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Abstract: Groundwater resources are crucial to socio-economic development and the ecosystem, and
over-extraction can cause the groundwater level to drop, deplete reserves, and trigger geological
hazards like land subsidence. The North China Plain (NCP) has experienced both subsidence and
groundwater depletion due to over-extraction in the past 70 years. In this study, we used MT-
InSAR technology and ascending C-band Sentinel-1 SAR data from 2017 to 2023 to study land
deformation in the junction area of Shijiazhuang–Baoding–Cangzhou–Hengshui. We identified
multiple subsidence funnels with a maximum rate exceeding −150 mm/year and a total deformation
surpassing 600 mm. Seasonal decomposition methods accurately separated seasonal signals in the
time-series deformation and groundwater level data. An exponential function model applied to
long-term deformation showed no significant decrease in subsidence in severely affected areas. By
modeling seasonal deformation and seasonal groundwater levels, we determined the elastic skeletal
storage coefficients (Ske) to be in the range of 1.02 × 10−3~6.53 × 10−3 in subsidence areas. We
obtained the spatiotemporal evolution of the total groundwater storage (TGWS), irreversible ground
storage (IGWS), and recoverable ground storage (RGWS). The TGWS and IGWS decreased annually
while the RGWS increased, which is attributable to the implementation of the South-to-North Water
Diversion Project (SNWDP) and the issuance of groundwater withdrawal policies in the NCP.

Keywords: land deformation; elastic skeletal storage coefficient; groundwater storage; time-series
displacements; groundwater level; North China Plain

1. Introduction

Groundwater resources are crucial to socio-economic development and the ecosystem,
and over-extraction can cause the groundwater level to drop, deplete reserves, and trigger
geological hazards like land subsidence. Both large urban areas and the basins with
intensive agricultural planting have experienced severe land subsidence due to excessive
groundwater extraction [1–9], especially in the NCP [10–16]. The NCP is one of the areas
with the greatest shortage of water resources and prominent environmental problems in
China. The groundwater supply in the NCP has reached 70% of the total water supply.
The groundwater has experienced a long-term overexploitation process and has formed
several large composite water level depression funnels, which have induced a large area of
rapid land subsidence, becoming the area with the largest subsidence area and the most
complex types in China. Land subsidence in the NCP first began in the 1920s and entered a
stage of rapid development from the mid-1960s to the mid-1980s. From 1971 to 2015, the
area of the North China Plain with an average annual subsidence greater than 20 mm was
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48,500 square kilometers [10]. Uneven ground subsidence not only causes severe damage to
above-ground buildings and underground pipeline facilities but also poses a serious threat
to the safe operation of major infrastructures such as highways and high-speed railways.
Moreover, it can lead to geological disasters like ground collapses and fissures. At the same
time, areas with severe ground subsidence are prone to flooding disasters. The continuous
development of ground subsidence disasters in the NCP has greatly affected and restricted
local sustainable economic construction. Therefore, to prevent and control geological
disasters caused by ground subsidence in the NCP, it is urgent to clarify the spatiotemporal
evolution pattern of ground subsidence and unravel the coupling relationship between
confined water changes and ground subsidence.

Traditional methods of surface deformation monitoring, such as GNSS and leveling,
are often limited by high observation costs, small working ranges, and low spatial resolu-
tion. These constraints result in local and discrete measurements that struggle to accurately
reflect the macroscopic details of real surface deformation fields. This impacts the accu-
racy and reliability of settlement monitoring. However, spaceborne synthetic aperture
radar (InSAR) interferometry has emerged as a highly effective technique for measuring
deformation in spatially dense surface domains. With its low cost, large range, and high
spatial resolution advantages, InSAR has proven particularly useful in hydrology and
groundwater extraction processes.

