
Citation: Li, Y.; Gao, J.; Yin, J.; Liu, L.;

Zhang, C.; Wu, S. Flood Risk

Assessment of Areas under

Urbanization in Chongqing, China, by

Integrating Multi-Models. Remote

Sens. 2024, 16, 219. https://doi.org/

10.3390/rs16020219

Academic Editors: Prasad

S. Thenkabail, Guangdong Li,

Sanwei He and Zhiqi Yang

Received: 10 October 2023

Revised: 14 December 2023

Accepted: 30 December 2023

Published: 5 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Flood Risk Assessment of Areas under Urbanization in
Chongqing, China, by Integrating Multi-Models
Yuqing Li 1,2, Jiangbo Gao 1,2 , Jie Yin 3,4, Lulu Liu 1,2 , Chuanwei Zhang 1,2 and Shaohong Wu 1,2,*

1 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences, Beijing 100101, China; liyuqing19@mails.ucas.ac.cn (Y.L.);
gaojiangbo@igsnrr.ac.cn (J.G.); liull@igsnrr.ac.cn (L.L.); zhangcw.20b@igsnrr.ac.cn (C.Z.)

2 University of Chinese Academy of Sciences, Beijing 100101, China
3 Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University,

Shanghai 200241, China; jyin@geo.ecnu.edu.cn
4 School of Geographic Sciences, East China Normal University, Shanghai 200241, China
* Correspondence: wush@igsnrr.ac.cn

Abstract: In the context of urbanization, frequent flood event have become the most common natural
disasters, posing a significant challenge to human society. Considering the effects of urbanization
on flood risk is critical for flood risk reduction and reasonable land planning strategies at the city
scale. This study proposes an integrated approach based on remote sensing data using CA, Markov,
and simplified hydrodynamic (FloodMap) models to accurately and effectively assess flood risk
under urbanization. Taking Chongqing City as a case study, this paper analyzes the temporal and
spatial variations in land use/land cover (LULC) in 2010, 2015, and 2018 and predicts the LULC
for 2030, based on historic trends. Flood risk is assessed by combining the hazard, exposure, and
modified vulnerability. The results suggest that the area of built-up land will increase significantly
from 19.56% in 2018 to 25.21% in 2030. From 2010 to 2030, the area of medium and high inundation
depths will increase by 10 and 16 times, respectively. Flood damage varies remarkably according to
the LULC and return period. The expected annual damage (EAD) has been estimated to increase
from USD 68 million in 2010 to USD 200 million in 2030. Flood risk is proportional to population and
is significantly inversely proportional to socioeconomic level. The approach used here can provide
a comprehensive understanding of flood risk and is significant for land-use policymaking and the
management of flood control facilities.

Keywords: LULC; flood risk; urbanization; socioeconomic; Chongqing; remote sensing data

1. Introduction

Floods are among the most common and destructive natural disasters worldwide
IPCC [1,2]. The 2015 UNISDR report states that flood events constituted 47% of all weather-
related disasters recorded between 1995 and 2015 [3]. These floods affected more than
2 billion people and contributed to economic losses of over USD 660 billion over the
2000–2012 period. China is one of the countries experiencing the most serious floods.
Floods in China are characterized by high frequency, heavy losses, and long durations [4].
From 1950 to 2004, China experienced 125 significant floods, affecting 1.465 billion people
and resulting in losses amounting to USD 11.675 billion [5]. Flooding costs account for
3.15% of China’s annual gross national economic output [6]. Over the past few decades, the
combined effects of climate change and urbanization have led to a rise in the occurrence
of extreme rainfall, jeopardizing the lives and property of residents and causing increas-
ing losses [7]. Thus, there is an urgent need to enhance flood risk assessment, enabling
governments, emergency management agencies, and the public to prepare in advance and
implement appropriate mitigation measures to reduce the threat of flood events to human
life and property [8–10].
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Generally, flood risk assessment considers hazards, exposure, and vulnerability [1,11,12].
Among these factors, exposure includes physical, environmental, and social assets; hazards
refer to the probability and magnitude of flooding; and the potential adverse effects caused
by exposure are expressed as vulnerability [13,14]. From 2000 to 2030, the amount of urban
land located in high-frequency flood zones is estimated to increase by 30% globally [15].
Urbanization is usually accompanied by rapid land-use change, leading to changes in
runoff, infiltration, groundwater recharge, and baseflow [16–18]. China has experience
rapid global urbanization, with the rate increasing from 17.9% to 60.6% for the period of
1978–2019 [19]. Consequently, the increase in urban flooding has become a serious issue. To
effectively and efficiently reduce flood losses and to develop and implement appropriate
control strategies, an accurate flood risk assessment is necessary [20].

In recent years, flood risk assessments that include the dynamics of hazards, exposure,
and vulnerability have received increasing attention [21–23]. In the analysis of future
flood exposure and vulnerability, several studies utilize gridded economic/population data
derived from Shared Socioeconomic Pathways (SSPs) [24–26]. However, the resolution of
these data, often ranging from 1 km to 10 km, typically lacks the granularity required for
detailed urban planning, particularly in rapidly urbanizing areas. This limitation can lead
to an underestimation of future flood risks. To bridge this gap, higher-resolution and more
explicit data are urgently needed to accurately capture the complexities of urbanization at
the city scale. Remote sensing (RS) data can provide high-resolution images and spatially
explicit data [27]. These data are available to the public in a cost-effective and efficient
manner and are more suitable for land-use forecasting studies [28]. Land-use development
models, such as cellular automata (CA) combined with artificial modeling, land-changed
models based on GEOMOD, and agent-based models (ABMs), have been widely applied
for future scenarios [29–31]. The CA-Markov model, in particular, is a robust method
for dynamically modeling land use changes over space and time, efficiently integrating
geographic information systems (GIS) and remote sensing data. This model is well-suited
for simulating the spatial and temporal characteristics of complex systems at a fine spatial
scale, which is crucial for mapping flood exposure and vulnerability [32–35]. Therefore,
combining remote sensing data with sophisticated land-use models presents a vital solution
for accurately assessing urban flood exposure and vulnerability.

