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Abstract: In 2020, wildfires scarred over 4,000,000 hectares in the western United States, devastating
urban populations and ecosystems alike. The significant impact that wildfires have on plants, animals,
and human environments makes wildfire adaptation, management, and mitigation strategies a critical
task. This study uses satellite imagery from Landsat to calculate burn severity and map the fire
progression for the Dolan Fire of central Coastal California which occurred in August 2020. Several
environmental factors, such as temperature, humidity, fuel type, topography, surface conditions, and
wind velocity, are known to affect wildfire spread and burn severity. The aim of this study is the
investigation of the relationship between these environmental factors, estimates of burn severity, and
fire spread patterns. Burn severity is calculated and classified using the Difference in Normalized
Burn Ratio (dNBR) before being displayed as a time series of maps. The Dolan Fire had a moderate
severity burn with an average dNBR of 0.292. The ignition site location, when paired with the
patterns of fire spread, is consistent with wind speed and direction data, suggesting fire movement
to the southeast of the fire ignition site. Patterns of increased burn severity are compared with both
topography (slope and aspect) and fuel type. Locations that were found to be more susceptible
to high burn severity featured Long Needle Timber Litter and Mature Timber fuels, intermediate
slope angles between 15 and 35◦, and north- and east-facing slopes. This study has implications for
the future predictive modeling of wildfires that may serve to develop wildfire mitigation strategies,
manage climate change impacts, and protect human lives.

Keywords: burn severity; wildfire; fire progression; fuel model; California wildfires

1. Introduction

Wildfires can produce damaging effects on human health, ecosystems not adapted to
fire, and infrastructure. In the western United States, the last decades have seen a dramatic
increase in wildfire numbers. Since 1983, the area burned per year due to wildfire in the
United States has surpassed 40,000 km2 three times in 2015, 2017, and 2020, all within a
five-year time span [1]. In California, a record for wildfire occurrences was reached in 2020,
with 10,000 incidents burning over 17,400 km2 of the landscape. The extraordinary increase
in wildfires in California is widely considered to be attributed to rising temperatures and
declining precipitation due to climate change [2,3]. Observations indicate that the impacts
of wildfires are felt on short-term regional scales as well as on long-term global scales [4,5].
The significant impact that wildfires have on society and the environment underscores the
importance of their scientific study. An improved understanding of wildfire spread rates,
spread patterns, and burn severity is imperative for informing landscape management and
for developing planning practices designed to reduce wildfire risk and mitigate the effects
of active fires. The causes of wildfire ignition are multiple, ranging from natural phenomena
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like a lightning strike in a dense forest to human-caused fires due to human negligence.
Population growth and the desire of people to live near wildland areas have increased the
number of humans and infrastructure in the wildland–urban interface. With a warm and
drying climate in addition to an increased likelihood of anthropogenically ignited fires,
which are the leading cause of wildfire ignition, California has experienced an increased
prevalence of wildfire events (e.g., [6]). In general, however, several environmental factors
often contribute to how a particular fire spreads and intensifies. These factors include
vegetation type, temperature, wind velocity, and surface topography.

Vegetation acts as fuel for fire, and thus, a region’s vegetation type can significantly
impact a wildfire’s severity. These fuels possess several characteristics that contribute to
the flammability and spread rate of wildfire, such as moisture content, bed depth (fuel
height), and live/dead fuel load (kg km−2) [7]. A temperature increase with a lack of
precipitation leads to vegetation moisture loss. This loss of moisture causes vegetation
to become progressively flammable. Such processes are familiar to the Mediterranean
climate type, where there is a strongly seasonal climate with cool, wet winters that promote
fuel growth and hot, dry summers that increase fuel flammability. Mediterranean climate
characteristics, in conjunction with human-caused changes to climate and landscape, have
led to alterations in wildfire characteristics [8]. A recent study of the Sierra Nevada daily
meteorological conditions during the years from 2001 to 2020 showed that a 1 ◦C increase
in temperature yielded a 19 to 22% increase in wildfire risk and a 20 to 25% increase in
area burned [9]. Temperature anomalies and summer droughts are essential in explaining
wildfire occurrences in Mediterranean climates [10]. A study in the northern California
Mediterranean climate found that during low-precipitation years, areas that burned had
low fuel moisture and high climatic water deficits, and the percentage of high-severity areas
doubled, especially during the 2012–2016 drought [11]. The rate of spread and direction
of fire are critical factors controlled by wind. Wind can affect the behavior of a wildfire
by bringing in a constant supply of oxygen, moving moist air away from fire fuels, and
transporting burning hot embers that have risen into the air outside of the containment
perimeter, igniting new fires. Wind speed and direction can vary and be unpredictable,
making the task of wildfire suppression more difficult than it already is. Fires travel in
the direction of the ambient wind, so the stronger the winds, the faster the spread. Crown
fire initiation is dependent on canopy base height and canopy bulk density [12], and tree
canopy fires are linked to higher severity burns. High-resolution numerical studies have
demonstrated the capability to obtain the local micro-scale wind conditions and predict
the wildland fire plume (thermal plume and smoke plume) accurately [13]. Additionally,
studies of wind modeling for fire behavior have displayed the capacity to use computational
fluid dynamics models to accurately simulate wind [14,15].