In 2001, Bawden researchers utilized time-series InSAR technology to detect the effects
of groundwater pumping and discovered lateral contraction in the Southern California
faults, which effectively showcased InSAR’s potential for precise monitoring of hydro-
logical activities [17]. Subsequently, numerous scholars have extensively utilized InSAR
technology for monitoring areas of groundwater extraction [18–23]. Furthermore, by utiliz-
ing area monitoring data from InSAR technology and water head data, the water storage
parameters of the aquifer system and time lag can be estimated [24–27]. More importantly,
the long-term InSAR data can also measure seasonal changes due to the yearly cycle of
groundwater pumping and recharge, as well as ongoing subsidence from continuous
aquifer overdrafts [28–30]. In recent years, numerous scholars have carried out a series of
studies in the NCP using time-series InSAR technology and obtained good results, albeit
concentrated in major city such as Beijing, Cangzhou and Tianjin [31–34]. In agricultural
areas, attention is only paid to ground subsidence, without in-depth research on the rela-
tionship between aquifer inversion and deformation. Additionally, from Taihang Mountain
to Bohai Bay, the alluvial plain can be sequentially divided into the Piedmont plain (PP),
flood plain (FP) and coast plain (CP), with significant differences in hydrogeological condi-
tions. Therefore, it is crucial to conduct comprehensive research on land subsidence and
aquifer inversion in different plain areas.

In this study, we took the over-extraction of confined groundwater and severe ground
subsidence in the junction area of Shijiazhuang, Baoding, Cangzhou and Hengshui cities as
our research area. Utilizing Sentinel-1A data from 2017 to 2023 to monitor the spatiotem-
poral distribution characteristics of the surface deformation, combined with water head
data to analyze the different responses of aquifer systems to changes in the water head.
Furthermore, according to the coupling relationship between the seasonal components of
confined groundwater and surface deformation, the elastic skeletal storage coefficients and
annual total groundwater storage (TGWS), irreversible ground storage (IGWS), and recov-
erable ground storage (RGWS) were determined, and we analyzed their spatiotemporal
evolution laws.

2. Study Region and Data
2.1. Study Region

The NCP is a typical alluvial plain, formed by the massive sedimentation of silt
brought by the Yellow River, Hai River, Huai River, and Luan River. The thickness of the
sediment reaches 700 to 800 meters. From Taihang Mountain to Bohai Bay, the alluvial plain
can be sequentially divided into the Piedmont plain (PP), flood plain (FP) and coast plain
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(CP). The aquifer is the Quaternary aquifer group in the NCP, with a thickness of 350–500 m,
which can be divided into four aquifer groups. Groundwater extraction is located in the
second and third aquifers, at depths of 120–170 m and 250–310 m, respectively. Due to
excessive groundwater extraction, the North China Plain has become the largest subsidence
funnel area in the world.

The study area in this paper is located in the junction area of Shijiazhuang, Baoding,
Cangzhou, and Hengshui cities (hereafter referred to simply as “AOI”) in the NCP, which
has serious subsidence, including the Piedmont plain and flood plain, as shown in Figure 1.
The groundwater exploitation in the AOI area began in the late 1970s. As the regional
economy rapidly developed, the water demand for agricultural irrigation increased sharply,
the mining output volume continued to expand, and the water level dropped rapidly year
by year. By 2015, the total decline in the central water level exceeded 64 m, forming a deep
confined groundwater funnel with an area of 1600 km2 [10]. The long-term continuous
exploitation of confined groundwater led to serious land subsidence, with a subsidence rate
of up to 100 mm/yr. To safeguard groundwater resources and mitigate land subsidence
disasters, the SNWDP was implemented, and the groundwater level in the North China
Plain was restored at a rate of 1–2 m/yr.
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2.2. Data
2.2.1. InSAR Datasets

The SAR data used in this article were collected from 20 May 2017 to 22 September 2023,
totaling 187 scenes of Sentinel-1A ascending orbit data and the parameters of SAR data,
as shown in Table 1. The band used was the C-band, with VV polarization. The azimuth
and range resolutions were, respectively, 20 m and 5 m. The width of the SAR data was
250 km, and a region of interest (AOI) measuring 150 km × 130 km has been selected
within it. Its coverage area is shown in Figure 1. In addition, this paper used SRTM DEM
data with a resolution of 30 m covering the experimental area to remove the terrain phase
in interferograms and perform geographic coding.