The mapping of the flood hazard, a key component of risk assessments, mainly relies
on various numerical models. Hydrodynamic models such as HEC-RAS and MIKE FLOOD,
which are suited for simulating flow and water level in inland water bodies, demonstrate
high simulation accuracy, but often at considerable computational costs [36]. On the
other hand, hydrological models like HEC-HMS, designed for simulating precipitation
runoff processes, are more cost-effective, but may lack the precision of hydrodynamic
models [37]. This has led to the development and adoption of simplified models such as
JFLOW, LISFLOOD-FP, and FloodMap [38–42]. These models reflect the dominant physics
of flood processes and are input into the topography as a regular grid. Their performance
has been shown to be similar to that of full 2D models in dealing with floods at a low
computational cost. Particularly, the FloodMap model, improved by Yu and Coulthard [43],
stands out for its enhanced capabilities. These developments allow for an efficient city-
scale assessment of flood risk that integrates the future dynamics of hazard, exposure,
and vulnerability.

This study develops an integrated approach combining the CA-Markov and Flood-
Map models to estimate the evolution of flood risk between 2010 and 2030 at a fine spatial
scale, based on time series remote sensing data. Firstly, in order to model the future LULC
under urbanization, we use CA-Markov models based on a high-precision LULC dataset,
obtained from the Landsat satellite. Then, we simulate the inundation of floods under
different LULC scenarios using Forest And Buildings removed Copernicus DEM (FAB-
DEM) [44]. Combining CA-Markov with flood inundation models can provide higher
accuracy and efficiency in urban flood risk assessment. This study implements this ap-
proach in Chongqing, China, which is experiencing rapid urbanization. This study also
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examines the major factors impacting flood risk. The results, which identify and assess
the risk of pluvial floods under urbanization scenarios, have practical applications for risk
management and adaptation.

2. Study Area

Chongqing is a highly urbanized typical town located in southwestern China (28◦10′–
32◦13′N and 105◦11′–110◦11′E), and its larger city region is selected as the study area.
As shown in Figure 1, there are nine municipal districts in this study area: Yuzhong,
Dadukou, Jiangbei, Shapingba, Jiulongpo, Nan’an, Beibei, Yubei, and Ba’nan. This area
is the political, economic, and cultural center of Chongqing. According to statistical data
for Chongqing, it covers about 5473 km2 and has a population of 10.34 million people
(https://data.cnki.net/yearbook (accessed on 22 May 2022)). It has grown rapidly in
population and gross domestic product (GDP) since 1997 [45].
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Figure 1. The study area of Chongqing City.

This study area has a typical subtropical monsoon climate characterized by four
distinctive seasons, and the annual average rainfall is about 1148 mm. In the flood season
from May to September, the precipitation accounts for 70% of the annual accumulation.
Chongqing is a mountainous region in the middle and upper reaches of the Yangtze River,
with typical complex topographic features [46]. From 2004 to 2019, this area experienced
364 heavy rain (a 24 h rainfall amount greater than 80 mm) and flood events, resulting in
763 deaths and disappearances. These disasters have caused a direct economic loss of USD
7.9 billion [47]. Recent years have seen an increase in rainstorms and an expansion of the
scope of these disasters, leading to even higher economic losses. Based on the Yearbook of
Meteorological Disasters from 2019 [48], the losses caused by pluvial floods accounted for
more than 60% of the total meteorological disaster loss in 2018. Therefore, this study mainly
focused on pluvial floods. This is an ideal case study for investigating and understanding
the changes in flood risk influenced by rapid urbanization.

3. Data and Methods
3.1. Data Sources

For the purposes of this study, several remote sensing and survey datasets were chosen
to model the changes in LULC and calculate the flood risk. The LULC dataset was acquired

https://data.cnki.net/yearbook
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from the Data Center for Resources and Environmental Science of the Chinese Academy
of Sciences (http://www.resdc.cn/ (accessed on 22 May 2022)), obtained from Landsat
satellite. This dataset is constructed through manual visual interpretation of cropland,
woodland, grassland, water bodies, built-up land, and bare land, with a resolution of 30 m.
The DEM was obtained from the work of Hawker et al. in 2022 [44]. FABDEM effectively
mitigates the inherent biases arising from buildings and tree canopy height in conventional
elevation data through remote sensing techniques and machine learning at a 30 m resolution.
This dataset significantly improves terrain accuracy by reducing mean absolute error. The
mean absolute vertical error of the dataset has been reduced to 1.12 m in urban areas and
to 2.88 m in forests. This effectively enables the flooding model to explicitly capture and
represent the shading effects of urban features. Population density data were collected
from the Water Resources Planning Organization of China (https://www.worldpop.org
(accessed on 2 May 2022)). The hydrometeorological data crucial for our study were sourced
from the Chongqing Urban Rural Development Commission. This authoritative dataset
provides comprehensive information on weather patterns, with a specific focus on rainfall
statistics, in the Chongqing region [49].