Fires usually travel uphill much faster than downhill because warm air rises, thus
preheating fuels at higher elevations, making them more likely to ignite and contribute
to the spread. Once the fire has reached the top of a hill, it struggles to come back down
because it is not able to preheat the downhill fuel [16]. Wind patterns are influenced by
the topography of the terrain during a fire. Patterns of upslope and upvalley winds can
accelerate fire spread and drive burn severity patterns. The funneling of wind flow into
canyons and other natural chimneys can cause a noticeable increase in the spread rate and
severity of fires [17]. In addition to wind speed and direction, topography directly affects
the behavior of a wildfire by controlling radiant energy transfer from the fire line to the
direction of steeper slopes [18]. Additionally, topography can create microclimates that lead
to larger fire regimes influenced by alterations in air temperatures, fuel moisture content,
and plant distribution. Topography and land cover are typically linked; for example,
some vegetation types tend to be more abundant in areas of specific elevation and/or soil
moisture [19].

Field evaluations of fire damage can be time-consuming and expensive to obtain,
and therefore, alternative indirect fire severity estimations have been developed based on
remote sensing imagery. Normalized Burn Ratio (NBR) is a commonly used fire severity
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index for locations where multispectral imagery from Landsat or other earth observation
satellites is available [20,21]. NBR estimates photosynthetic activity indirectly through the
characteristic reflectance difference between the near-infrared and short-wave infrared
bands. The burning and scaring effects of wildfire on vegetation reduce this photosynthetic
activity estimate of unburnt plants. Thus, fire severity is estimated by calculating the
difference between NBR pre- and post-fire (dNBR) [20].

Previous studies that used vegetation and land cover data to study wildfire burn
severity were limited by both a lack of consistency in developing vegetation class thresholds
and empirical relationships with ecological metrics [22]. As a result, some studies attempted
to compare burn severity calculation methods using an inadequate number of vegetation
classes [23]. Furthermore, other studies have been successful in using machine learning
methods for burn severity classification (e.g., [20] in Spain; [24] in Alaska). Many studies
in the literature look at the before-and-after conditions to evaluate the impact of the fires.
What seems to be less common, however, are investigations of the environmental factors
that affect wildfire propagation and the temporal evolution of patterns of burn severity.
In this study, we use remote sensing estimates of burn severity from Landsat to study the
propagation and associations with environmental factors of the Dolan Fire, focusing on fire
fuels and surface topography. The Dolan Fire occurred in the Santa Lucia Wilderness area
of the Los Padres National Forest, California, from August to December 2020. The burn
severity estimates from remote sensing are combined with the results of fuel models and
with surface topography data to address the following research questions: (a) What was
the temporal evolution of burn severity patterns during the fire? (b) Which fuel types in
the region are more prone to low-, moderate-, and/or high-severity burns? (c) How does
topography (slope and aspect) interact with wind and fuels to influence burn severity in
this region?

2. Materials and Methods

In this section, we describe the location of the study, the burn severity index, the
datasets used, and the fuel models. Details on the methodologies used in the data analysis
are also included. An overview of the datasets used with a brief description and their
respective resolutions is given in Table 1.