Table 1. The parameters of Sentinel-1 data.

Sensor Band Wavelength
(cm)

Incidence
Angle (◦) Heading (◦) Track Polarization Pass

Direction
Number

of Images Date Range

S1 C 5.6 39.3 −12.9 142 VV Ascending 187 20/05/2017–
22/09/2023

2.2.2. Hydraulic Head

This article collected monthly monitoring data from 20 pressurized groundwater head
observation wells in the research area from Jan. 2018 to Oct. 2022 (Figure 1), which were
used to analyze the response relationship between ground subsidence and water head
changes and to calculate the aquifer parameters. The recorded depths of all the wells, rang-
ing from 130 to 210 m, indicate that groundwater is extracted from deep confined aquifers.

3. Method

In this section, we initially apply the MT-InSAR algorithm to determine the time-series
deformation of the AOI region. Following that, we employ a seasonal separation algorithm
to distinguish between periodic and long-term deformations. By integrating groundwater
level data, we derive estimates for both the aquifer and GWS parameters. The process is
illustrated in Figure 2.

3.1. Time-Series InSAR Data Processing

In this study, we used time-series SBAS InSAR technology to solve the problems
of incoherence caused by crop growth changes in agricultural areas and the scarcity of
artificial target points, achieving high-precision surface deformation measurement in the
AOI areas. Next, we will provide a brief introduction to this method.

First, to mitigate noise impact, we applied a multi-look process on each SAR dataset at a
10:2 ratio (range/azimuth). Second, to counteract decorrelation from extensive time/space
baselines, we established a spatial baseline of 150 m and a temporal baseline limit of
36 days. We then computed the average coherence for each interferometric pair and
selected 406 pairs based on their quality and coherence for time-series analysis. The specific
baseline combination is depicted in Figure 3. Then, SRTM DEM and orbit data were used to
remove the terrain phase from the interferograms, and the Goldstein filtering method was
used to further improve coherence. The minimum cost flow (MCF) method was used for
phase unwrapping, and finally, the unwrapped differential interferograms were geocoded.

The SBAS InSAR method utilizes time-series analysis of high-coherence point targets.
To enhance the computational efficiency and result reliability, we established a coherence
threshold of 0.5 for selecting these points [35,36]. We then carried out DEM error elimination
and atmospheric delay correction on the selected points. This paper estimated removal
based on the linear relationship between the DEM error and vertical baseline [37]. The
atmospheric signals on each interferogram were corrected using the Generic Atmospheric
Correction Online Service for InSAR products [38]. Secondly, we performed secondary
processing on the residual atmospheric phase. Due to the flatness of our region of interest
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(AOI), the vertical layering in atmospheric delay had the least impact on deformation
monitoring. Therefore, we used polynomial fitting to remove the phase trend of the
interference pattern for the atmospheric delay of long-wave signals. This step could also
eliminate orbital trends. Lastly, we set up a linear model linking the interference phase
with unknown parameters to derive the LOS average deformation rate and time-series
results using the SVD method. Ground subsidence due to groundwater overexploitation
primarily stems from vertical deformation with minor horizontal shifts [39]. Hence, this
study focused on investigating vertical deformations within our AOI region.
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3.2. Aquifer Parameter Inversion

In order to obtain the elastic release coefficient of the AOI aquifer, this paper adopts the
single sinusoid model as follows to separate the seasonal and long-term trends of temporal
deformation and groundwater level data, respectively:

Y(t) = vt + Acos(2π(t− T)) + B (1)

where Y(t) are the time series of deformation and head, v are the average rates of deforma-
tion and head, A is the seasonal variation amplitude, t is the time, T is the moment when
the seasonal signals reach a peak, and B is a constant term.