The survey datasets were meticulously gathered to identify and analyze flood-prone
points in Chongqing since 2018. We focused on several keywords regarding floodings
to generate a set of media messages in the post-2018 context, which were then analyzed
for various characteristics. The selected datasets underwent thorough identification, with
emphasis on those providing detailed geographical coordinates and descriptions of the
identified areas. To ensure the accuracy of our datasets, each location was verified by cross-
referencing with multiple independent sources. This process yielded a refined collection
of 29 distinct flood-prone locations, with each site’s detailed information (Supplementary
Materials—Table S1). These survey datasets are integral to our analysis, providing a reliable
foundation for examining the flood susceptibility of these areas.

3.2. Methods

The overall framework of the future flood risk assessment is shown in Figure 2. First,
this paper analyzed the temporal and spatial variations in LULC using remote sensing data
with a single dynamic degree from 2010, 2015, and 2018, using GIS methods. The future
LULC for 2030 was predicted using the CA-Markov model based on the historical trend.
The flood risk, regarded as the potential for direct economic damage, was calculated as the
combination of hazards, exposure, and vulnerability. We used the simplified hydrodynamic
model (FloodMap) to simulate the flood inundation area and depth as flood hazards with
return periods of 1 in 2, 10, 20, 50, and 100 years at different LULC periods. To increase the
applicability of the exposure and vulnerability, depth–damage curves and land values were
revised for Chongqing. All values in this paper are based on 2010 standards. Based on the
damage model, we calculate flood losses for different return periods in 2010, 2015, 2018,
and 2030. The expected annual damage (EAD) under different periods was also estimated
to represent the flood risk under urbanization. Although flood risk estimates are associated
with large uncertainties, our main interest was in identifying the changes at the urban
microscale, which is more robust and exact than either global or regional scale estimates.
The results are quantitative assessments of the economic losses in the flooded area, which
were used to analyze any correlations with socioeconomic factors.

http://www.resdc.cn/
https://www.worldpop.org
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3.2.1. Flood Exposure and Vulnerability Analysis
Flood Exposure

Flood exposure represents the degree to which a specific area or asset is at risk from
flooding. In this study, we have chosen the value of land use as a key indicator for assessing
flood exposure. Therefore, we employ the CA-Markov model for simulating the LULC in
2030. The CA-Markov model, which combines a Markov chain and cellular automata, is
useful for simulating and predicting land-use changes [32,50]. This model can simulate
changes over time and space, helping to determine the likelihood of transitions between
different land use states [33]. The Markov transition process utilizes the following formula:

St+1 = St × Pij (1)

where St is the system status at time t; St+1 is the system status at time t + 1. Pij is the
transition probability matrix of a state, which is estimated as follows:

Pij =

P11 . . . P1n
...

. . .
...

Pn1 · · · Pnn

 (2)

where P is the transition probability; Pij stands for the probability of converting from the
current state i to another state j in the next time point; and Pnn is the state probability of
any time point.

Equation (3) shows the expression of the CA model.

St+1 = f(St, N) (3)
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where St, St+1 is the system status at time (t, t + 1); the function is the state probability of
any time (N).

The obtained LULC is employed to simulate and predict future land changes using the
CA–Markov model within IDRISI Selva 17.0 software. The specific process is as follows:

(1) Determining the transition rules

With Markov chain analysis, a matrix of transition probabilities observed between
maps from 2010 and 2015 can be used to project future changes in regards to current pat-
terns. Through spatial overlay analysis, the transition probability matrix and the transfer
area of the matrix are achieved. The calculated transition probability matrix will serve as the
transformation rules for putting CA–Markov model simulations into practice. Transition
suitability maps were calculated using the multi-criteria evaluation (MCE) model, consid-
ering environmental and socioeconomic factors. The analytic hierarchy process (AHP) is
the primary weighting method used for MCE. The weighted impacts of all selected factors
for each cell were combined linearly in order to form a land suitability map. Based on the
knowledge derived from the literature and from experts, factors including slope, elevation,
distance from the road, distance from the town, and population density were considered to
produce transition suitability maps [34,51].

(2) Determining CA filters and the number of iterations

CA filters can produce a clear sense of the space weighting factor, which can be
changed according to the current adjacent cellular state. The standard 5 × 5 contiguity
filter is used as the neighborhood definition in this study, and the simulation time step is
1 year. Six land-use types are considered in the model, and the size of the cell space in the
CA model is set to 30 m × 30 m. The number of CA iterations is selected at 15 in order to
simulate the landscape spatial pattern for the study area in 2030.

The model was validated for the year 2018. Therefore, considering the LULC maps
for 2010 and 2015 as the initial and final state maps, the model predicted an LULC map
for 2018. We compared the agreement between the observed and predicted geographic
maps based on the Kappa statistic. In brief, Kappa is based on the percentage of agreement
between two maps and corrects for the portion of this agreement that is due purely to
chance. An accurate Kappa statistic is calculated using the following equation [52]:

Kappa coefficient =
(T × C)− G

T2 − G
(4)

where T is the test pixels, C is the correctly classified pixel observations, and G is the sum
of the multiplied total value. A value closer to 1 implies a more perfect agreement.