Table 1. Data product names, descriptions, and resolution.

Product Name Description Resolution

Landsat-8 Collection 1 Products in the near-infrared and shortwave infrared bands
of the light spectrum [25–27] 30 m

Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM) [28] 30 m

Anderson 13 Fire Behavior Fuel Models Acquired from LANDFIRE, these fuel models provide
geospatial and field data of the vegetation fire fuels [7,29] 30 m

Monitoring Trends in Burn
Severity (MTBS) Used to acquire accurate burn boundary polygons [30] 30 m

Cli-MATE Tools Provides historical wind speed and direction, temperature,
and precipitation data Daily/Hourly

Evaporative Demand Drought
Index (EDDI)

Provides weekly historical drought data for the
United States Weekly

Weather Underground
Precipitation Data Provides daily historical precipitation data Daily/Monthly

Gridded Surface Meteorological (GridMET) Daily surface meteorological data covering the contiguous
U.S. [31] Daily/4 km
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2.1. Location and Climate of the Study Area

The Dolan Fire started in the Big Sur region of the rugged Santa Lucia Mountain
range of coastal Central California near 36.12◦N, 121.60◦W (Figure 1) on 18 August 2020.
Precipitation data were acquired daily at the Big Sur, CA, weather station through the
duration of the fire [32]. The region received an insignificant amount of precipitation during
that summer (less than 2 cm of precipitation from June to October), but natural causes were
not to blame for igniting the fire. Indeed, the fire began as an act of arson, and after burning
for 135 consecutive days, scarring about 505 km2, burning 14 buildings, and producing
15 non-fatal injuries, it was 100% contained on 31 December 2020 [33].
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Figure 1. Left panel: ESRI map of the western U.S. with state boundaries showing the Dolan Fire
ignition site (red dot). Right panel: Dolan Fire boundary (yellow solid line), ignition site (red dot),
and location of Cone Peak (black triangle) superimposed on a Landsat 8 image from 6 November
2020, with visible smoke clouds.

The climate in the Santa Lucia Mountain range region is classified as subtropical or
Mediterranean. This climate consists of warm, dry summers and cool, wet winters, with
localized summer fog near the coast. Average high temperatures are 21 ◦C in summer and
14 ◦C in winter. Annual rainfall is highly variable and ranges from 40 to 152 cm throughout
the range; however, the precipitation falls during the winter on the higher mountains in
the north [34]. Average annual wind speeds in this region are 6.44 m/s [35]. The fuel types
include Grass, chaparral brush and shrubs, and Timber Litter [7,33,36]. Additionally, the
Santa Lucia Mountains are home to Cone Peak. Cone Peak has an elevation of 1572 m and
is just 5 km from the coastline, making Cone Peak the highest peak in proximity to the
ocean in the contiguous United States. Cone Peak is pictured in Figure 1.

2.2. Burn Severity

Fire officials and land resource managers use burn severity maps created using re-
motely sensed data to map wildfire perimeters, predict locations of potential wildfire
hazards, and study areas of vegetation regrowth post-wildfire. Landsat imagery has tra-
ditionally been used to create indices that indicate burn severity because of its repeated
coverage, temporal resolution, accessibility, and spectral wavelengths featured [4]. In this
study, we use multispectral imagery to calculate and map during-fire and post-fire burn
severity using a burn severity index. The associations between the estimated burn severity
index and temperature, wind velocity, topography, and fire fuel data are analyzed to help
understand the effects of environmental risk factors on burn severity.
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For this study, burn severity is classified into four classes: unburnt/unchanged, low
severity, moderate severity, and high severity [14] (Figure 2). Low-severity wildfire burns
typically occur where the height of the flames is low, typically only scarring the surface,
which leads to a very minimal effect on the tree canopy. Moderate-severity burns display
scarring of the tree trunks with minimal effects on the tree canopy. Conversely, high-
severity fires occur where there is significant burning of the tree canopy [15]. The method of
classification used in this study is like that of Eidenshink et al. [37] for the Cerro Grande Fire
of New Mexico, who used a threshold classification by analyst evaluation of the Difference
in Normalized Burn Ratio (dNBR).
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Figure 2. Examples of (a) low-severity, (b) moderate-severity, and (c) high-severity burns on Araucaria
Araucana evergreens caused by wildfire in the Patagonian Forests of Argentina [38].