Seasonal deformation is caused by seasonal changes in groundwater levels, but due to
the presence of heterogeneous permeable media in the aquifer, seasonal deformation often
lags behind changes in groundwater levels. Therefore, to accurately determine the relation-
ship between groundwater and seasonal deformation, it is necessary to estimate the lag
time of deformation relative to the groundwater levels. The following formula can be used
to conduct a correlation analysis of the time-series deformation and groundwater level.

τlag = argmax(corr(∆hdetrend(t), ∆bdetrend(t + τ))) (2)

where τlag is the time for seasonal deformation to lag head changes, corr is the coherence
coefficient, ∆bdetrend is the seasonal deformation time series after removing the linear trend,
and ∆hdetrend is the seasonal head change time series after removing the linear trend. When
conducting coherence analysis, due to the different time resolutions between the two,
seasonal deformation interpolation is required to obtain deformation results corresponding
to the observation time of the groundwater level. The results of this step are also applicable
to the inversion of aquifer parameters.

The permanent loss of groundwater reserves leads to irreversible compaction of the
aquifer, resulting in long-term trend deformation, also known as inelastic deformation.
It takes several decades or even hundreds of years for long-term trend deformation to
stabilize. In order to further explore its temporal evolution, we used the exponential
function [23,40] to model and analyze it.

de f (t) = M(ekt − 1) (3)

where de f (t) is the vertical deformation time series, M is the value that characterizes the
cumulative displacement, and k ∈ [−1, 0] The closer the k value is to −1, the faster the
land subsidence rate slows down. The closer the k value is to 0, the slower the subsidence
rate slows down.

The confined aquifer system consists of a weak permeable layer and an aquifer. The
Ske coefficients represent the strength of the aquifer’s water release capacity, which can
be estimated based on the linear relationship between the thickness of the aquifer and
the groundwater level. However, due to the difficulty of directly measuring the pre-
consolidation head and the changes that may occur with groundwater extraction and
replenishment, it poses difficulties in solving the aquifer parameters. In 2015, Shirazaei
proposed a method for estimating aquifer parameters based on seasonal deformation and
head changes, which solved the above problem [41]. The water release coefficient of the
elastic skeleton can be solved using the following formula:

Ske =
∆ds

∆hs
(4)

where ∆ds represents the seasonal variation of aquifer thickness, i.e., the seasonal deforma-
tion, and ∆hs represents the seasonal variation of the water head.

3.3. Aquifer Groundwater Storage (GWS) Estimation

The change in the groundwater storage is a direct characterization of the activity
of confined aquifers. The change in the total groundwater storage is a product of the
interaction between natural recharge and artificial overexploitation and compaction in the
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aquifer system. It can be obtained by multiplying the total vertical surface deformation
with the aquifer area. The formula is as follows:

∆V = ∆Vr + ∆Vi = ∆dt·A (5)

where ∆V is the TWGS change, ∆Vr is the RGWS change, ∆Vi is the IGWS change, ∆dt is
the total vertical cumulative deformation, and A is the area of the aquifer.

The TWGS change can be obtained by multiplying the elastic release coefficient with
the total groundwater level change.

∆Vr = Ske·∆ht·A (6)

where ∆ht is the total groundwater level change.

∆Vi = ∆V − ∆Vr = (∆dt·A)− (Ske·∆ht·A) (7)

According to Formulas (6) and (7), the IGWS is equal to the TGWS change minus the
RGWS change, and we can accurately calculate the permanent loss in the AOI area.