The degree of land-use dynamics can be used to quantify regional differences to
describe the rate of land-use change [53]. The degree of a single land-use dynamic is
calculated by the net value of the change in area of a single land-use type:

k =
At2 − At1

At1
× 1

t2 − t1
× 100% (5)

where k is the dynamic degree of a single land-use type. The closer the value of k is to
1, the more marked the land-use change. At2 represents the area of a certain type of land
use at an earlier date, and At1 represents the unchanged part. t1 and t2 represent the year
before and after the change. We quantify and compare the dynamic changes in land use
from 2010 to those predicted in 2030 to identify areas with rapid development.

Flood Vulnerability

Vulnerability is typically expressed as a depth–damage function. Yin (2011) [54]
constructed curves for seven different land-use classes in Shanghai. To convert these (res-
idential, transport, commercial, and public building curves) into a single curve for the
built-up land-use category, we adopted the area-weighted average method, based on the
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area of the different land-use categories (Figure 3) [55]. The depth–damage curve for crop-
land is consistent with that of Yin (2011) [54]. To increase the applicability of the land values
for exposure, we calculated a correction factor based on the GDP and areas of Chongqing
and Shanghai following the suggestion of Feng (2017) [56], which is 0.037. Based on the
methods described above, we propose that the land-use distributions in Shanghai and
Chongqing demonstrate a similar susceptibility to floods when the established exposure
and vulnerability functions in Shanghai are adapted for use in Chongqing, after the applica-
tion of their respective correction factor. In ArcGIS, the integration of land value data with
inundation depth maps and vulnerability curves is achieved through spatial connections
and merging tools, enabling the calculation of flood risk indices and the visualization of
the results.
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3.2.2. Flood Inundation Analysis

Based on LULC, as well as future LULC simulations, this study employs a simplified
hydrodynamic to simulate flood inundation scenarios under different return periods. This
study primarily focused on pluvial floods, considering the severity of this type of flood
in the study area. As a driving force of pluvial floods, precipitation information was used
as the main input for flood hazards analysis. Based on the trend analysis of precipitation
in recent years, it was found that the precipitation in Chongqing shows fluctuations, with
weak upward trends [57]. Therefore, we decided that the rainfall in the near future (i.e.,
2030) is likely to be in an “unchanged” state. To balance the accurate computational costs,
24 h rainfall was applied to simulate the flooding processes.

A simplified 2D flood inundation model (FloodMap-Inertial [43])—a revised version of
an earlier diffusion-based model [40,41]—was used to simulate pluvial floods. The model
integrates hydrological processes (e.g., infiltration, evapotranspiration, and drainage).
Studies have shown that advection has a small effect on the shallow-water equation and
can be ignored [38]. The models are discretized in both space and time. This discretization
is raster-based and solves the inertial form of the 2D shallow water equations [40,41]. Flood
routing takes the same form as the inertial algorithm created by Bates et al. (2010), but with
a slightly different method for calculating the time steps, while the time step is variable
and is forward calculated for each iteration. On this basis, the equations are discretized
in terms of time steps ∆t, which then forward calculate the optimal time step for the next
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iteration. The details of the model are described by Yu and Coulthard [43]. Therefore, we
only focus on the major features of the model, in which the discrete form was given by:

qt+∆t =
qt − ght∆t(∆(ht+z)

∆x )

(1 + ght∆tn2qt/h10/3
t )

(6)

where q is the flow per unit width, g is the acceleration due to gravity, z is the bed elevation,
h is the water depth, and n is the Manning’s roughness coefficient. With reference to a pre-
vious study, roughness is represented in this model by the floodplain Manning coefficient n.
The n values for urban areas, cropland, green land (woodland and grassland), water bodies,
and bare land are assigned values of 0.01, 0.06, 0.08, 0.03, and 0.035, respectively [58].

In this study, we first inputted various datasets into the model, including a digital
elevation model (DEM), historical precipitation distributions across different return periods,
and Manning’s coefficient maps. Subsequently, we meticulously adjusted and calibrated
the model parameters, ensuring that they were consistent with the specific requirements of
our research. Considering that the Forward Courant–Friedrichs–Lewy Condition (FCFL)
might not always provide the most suitable stability criterion for inertial systems, we
adjusted the determined time step by applying a scaling coefficient within the range of
(0, 1]. Previous studies found stability in a scaling factor range of 0.5–0.8, with this study
using a scaling factor of 0.7 for all simulations [59]. Given the focus of the present study, a
30 m resolution simulation was regarded as a legitimate trade-off between computational
demand and simulation detail. The infiltration over saturation is determined by the widely
used Green–Ampt equation. Hydraulic conductivity (Ks) is a key parameter for infiltration.
The value of hydraulic conductivity between 0.001 m/h and 0.003 m/h showed a good
fit [43]. We have conducted a sensitivity analysis on the selection of this value, as detailed in
the Supplementary Materials—Figure S1. Considering that the study concerns urbanization,
a hydraulic conductivity value of 0.001 m/h was adopted for the remaining simulations.
We assumed an evapotranspiration of 3 mm d−1, a value that generates a good inundation
prediction for hydro-inundation modeling. Empirically based correlation methods or in
situ hydraulic laboratory measurements can be used to determine the value of Ks. Since
Chongqing is located in a rural area, we did not consider the urban drainage capacity in
this simulation.

