12 for the experiments.
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4. Experimental Results
4.1. Classification Results of the San Francisco I Dataset

Table 2 and Figure 11 show in detail the effects of seven different classification methods
applied to the San Francisco I dataset. Both the data in Table 2 and the classification effect
maps show that the OA and Kappa of the MCFCN classification approach are higher than
those of the other seven methods. Table 2 shows that the OA of FCN is 3.29% greater
than that of CNN and 1.22% higher than that of U-net, in comparison to the first three
classical algorithms. In comparison to CNN and U-net, FCN has a greater Kappa by
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5.12% and 1.84%, respectively. Both FCN and U-net belong to the method of semantic
segmentation, and it is evident from Figure 11 that the U-net and FCN classification result
maps have smoother edge lines between the categories and a more detailed classification
effect compared with the classification result graphs of CNN. This shows that our choice
of segmentation for the classification task is desirable and that our choice of FCN as the
backbone network is more effective. In addition, the OA of CL-CNN is 1.33% higher than
the OA of classification using CNN alone, and the Kappa of CL-CNN is 2.12% higher
than the Kappa of CNN. The OA of CL-FCN is 1.66% higher than the OA of classification
using FCN alone, and the Kappa of CL-FCN is 2.5% higher than the Kappa of FCN. The
enhancement in OA and Kappa indicates that contrastive learning can promote the training
of the network when the number of samples is small. Thus, the introduction of contrastive
learning is effective. The OA of MCFCN is 3.21% higher than the OA of CL-FCN. The
Kappa of MCFCN is 4.87% higher than the Kappa of CL-FCN. The significant improvement
in both OA and Kappa suggests that the introduction of multi-modal data is necessary so
that the modal can learn richer and more discriminative feature information. Compared
with MCFCN*, the OA of MCFCN is 1.02% higher than that of MCFCN*, and the Kappa of
MCFCN is 1.55% higher than that of MCFCN*. In the case of using the pixel overlapping
classification strategy, both OA and Kappa values are higher, which shows the effectiveness
of this strategy. Compared with the WT method, the OA of MCFCN is 2.05% higher than
the OA of WT, and the Kappa is 2.48% higher than the Kappa of WT. This indicates that
our proposed classification method is superior to the WT method.
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Table 2. Classification accuracy (%) of San Francisco I dataset.

Class
Method

CNN U-Net FCN CL-CNN CL-FCN WT MCFCN* MCFCN

Water 99.95 99.87 99.74 99.73 99.86 99.94 99.93 99.90
Vegetation 83.93 93.18 95.48 90.45 93.10 89.04 92.20 96.06

Low-Density urban 58.00 55.06 62.92 59.65 65.44 98.44 93.45 95.74
High-Density urban 85.46 90.52 90.18 87.97 97.50 88.49 97.54 98.95

Developed 78.87 78.35 85.15 75.22 90.04 93.94 92.93 94.30
OA 90.06 92.16 93.35 91.39 95.01 96.47 97.41 98.52

Kappa 84.82 88.10 89.94 86.97 92.44 95.28 96.09 97.76

4.2. Classification Results of the Rs2-Fleveoland Dataset

The results of the eight methods applied to the RS-2 Flevoland dataset are displayed
in Figure 12 and Table 3. The OA of MCFCN is 7.41%, 7.57%, 3.58%, 6.4%, 2.26%, 1.45%,
and 1.07% greater than those of CNN, U-net, FCN, CL-CNN, CL-FCN, MCFCN*, and
MT, respectively, according to Table 3. The Kappa of MCFCN is 10.17%, 10.46%, 4.92%,
8.77%, 3.12%, 1.98%, and 1.52% higher than those of CNN, U-net, FCN, CL-CNN, CL-FCN,
MCFCN*, and MT, respectively. Again, we can conclude that FCN performs better in
the classical algorithm. Plot (d) in Figure 12 further shows that the edges of each region
in the classification result map of FCN are smoother and do not have obvious jagged
shapes. Also, the above data illustrate that the MCFCN method can extract more advanced
semantic features and achieve higher classification accuracy by contrastive learning among
multi-modal data when using the same proportion of labeled data. Moreover, when using
the MCFCN method to classify the RS-2 Flevoland dataset, not only the OA and Kappa
value, but also the classification accuracy for each terrain category is the highest. In the
case of using the MCFCN method, the classification accuracy for the water area is 98.97%,
which is 2.29% higher than that of using the CNN method, 0.04% higher than that of using
the U-net method, 0.75% higher than that of using the FCN method, 2.6% higher than that
of using the CL-CNN method, 1.57% higher than that of using the CL-FCN method, 0.57%
higher than that of using the WT method, and 1.02% higher than that of using the MCFCN*
method. The classification accuracy for the forest area is 95.16%, which is 5.86% higher
than using the CNN method, 0.69% higher than using the U-net method, 2.48% higher
than using the FCN method, 7.65% higher than using the CL-CNN method, 0.28% higher
than using the CL-FCN method, 0.9% higher than using the WT method, and 2.51% higher
than using the MCFCN* method. The classification accuracy for building areas using the
MCFCN method is 96.58%, which is the highest. The classification accuracy for building
areas using the U-net method is 63.37%, which is the lowest, with a difference of 33.21%
between the maximum and minimum values. Next, the highest classification accuracy is
23.26% higher than using CNN, 13.28% higher than using FCN, 14.47% higher than using
the CL-CNN method, 11.7% higher than using the CL-FCN method, 3.93% higher than
using the WT method, and 2.12% higher than using the MCFCN* method, respectively.
The classification accuracy of farmland area using the MCFCN method is 95.85%, with the
highest accuracy, which is 6.3% higher than using CNN, 8.82% higher than using U-net,
2.85% higher than using FCN, 4.99% higher than using CL-CNN method, 0.41% higher
than using CL-FCN method, 11.49% higher than using WT method, and 0.58% higher than
using MCFCN* method, respectively.
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Table 3. Classification accuracy (%) of the RS2-Fleveoland dataset.