4. Results
4.1. Land Deformation Monitoring Results and Analysis

The results of the AOI regional surface deformation monitoring from 2017 to 2023 are
shown in Figure 4a. Ground subsidence is widely distributed, especially in the southern
part, which has now connected with the Handan subsidence area. The maximum sub-
sidence rate can reach up to 15 cm/year. This region, a crop cultivation area, primarily
experiences land subsidence due to the ongoing compaction of the aquifer system due
to excessive extraction of confined groundwater. To further analyze the spatiotemporal
distribution of the AOI regional subsidence funnels, we conducted profile extraction across
multiple subsidence funnels (A–B profile), as shown in Figure 4b. Within six years, sub-
sidence has been intensifying and the maximum cumulative deformation has reached
650 mm, meaning all the subsidence funnels will merge into one large super-subsiding
funnel zone. Overexploitation of confined groundwater primarily causes ground subsi-
dence due to the continuous compaction of the aquifer. To better understand how the
aquifer system responds to changes in the groundwater level, this article compares the
deformation time series of the groundwater level changes in six typical observation wells
and their nearby InSAR monitoring points, and the results are shown in Figure 5. From
2018 to 2022, the water head of the Q3 and Q8 observation wells showed an upward trend,
while ground subsidence showed a slowing trend (Figure 5a,e). The attenuation coefficients
K were −0.52 and −0.46, respectively, and the magnitude coefficient M was 306.4 mm
and 351.4 mm, respectively. The water head of the Q7, Q10, and Q18 observation wells
also showed an upward trend from 2018 to 2022, but the ground subsidence rate did not
show a significant slowing trend (Figure 5c,g,i), with attenuation coefficients greater than
−0.1 and a magnitude coefficient M of 1832.2 mm, 1252.3 mm, and 8087.8 mm, respec-
tively. There is no change in the groundwater level of the Q20 observation well, and the
ground subsidence is accompanied by periodic slight subsidence, with a small deformation
magnitude. The varied reactions of the observed aquifer systems to groundwater level
shifts highlight notable disparities in the spatial distribution and thickness of aquifers and
clay layers within the AOI region. Furthermore, the attenuation coefficients of ground
subsidence in the entire AOI area and magnitude coefficient M were obtained, as shown
in Figure 6a,b. Figure 6a clearly shows that the attenuation coefficients in the northwest
Piedmont plain, the northeast Baiyangdian area, and the middle area of the south are
between −1 and −0.4. There is a clear trend of slowing down ground subsidence, but
in the central subsidence area, the attenuation coefficients are all greater than −0.1, and
there is no trend of slowing down ground subsidence. The magnitude of the M value
represents the magnitude of deformation in the aquifer at this location, where negative
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values represent surface rebound (aquifer expansion) and positive values represent surface
subsidence (aquifer compression). From Figure 6b, it can be seen that most of the AOI area
is positive, with the maximum M value occurring at the center of the subsidence funnel,
indicating that the aquifer compression is most severe here. There is no obvious trend
in ground subsidence and the spatial distribution of the positive M values is consistent
with the distribution of ground subsidence. The reason for this phenomenon is that crop
growth requires a large amount of groundwater irrigation, leading to continuous depletion
of groundwater resources and intensified ground subsidence.
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4.2. Seasonal Deformation Results and Analysis

The response of the surface to seasonal changes in the groundwater level is the
generation of seasonal deformation. In this article, a harmonic function is used to extract
the seasonal groundwater level of typical observation wells and the seasonal deformation of
nearby InSAR monitoring points, as shown in Figure 5b,d,f,h,j,l. The amplitude of seasonal
deformation is about 15–30 mm, and the peak of deformation is from January to March each
year. The amplitude of the seasonal water level change is about 10–20 m, and the peak time
of groundwater level change is also from January to March each year. Further correlation
between the groundwater level and surface deformation was conducted, and it was found
that the InSAR deformation near the observation well lagged behind the groundwater level
changes by about 5–192 days, as shown in Table 2. This is mainly due to the large difference
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in the clay layer thickness and low permeability coefficient in the aquifer system, and the
extracted groundwater level needs a period of time to reach equilibrium again. To analyze
the spatiotemporal characteristics of seasonal deformation in the entire AOI region, the
amplitude and peak time of seasonal deformation from 2017 to 2023 were calculated. The
results showed that there was significant seasonal deformation in the central and southern
subsidence areas of the AOI, with an amplitude of 15–25 mm, as shown in Figure 6c. The
peak time of seasonal deformation in this subsidence area was from January to March, as
shown in Figure 6d, which is consistent with changes in the groundwater level. In the
natural state, the rainfall period in the NCP is concentrated in July–September of each year,
and the groundwater level originally reached the maximum in August–October, which is
consistent with that in the central and western regions of Figure 6d but is inconsistent with
other regions, because the groundwater level change in the AOI settlement area is mainly
controlled by agricultural irrigation, and the groundwater level reached the maximum in
January~March of each year, and reached the minimum in June~July, which fully proves
that the land subsidence in the AOI area is caused by overexploitation of groundwater.