Although the study area is prone to pluvial floods, there are few aerial images or
field surveys of the floods in this area. Thus, 29 flood-prone points were collected from
the Chongqing media as verification points. The details for verifying these points are
attached in Table S1. Considering that the precipitation in 2-year flood events is above
100 mm, the flood-prone points were used to verify the simulation of flood events [60].
Moreover, flood-prone points are described briefly, and it is difficult to geo-locate them at a
30 m resolution. If the simulated inundation depth exceeds 30 cm within 300 m around
the flood-prone point, the simulation is considered to reflect the actual distribution of the
floods, and the validation case is defined as “1”. Otherwise, the simulated flood area cannot
reflect the actual flood distribution, and the validation case is defined as “0”. As shown
in Figure 4, the red points represent “1”, while the black points represent “0”. Among
the 29 inundation points, 27 points have a validation condition of “1”, which reflects a
validation accuracy of 93.10%. The results show that the simulation of pluvial floods is
feasible, to a certain extent.
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3.2.3. Flood Risk Assessment

Flood risk assessment generally includes the estimation of direct or indirect damages,
e.g., the impact on the natural system, physical damage to buildings and infrastructure, loss
of life, and disruptions to the economy [61]. This study focuses on direct flood damages for
built-up land (including building structures, indoor properties, urban roads, and electrical
facilities) and cropland. We use the hazard–vulnerability–exposure model to calculate the
direct flood damages. Flood damage is estimated according to the following equation [62]:

Dj = (
n

∑
i=1

xi × f(xi))× A (7)

where Dj is the flood damage (in USD million, as of 2011) over j return period of inundation,
xi is the depth of inundation (m) in cell i, f(xi) is the damage function (vulnerability and
exposure) for the level of inundation depth x, and A is the area of a cell.

Multiplying the exposures by their individual vulnerability curves allowed us to
calculate the economic losses in different return periods (2 years, 10 years, 20 years, 50 years,
100 years) for the four scenarios of 2010, 2015, 2018, and 2030. Therefore, the losses–
exceedance probability curve is estimated using the economic losses and exceedance
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probabilities of different flood events. In this study, the value of EAD is calculated to
represent the risk of pluvial floods in a given year.

4. Results
4.1. The Temporal and Spatial Changes in LULC

Based on the LULC in 2010 and 2015, we obtained the land-use transfer area matrix
(Table 1). The Markov chain model was used to estimate the transition probability for 2030.
The built-up and cropland areas experienced dramatic changes, followed by the woodlands,
while the watershed and bare land areas exhibited less significant changes. The area of
cropland was greatly reduced by 126.8 km2, and was mainly converted to built-up land.
With the process of urbanization, the built-up land area rapidly increased to 130.8 km2. The
change in other land-use areas was relatively small. Comparing the predicted LULC map
with the observed data from 2018, the validation process yielded a Kappa coefficient of
0.92, which indicates an acceptable degree of accuracy.

Table 1. Transfer area of land use matrix in Chongqing from 2010 to 2015 (km2).

Cropland Woodland Grassland Water Built-Up Land Bare Land Transfer Out

Cropland 3513.6 7.7 0.6 1.2 129.0 0.0 138.6
Woodland 7.8 1059.2 0.1 0.1 4.6 0.0 12.6
Grassland 0.6 0.1 48.6 0.3 0.2 0.0 1.1

Water 0.8 0.1 0.0 153.6 0.4 0.0 1.4
Built-up land 2.5 0.5 0.0 0.2 530.0 0.0 3.3

Bare land 0.0 0.0 0.0 0.0 0.0 2.8 0.0
Transfer in 11.8 8.5 0.7 2.0 134.1 0.0 157.0

Net transfer out 126.8 4.1 0.5 −0.6 −130.8 0.0 0

Note: 2010 is the base year of change, 2015 is the target year of change; rows indicate transfers out, and columns
indicate transfers in.

We predict the LULC for 2030 based on the CA-Markov model. The LULC changes
from 2010 to 2030 are shown in Figure 5. The area covered by cropland is the largest,
followed by woodland, with water and bare land covering the smallest areas. This indicates
that the landscape structure of the study area is dominated by agricultural and forestry
production, which is consistent with the industrial structure of this region. Built-up land
is mainly distributed in the Yuzhong District and its surrounding regions. Croplands are
widely distributed, mainly in the hills and along rivers, with low elevations. Woodlands in
these regions are relatively poorly exploited and well preserved at high altitudes owing
to the complex topography and proper protection. Grasslands are mostly distributed
in the eastern portion of the study area, where they are small and scattered. Water and
bare land are less widely distributed. From 2010 to 2030, the cropland area shows little
fluctuation, while the woodland area shows a continuous increase. With rapid urbanization,
the area of built-up land continues to grow. The changes in water and bare land are ignored
because of their smaller area. From 2010 to 2030, the area of built-up land experienced the
largest rate of increase among the six LULC types. Built-up land is predicted to increase
from 533.36 km2 to 1377.79 km2 from 2010 to 2030. The increasing built-up land area is
mostly spread across Yuzhong District and its surrounding districts. Croplands show a
decreasing trend. The cropland decreased from 66.83% in 2010 to 54.41% in 2030, a decrease
of 18.59%. The area of cropland is mainly reduced around the surrounding built-up land in
the 2018–2030 period. The areas of grassland and woodland increased during 2010–2015,
but decreased during 2015–2018. We predict that the areas of grassland and woodland will
decrease during the period of 2018–2030. The changed areas of grassland and woodland
are located along mountains and hills.
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The general dynamic attitude in Chongqing is indicated in Table 2. Built-up land
shows the largest dynamic attitude, at 13.77% in 2018. The area of built-up land increased
faster in 2015–2018 than in other periods. The grassland area decreased in 2010–2015 and
2018–2030 and increased in 2015–2018, with a fast growth rate. The dynamic attitude of
woodlands shows the same trends, but the growth rate is slower than that of grasslands.
The dynamic attitude of cropland is decreasing overall, and is relatively small during the
2010–2015 and 2018–2030 periods.