Class
Method

CNN U-Net FCN CL-CNN CL-FCN WT MCFCN* MCFCN

Water 96.68 98.93 98.22 96.37 97.40 98.40 97.95 98.97
Forest 89.48 94.47 92.68 87.51 94.88 94.26 92.65 95.16

Building 73.32 63.37 83.30 82.11 84.88 92.65 94.46 96.58
Farmland 89.55 87.03 93.00 90.86 95.44 84.36 95.27 95.85

OA 89.19 89.03 93.02 90.20 94.34 95.53 95.15 96.60
Kappa 85.20 84.91 90.45 86.60 92.25 93.85 93.39 95.37

4.3. Classification Results of San Francisco II Dataset

Table 4 and Figure 13 represent the results of the eight methods applied to the San
Francisco II dataset. From Table 4, it can be seen that the OA values are 92.17%, 95.23%,
95.94%, 93.06%, 96.56%, 95.79%, 96.75%, and 97.12% using the CNN, U-net, FCN, CL-CNN,
CL-FCN, WT, MCFCN*, and MCFCN methods, respectively. The Kappa value using the
MCFCN method is 8.36% higher than using the CNN method, 3.19% higher than using
the U-net method, 2.14% higher than using the FCN method, 7.38% higher than using the
CL-CNN method, 0.98% higher than using the CL-FCN method, 0.93% higher than using
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the WT method, and 0.64% higher than using the MCFCN* method. The above data can
show that our proposed method is more effective. In addition, the OA and Kappa values
of the CL-CNN and CL-FCN methods after introducing contrastive learning are higher
than those of the CNN and FCN methods, which can also indicate that the introduction
of contrastive learning is helpful in improving classification accuracy. The OA and Kappa
values of the MCFCN* method with the introduction of multi-modal features are higher
than those of the CL-FCN method without the introduction, which can also indicate that
the introduction of multi-modal features is effective. Figure 13 shows that the classification
result map using the MCFCN method shows a significant reduction in the number of
isolated points misclassified as vegetation categories in the urban region. The number of
isolated points misclassified as water categories in the vegetation region is also significantly
reduced. These cases also show that the classification accuracy and consistency of our
proposed method are better.

Table 4. Classification accuracy (%) of the San Francisco II dataset.

Class
Method

CNN U-Net FCN CL-CNN CL-FCN WT MCFCN* MCFCN

Water 96.94 99.68 99.19 98.11 99.27 98.73 99.69 99.72
Urban 89.66 92.88 97.95 96.41 97.26 90.76 97.13 97.60

Vegetation 78.88 82.96 62.92 40.40 75.37 94.54 76.21 77.94
OA 92.17 95.23 95.94 93.06 96.56 95.79 96.75 97.12

Kappa 86.52 91.69 92.74 87.50 93.90 93.95 94.24 94.88
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5. Conclusions

For PolSAR image classification, a multi-modal contrastive fully convolutional net-
work (MCFCN) method is proposed in this paper. Better experimental results were obtained
for this method compared to other comparative experiments. The proposed method uses
semantic segmentation to classify the terrain in a PolSAR image, successfully reduces the
impact of speckle noise on the classification results, and greatly improves the regional
consistency of the classification results. In addition, by introducing contrastive learning,
the demand for labeled samples in the semantic segmentation method is effectively re-
duced, which offers a new solution for PolSAR image classification under small samples.
Finally, a pixel-overlapping classification strategy is designed to make the final decision for
repeatedly classified pixels using a majority voting method to enhance the stability of the
classification method.

Author Contributions: W.H. proposed the main ideas of the paper and wrote the manuscript. Y.W.
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version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (no.
61901368), the Special Scientific Research Plan project of the Shaanxi Provincial Department of
Education (19JK0798), and the Natural Science Foundation of Shaanxi Province (2019JQ-377).

Data Availability Statement: The original PolSAR data are publicly available and can be found at:
https://ietr-lab.univ-rennes1.fr/polsarpro-bio/sample_datasets/ (accessed on 6 January 2024). The
data presented in this study are available on reasonable request from the corresponding author.
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