Table 2. Estimated elastic storage coefficients, time lags and maximum correlation.

Station Time Lag (Day) Correlation Ske (10−3) Station Time Lag (Day) Correlation Ske (10−3)

Q1 46 0.45 2.32 ± 0.033 Q11 192 0.37 6.53 ± 0.035
Q2 54 0.57 2.02 ± 0.042 Q12 33 0.64 3.24 ± 0.086
Q3 21 0.62 1.21 ± 0.031 Q13 55 0.43 2.36 ± 0.016
Q4 15 0.58 2.34 ± 0.019 Q14 129 0.39 2.65 ± 0.017
Q5 133 0.66 4.48 ± 0.036 Q15 45 0.76 15.27 ± 0.044
Q6 27 0.58 1.02 ± 0.016 Q16 61 0.57 11.04 ± 0.036
Q7 19 0.53 3.45 ± 0.035 Q17 47 0.71 13.82 ± 0.046
Q8 18 0.74 1.77 ± 0.014 Q18 23 0.67 2.42 ± 0.038
Q9 26 0.66 1.78 ± 0.099 Q19 127 0.47 5.08 ± 0.079

Q10 22 0.71 1.90 ± 0.025 Q20 5 0.88 2.69 ± 0.026

4.3. Aquifer Parameters (Ske) Estimation

The elastic skeletal storage coefficients in the AOI region was estimated using the
seasonal deformation and seasonal groundwater level changes. This article estimated the
Ske coefficients of 20 observation wells, as shown in Table 2, and obtained the distribu-
tion map of the elastic release coefficients of the entire AOI area through inverse distance
weighted interpolation data processing. The estimated elastic skeletal storage coefficients
of the AOI settlement area are in the range of 1.02 × 10−3~6.53 × 10−3, which is consistent
with the elastic release coefficient obtained from previous scholars’ pumping experiments
(1.0 × 10−3~8 × 10−3) [42]. The estimated elastic release coefficient of the Q15–Q17 obser-
vation wells in the Piedmont plain is relatively high, indicating that the groundwater in the
Piedmont plain is easy to recharge and has a large variation in the groundwater level. From
Figure 7, it can be seen that the water release coefficient of the elastic skeleton generally
increases from east to west, which may be due to the fact that the shallow groundwater in
the east is saline water. In order to meet the agricultural water demand, a large amount of
deep confined groundwater was extracted, resulting in a large mining thickness in the area
and difficulty in replenishing the shallow surface water.
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4.4. GWS Parameter Estimation