Table 2. Land-use change in Chongqing from 2010 to 2030.

Cropland Woodland Grassland Water Built-Up Land Bare Land

2010–2015
Change of area (km2) −126.77 −4.13 −0.50 0.58 130.83 −0.01
Dynamic attitude/% −0.69% −0.08% −0.20% 0.08% 4.91% −0.09%

2015–2018
Change of area (km2) −275.35 1.09 4.06 −4.28 274.45 0.02
Dynamic attitude/% −2.60% 0.03% 2.75% −0.92% 13.77% 0.19%

2018–2030
Change of area (km2) −276.74 −136.86 −21.91 −2.56 439.16 −1.07
Dynamic attitude/% −0.71% −1.07% −3.42% −0.14% 3.90% −3.15%

4.2. The Impacts of Urbanization Changes on Flood Risk
4.2.1. Flood Damage

Based on the analysis of the exceedance probability of 24 h of rainfall, the return
periods of 2-year, 10-year, 20-year, 50-year, and 100-year events are selected as flood hazard
scenarios. We simulated the inundation of floods for 2010, 2015, 2018, and 2030, with
different return periods. We used 2018 as the case for analysis to show the cumulative
density functions of the maximum inundation area (depth > 0.3 m) and average inundation
depth for each return period, as shown in Figure 6. The inundation area and average depth
are evidenced by a significant positive correlation with rainfall intensity. The maximum
flood inundation area is 339.97 km², and the average inundation depth is 0.113 m under a
2-year return period event. With the increase in precipitation, the maximum inundation
area increases by 61.67% and 67.08% for the 50-year and 100-year flood events, respectively.
Similarly, the average water depth will increase by 0.098 m (86.73%) and 0.12 m (106.19%)
for the 50-year and 100-year flood events, compared to the 2-year return period event. The
inundation area and depth are evidenced by the significant positive correlation with rainfall
intensity, which is in accordance with the results of previous studies. In the inundation
area, cropland and built-up land are the major land-use types. This indicates that the urban
socioeconomic system would experience large impacts from pluvial floods.
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Figure 6. The simulated inundation maximum area (a) and average depth (b) with different return
periods for 2018.

In Figure 7, we show a comprehensive representation of the hydrological response
in 2018, with a 100-year return period, by illustrating the progression of infiltration loss,
the distribution of rainfall, and the flood inundation patterns. For the rainfall in 0–7 h, the
flood inundation area and average depth remained relatively stable. The infiltration loss
begins at a relatively moderate rate. This could be attributed to the lack of penetration of
the initial rainfall or its adequate flow into adjacent bodies of water. For the precipitation
in 7–11 h, there was a significant increase in rainfall, causing more water to enter the
watershed, as showed in Figure 7b. After the initial 11 h of rainfall, the increase in the
flood inundation area and the depth slowed down. The incremental increase in loss is more
linear, suggesting a stabilization of the infiltration process. By 16 h, the infiltration loss
reaches 184.01 × 107 m3, after which the rate of increase further moderates, as shown in
Figure 7b. Figure 7 indicates that the depth of flood inundation further increased during
the last 8 h of rainfall, as previous moisture was still flowing into the bodies of water, and
surface runoff continued.
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To further explore the impacts of urbanization on inundation mitigation, we simulated
inundation in 2010, 2015, 2018, and 2030 under different LULC scenarios. We set four
hazard levels in regards to inundation depth (ID): high (>2 m), medium (1–2 m), low
(0.3–1 m), and very low (<0.3 m), based on the literature and observed data for the study
area (Table 3). The area with a very low ID shows a steady increase over time, which more
than tripled from 2010 to 2030. In comparison, the changes in low, medium, and high
ID are dramatic, with a much higher rate of change during the study period. With an
increase in the inundation depth (or level), the growth rate of the inundated area increased.
The area with a low ID for 2010 is predicted to be 32.69 km2, which may increase more
than nine times (301.61 km2) by 2030. The area of medium inundation depth will increase
10 times from 2010 to 2030, and the area with a high ID in 2030 will increase 16 times
compared to that in 2010. In terms of inundation area, there is one phase of rapid growth
between 2015 and 2018. During this period, the built-up land experienced rapid expansion.
Urbanization is typically accompanied by changes in land use, including the expansion
of roads, buildings, and other impervious surfaces, leading to dynamic alterations in the
watershed. Urbanization results in an increase in impervious surfaces. These surfaces
prevent rainwater from infiltrating the soil, rapidly directing it into drainage systems
and thereby increasing the depth of flood inundation. Consequently, urban planning and
management must consider strategies to reduce the coverage of impervious surfaces to aid
in the mitigation of flood risks.

Table 3. Flood inundation area with 50-year return periods.