This article obtained the annual TGWS parameters of the AOI region based on Formula (6),
combined with the annual vertical cumulative deformation variables and the AOI region
from 2018 to 2022, as shown in Figure 8. The equivalent water thickness was used to
represent changes in water storage. To further explore the spatial-temporal changes in
the annual TGWS, the annual average TGWS rates in the AOI area were estimated, which
dropped rapidly from 48.6 mm/yr in 2018 to 13.1 mm/yr in 2022. At the same time, from
Figure 8, it can be seen that the spatial distribution of the annual TGWS is shrinking sharply,
and by 2022, the scope of the TGWS will only be in the settlement area in the middle of the
AOI, indicating that the groundwater exploitation area and intensity are shrinking. This
is due to the implementation of the SNWD project and the issuance of the groundwater
exploitation policy in North China, which has enabled the agricultural irrigation area in
the NCP to receive a large amount of surface water supply and deep groundwater supply,
and the land subsidence has been alleviated. The above results show that the groundwater
hydraulic exploitation measures have achieved good results in some areas. However, the
effect is not significant in the central region where the land subsidence is serious. The main
reason is that the surface water resources in this region are scarce and it is difficult to meet
the water demand of this region.
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In order to obtain the IGWS and RGWS, it was necessary to first maintain the TGWS res-
olution consistent with the solved Ske resolution. Secondly, according to Formulas (6) and (7),
the annual groundwater level changes and elastic skeleton storage coefficients (Table 2)
were combined to obtain the annual IGWS and RGWS variations, as shown in Figure 9.
From Figure 9a,c,e,g, it is evident that from 2018 to 2021, the RGWS parameters shifted from
negative values (loss) to positive values (recovery). Further calculation was conducted
on the average RGWS rate of the annual data, with an average annual RGWS loss of
11.2 mm/yr and 6.3 mm/yr during the 2018–2019 period, and an average annual RGWS
recovery of 2.7 mm/yr and 10.8 mm/yr during the 2020–2021 period. During 2018–2019,
the RGWS is still mainly lost, which may be caused by the low precipitation. The surface
water made it difficult to meet the needs of agricultural irrigation, and the mining output of
confined groundwater has increased sharply. During 2020–2021, recovery will be the main
task. This phenomenon is caused by the increase in the surface water supply and rainfall in
the NCP due to the SNWDP. The mining output of confined groundwater will decrease.
The average annual loss rate of IGWS during the period of 2018–2021 was 34.7, 36.4, 13.6,
and 8.9 mm/yr, respectively. From Figure 9b,d,f,h, it can be seen that the spatial change
trend is consistent with the TGWS, both of which have a sharp decrease in the impact range.
In the future, with the implementation of the South-to-North Water Diversion East Line
Water Diversion Project, the IGWS may gradually disappear.
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5. Discussion
5.1. The Relationship between Heavy Rainfall and Deformation

In recent years, due to global warming, the climate in northern China has become
more and more warm and humid, with frequent rainstorms in summer. On 29 July 2023,
under the influence of the residual circulation of “Typhoon Dussuri”, the subtropical high,
the water vapor transport of “Typhoon Kanu”, and the combined effect of topography, a
disastrous and extremely heavy rainstorm occurred in northern Hebei Province, Beijing
and surrounding areas. The precipitation in Beijing reached the highest level in 140 years
of instrument measurement history, known as the “20230729” heavy rainfall event. In
this study, the impact of the “20230729” heavy rainfall event on the North China Plain
was emphatically analyzed, especially the temporal and spatial distribution of the surface
rebound response in the short term. First, we detected and extracted the flood change
through Sentinel SAR data, and we analyzed the superposition with deformation, as
shown in Figure 10. The red area is the flood area, mainly flooding along the river and
converging in areas with serious land subsidence. A large amount of surface water will
quickly recharge the confined aquifer. In order to further quantitatively evaluate the surface
rebound response, we obtained the ground deformation from 29 July 2023 to 22 September,
as shown in Figure 11 Within two months, the average value of the ground uplift area has
exceeded 30 mm, with the maximum ground uplift reaching 50 mm. The ground uplift
extends from the middle to the east of AOI, and its magnitude also increases.
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In order to further explore the time–response relationship between the long-term
rainfall and surface deformation, we selected the vertical time-series deformation data and
precipitation time-series data at the center point of the subsidence funnel P1 (Figure 10)
for analysis, as shown in Figure 12. The time-series deformation at P1 shows a linear
settlement with periodic fluctuations, and the periodic signal is often after rainfall, which
is the result of the rapid recharge of the confined aquifer by rainfall, and then the surface
response. Especially with the “20210720” and “20230729” heavy rainfall events in the NCP,
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the surface subsidence stops and rebounds. However, it is also worth noting that the heavy
rainfall caused by the “20210720” heavy rainfall event can only delay the generation of land
subsidence in the NCP but cannot eliminate land subsidence. This conclusion is consistent
with previous scholarly conclusions [43]. A few months after the heavy rainfall event, land
subsidence began to show a linear trend.
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5.2. Advantages and Limitations

InSAR can obtain high-resolution and long-term surface deformation fields, which can
be used to analyze the spatiotemporal distribution characteristics and deformation laws
of surface subsidence caused by groundwater exploitation. More and more short return
period SAR satellites (e.g., Sentinel, Land Exploration One 01 Group A/B satellite (acronym
LT-1A/1B), NISAR) enable us to more accurately capture the seasonal deformation and
short-term surface rebound response after heavy rainfall. We can also explore the physical
characteristics of groundwater changes and invert aquifer parameters by establishing a
functional model between surface deformation and groundwater changes. In this paper,
we used seasonal deformation data observed by InSAR and groundwater logging data
to invert the elastic water release coefficient, and we further obtained the TGWS, RGWS,
and IGWS parameters of the entire study area. Using InSAR to conduct inversion research
on groundwater hydrological parameters can obtain high-spatial-resolution groundwa-
ter hydrological parameters, effectively addressing the problem of insufficient ground
observation data and the difficulty of estimating detailed hydrological parameters in space.

However, there are still problems with using InSAR to observe and invert groundwater
parameters. Firstly, the accuracy of aquifer parameter inversion still depends on the
distribution density of the observed well locations. Secondly, the inversion of hydrological
parameters using InSAR surface deformation data as observation values is mainly based
on the Terzaghi principle-derived linear elastic model. However, in reality, in addition to
linear elastic deformation, there are also plastic and viscoelastic deformations, and overly
simplifying the model can lead to inaccuracies in the inversion. Thirdly, the influence of
different geological structures on parameter inversion has not been considered, such as the
hindering and controlling effects of faults and ground fissures on groundwater, which are
also factors that must be considered in underground parameter inversion.

6. Conclusions

In this study, first, we used the MT-InSAR technology and ascending C-band Sentinel-1
SAR data from 2017 to 2023 to invest in the land deformation and analysis in the AOI
area. There are multiple settling funnels in the research area, with a maximum settling
rate exceeding −150 mm/yr and a cumulative deformation exceeding 600 mm. Then, we
achieved the separation of periodic and long-term deformation through seasonal separation
algorithms, and we modeled the long-term deformation using the exponential function
model. We found that most of the settlement areas in the AOI did not show a significant
trend of settlement attenuation, as only the southern region of the AOI showed settlement
attenuation. Next, we used the seasonal deformation and seasonal water level to solve the
Ske parameters of the aquifer, with the range of 1.02 × 10−3~6.53 × 10−3 in the subsidence
areas. We further obtained the annual TGWS, RGWS, and IGWS parameters for the AOI
region. From 2018 to 2021, the TGWS has been decreasing year by year, the RGWS has been
increasing year by year, and the IGWS has also been rapidly decreasing. This is due to the
implementation of the SNWDP water conveyance project and the issuance of the North
China pressure extraction policy, which has led to a large amount of groundwater recharge
for the confined aquifer. Finally, by analyzing the relationship between heavy rainfall and
land deformation, we concluded that heavy rainfall can make land subsidence stop and
rebound in a short time, but it can only delay the generation of land subsidence rather
than eliminate land subsidence. A few months after the heavy rainfall event, the land
subsidence starts to show a linear trend, so the main reason for controlling land subsidence
in the NCP is the intensity of groundwater overexploitation. Our data have improved
our comprehension of the groundwater storage changes in the NCP. This information
aids in managing these resources scientifically and helps prevent and mitigate ground
subsidence disasters.
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