ID 2010 (km²) 2015 (km²) 2018 (km²) 2030 (km²)

Very low 474.52 595.49 838.16 1228.11
Low 32.68 37.30 50.46 301.61

Medium 14.0 16.40 24.01 147.23
High 11.96 14.80 25.80 178.21

4.2.2. Flood Risk

By calculating the distribution of flood hazards, vulnerability, and land value, we can
examine the direct economic losses. Figure 8 shows the flood damage, with different return
periods, for 2010, 2015, 2018, and 2030. Flood damage has a tendency to increase signifi-
cantly as the return period increases. The damage is estimated to increase approximately
2.5 times with return periods from 2 to 100 years. The calculation of EAD typically involves
estimating losses under multiple flood scenarios, then summing the present value of these
losses and dividing this by a certain period to obtain an annual average. This method
provides a uniform comparison of losses at different points in time, presenting a more
comparable metric. The EAD in 2010 is estimated to be approximately USD 68.07 million,
a figure which may more than triple (USD 200.91 million) by the year 2030. Flood risk
is a function of hazard, vulnerability, and land value. The expansion of built-up land
use has resulted in an upward trend regarding flood vulnerability and exposure. This is
consistent with previous studies that reported an important role of urbanization in flood
risk in several regions around the world. For instance, Zhang et al. [63] quantified the con-
tribution of urbanization to floods and found that the probability of such floods increased
approximately 21 times owing to the urbanization of Houston, United States. This paper
quantifies the impact of urbanization on flood risk in Chongqing, emphasizing the need
for the comprehensive consideration of flood risks during urban planning to ensure the
sustainable development of the city [17].
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4.2.3. The Association of Flood Risk Factors Analysis

In this study, we aim to investigate the association between flood risk and natural and
socioeconomic factors at a fine spatial scale using Spearman’s rank coefficient. Shi et al. [64]
developed a comprehensive poverty index (CPI) dataset for Chongqing using multi-data
from 2018. In this study, we consider CPI, which is typically used to measure social and
economic development within a specific population and area, as a socioeconomic index
(SEI). Higher values of the index indicate a more prosperous economy in a region.

In this study, 1000 random sample points were created using the Create Random Points
tool in ArcMap. These points were used to extract the spatial environment parameters
for 2018. The environmental parameters, including SEI, slope, elevation, LULC, and
population density, were selected based on their roles in influencing flood risk, and they
are available as gridded data. Table 4 summarizes the results of the correlation analysis
used to explain the influence of different parameters on flood risk. The results show that
flood risk is relatively higher in areas with a high population density. Areas with high
population density are generally more susceptible to the impact of floods, as a greater
number of people may reside in potential flood-prone zones. Additionally, high population
density can lead to increased demand for infrastructure, thereby amplifying the potential
losses caused by floods [65]. LULC also exhibits a significant correlation with flood risk.
A similar pattern of association has been reported in other regions [66]. Different land
uses and land cover types produce varying impacts on flood risk. Urbanization and
human development can lead to an increase in impermeable surfaces, thereby increasing
surface runoff and elevating flood risk. Conversely, natural vegetation and wetlands may
contribute to lowering flood risk, as they help slow down water flow and facilitate the
absorption of moisture [16,18]. However, the SEI, DEM, and slope are negatively correlated
with flood risk in Chongqing. In summary, the slope is more correlated with flood risk than
are the other factors. This can be attributed to the influence of the natural environment.
Surface slope directly influences the direction of precipitation runoff and the formation
of drainage basins. Steeper slopes can result in faster water flow, increasing the speed
of flood initiation and propagation. Therefore, areas with a greater slope are generally
more susceptible to the impact of flooding [67]. A higher elevation and slope will greatly
increase the cost of constructing infrastructure, implying a lower level of human exposure
in the area. SEI is a commonly used indicator of the level of socioeconomic development
in Chongqing. Wang et al. showed that the urbanization rate and GDP per capita are
positively correlated with flood risk [68]. Li et al. reported that higher-income countries
may possess higher standards of flood protection and stronger flood mitigation capacities,
which may reduce flood damage [69].
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Table 4. The analysis of the association of flood risk factors.

Flood Risk

SEI −0.057 *
LULC 0.095 **

Population-density 0.049 **
DEM −0.097 **
Slope −0.112 **

Significance level: ** 0.01; * 0.05.

5. Discussion

This study analyzed and simulated the changes in LULC, based on historical trends
for flood risk assessment. The results are similar to those from other studies in terms of the
expansion of built-up land and the decrease in cropland [70]. For example, the study by Zuo
et al. also revealed a considerable shift in land use in Chongqing from 2000 to 2020, with
woodland, water area, and built-up land expanding greatly, while cropland and grassland
decreased [71]. However, while simulating future LULC is subject to uncertainty, our study
provides a comprehensive analysis of LULC changes. Due to a lack of spatial data, our study
was unable to investigate several potential socioeconomic factors, including variables like
agricultural productivity, land-use policies, changes in transportation infrastructure, and
individual preferences [15,72,73]. In addition, more sophisticated models can be developed
in the future to simulate urban growth in different areas of the study region.

We found that the pluvial floods that occur each year cause substantial damage in
Yuzhong District. The flood damage is attributed to the geomorphological characteristics
and socioeconomic status of the study area. Urban areas with a higher level of prosperity
tend to be located at lower elevations and slopes in the mountainous region. Naturally,
a lower slope and lower elevation are assigned to the highest rank of risk, i.e., they are
more susceptible to flood hazards. Reported data on historical flood losses are scarce in
the study area, particularly for pluvial floods. Therefore, it is difficult to verify our results.
Regarding flooding in Chongqing, the Yearbook of Meteorological Disasters in China (2011)
reported total economic losses of USD 819.39 million in 2010. In addition, local heavy
precipitation usually triggers secondary disasters such as flash floods, transit floods, and
landslides. Such secondary disasters were not included in our work. Thus, the losses
resulting from flood events are estimated to be much lower than those reported for several
previous occurrences. Therefore, future studies should integrate additional drivers and
impact factors into city-level flood risk assessment, determining their relative contributions
in order to provide accurate information for decision making in regards to adaptation.

However, the performance of the modeling result is inevitably affected by data lim-
itations and the assumptions and simplifications of the methodology. The quality of the
input data also contributes to the accuracy of the model predictions. Rainfall distribution
is expected to be an important factor to consider. In this study, we chose a fixed value
for rainfall, but in reality, rainfall is unevenly distributed. Consequently, we may overes-
timate or underestimate flood risks in certain areas, even though the dataset’s reliability
is reinforced by its origin from a respected government institution. Hence, adopting a
more precise representation of rainfall could enhance predictions for specific localities.
Many existing studies have already investigated the impact of spatial rainfall patterns
on hydrological predictions, including the employment of comparisons with the use of
weather radar data [74]. Future research could further explore this aspect. It is very difficult
to create accurate near-future forecasts of large-scale changes in spatiotemporal precip-
itation. Our assumption of “unchanged” rainfall in the near future was generated due
to the inherent difficulties in forecasting such changes. In the event that future precipi-
tation levels, particularly for 24 h events, exceed the baseline values, this could lead to
an underestimation of flood risk, underlining the need for ongoing monitoring and the
adjustment of our flood risk assessments as new data and forecasting capabilities become
available. Another source of input data uncertainty is related to the DEM. Urban topog-
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raphy can be complex due to the presence of manmade structures. While the 30 m DEM
used in our study effectively captured the primary topographic characteristics of the study
area, it may not have adequately represented the intricacies of local topography. This
is particularly relevant in urban settings, where fine-scale variations in elevation caused
by man-made structures can significantly influence flood patterns. For future research,
employing higher-resolution DEMs could address this limitation by providing a more
detailed representation of urban topography and improving the accuracy of flood risk
assessments. The collected flood-prone points exhibit uncertainties in both their spatial and
temporal attributes. Spatial uncertainties primarily stem from the lack of precise geospatial
data, while temporal uncertainties are associated with imprecise reporting times. Future
research should prioritize the establishment of more monitoring sites and the enhancement
of temporal resolution for more robust data collection.

In addition, EAD estimates are subject to great uncertainty originating from various
sources, including hydrological and hydraulic modeling, the application of damage curves
(relating water depth to damage rate), and the EAD estimation approach itself. Comprehen-
sive uncertainty analysis must account for these sources of error in the estimation model
and measure its sensitivity to changes in input variables and internal parameters, as well
as quantify the contribution of each source of uncertainty to the overall error. Despite its
importance, this issue is beyond the scope of the present study. Socioeconomics is generally
considered to be an indicator of the flood vulnerability index or flood risk [75]. The rela-
tionship between floods and the socioeconomic index is usually analyzed in administrative
units at country or regional (province or county) levels [68]. This study further presents a
correlation analysis to estimate the flood risk at local scales. It is widely recognized that
an increase in flood risk may restrict the development of socioeconomic conditions and
inhibit long-term sustainable development [76]. Individuals on a low income tend to live
in marginal and flood-prone areas, where floods trap people in a cycle of poverty [77]. In
reality, the relationship between flood risk and socioeconomic factors is complex. Vari-
ous factors influence flood risk, such as climate change, urbanization, infrastructure, and
the level of emergency management. In the future, we should explore the mechanisms
underlying the impact of the interaction of multiple factors on flood risk.

6. Conclusions

This study proposes an integrated approach based on remote sensing data to effectively
assess flood risk under urbanization at a city scale. This approach integrates CA-Markov,
simplified hydrodynamic models, and damage models, implementing them in Chongqing,
China. The spatiotemporal distribution of flood risk at a city scale, along with its influencing
factors, are illustrated in this study. From 2010 to 2030, cropland makes up the largest
area, followed by woodland. During this period, the area covered by cropland is greatly
reduced by 126.8 km2 and is mainly converted to built-up land. In general, the dynamic
attitude in Chongqing showed a decreasing trend for cropland, bare land, and grassland.
In 2018, built-up land exhibited the largest dynamic attitude at 13.77%. With the increase
in precipitation in 2018, the maximum inundation area and depth significantly increased
by 67.08% and 106.19% for the 100-year flood events compared to the 2-year flood events,
respectively. The area with a high ID is predicted to increase from 11.96 km2 in 2010 to
178.21 km2 in 2030. The growth rate of areas with high ID is higher than that of the very low,
low, and medium ID areas. The damage is estimated to increase approximately 2.5 times,
with return periods from 2 to 100 years. The EAD of USD 68.07 million in 2010 is predicted
to increase significantly to USD 200.91 million in 2030. Our results show that a lower flood
risk is found in areas with a smaller population or with higher socioeconomic development.
The proposed approach for assessing the implications of flood risk under urbanization can
be used as a reference for city scale flood risk mapping, particularly for the development of
flood mitigation measures and emergency management strategies.
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