2.3. Fire Severity Indices

Normalized Burn Ratio (NBR) is one of the most widely used burn severity indices
(Equation (1)). It uses the near-infrared (NIR) and shortwave-infrared (SWIR) portions of
the electromagnetic spectrum to distinguish between unburnt and burnt vegetation [39]
(Table 2).

NBR = (NIR − SWIR)/(NIR + SWIR) (1)

dNBR = PreNBR − PostNBR (2)

Table 2. Landsat-8 Operational Land Imager and Thermal Infrared Sensor bands 1–7.

Band Number Description Wavelength Resolution
Band 1 Coastal/Aerosol 0.433 to 0.453 µm 30 m
Band 2 Visible blue 0.450 to 0.515 µm 30 m
Band 3 Visible green 0.525 to 0.600 µm 30 m
Band 4 Visible red 0.630 to 0.680 µm 30 m
Band 5 Near-infrared 0.845 to 0.885 µm 30 m
Band 6 Short wavelength infrared 1.56 to 1.66 µm 30 m
Band 7 Short wavelength infrared 2.10 to 2.30 µm 30 m

The burn severity is separated into four classes using analytically established val-
ues based on Landsat recommendations (USGS) and the Jenks natural breaks method:
unburnt/unchanged, low burn severity, moderate burn severity, and high burn severity
according to the pixel value of dNBR. The four value ranges for each class are <0.1, 0.1–0.27,
0.27–0.50, and >0.50, respectively [40]. Landsat 8 near-infrared (band 5) and shortwave
infrared (band 7) bands are acquired pre-fire and at various post-fire dates. MTBS provides
fire boundary polygons used to mask the study area to prevent pixels outside the fire
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boundary. NBR has been used heavily due to the SWIR band’s sensitivity in detecting
changes within fire burn and its effect on vegetation [24,41]. PreNBR is the NBR of the pre-
fire imagery, and PostNBR is the NBR of the post-fire imagery; the difference between them
is calculated, resulting in dNBR (Equation (2)) [42]. Hereafter, dNBR and burn severity are
used interchangeably, having the same meaning.

2.4. Satellite Imagery

Landsat 8 data collect data in several bands from the visible (~0.4 µm) to the longwave
infrared (~12 µm) of the light spectrum [43]. Vegetation and burned areas can be accurately
differentiated using near-infrared (NIR) and short-wave (SWIR) bands [44]. Landsat-8
Level 1 satellite imagery is used and is publicly available on the USGS EarthExplorer portal.
The Landsat-8 NIR band 5 (0.845 to 0.885 µm) and SWIR band 7 (2.10 to 2.30 µm) of 30 m
resolution are used in this study (Table 2). The pre-fire image collected on 2 August 2020
and the post-fire images collected on 18 August, 3 September, 19 September, and 5 October
are used as input data. We note that the statistical analysis presented in this paper is based
on the post-fire image of 5 October.

Figure 1 displays smoke clouds generated by the Dolan wildfire migrating to the
southeast in the direction of wind propagation. The smoke clouds are distinct from the
cirrus clouds on the eastern portion of the figure panel; the cirrus clouds are much less
dense and reside higher in the atmosphere compared to the smoke clouds. Being in
close proximity to the coast, there was an abundance of water vapor in the atmosphere.
Furthermore, the smoke from the forest fire acts as cloud condensation nuclei onto which
water vapor condenses, forming the thick, bright-colored clouds in the image [45].

To model the spread of the Dolan Fire, images collected on an average temporal
resolution of ~16 days are used throughout the life of the fire. The temporal resolution
of the model is based on the availability and quality of Landsat-8 imagery; the imagery
must have spatial coverage to include the study area while having <10% cloud cover. The
resulting image collection includes eight timestamps for the Dolan Fire.

2.5. Fuel Models

The Anderson 13 Fire Behavior Fuel Models are acquired from LANDFIRE for the
year 2019; these fuel models provide field data in the form of raster maps of the fuels and
data tables detailing their wildfire-specific metrics [29]. Monitoring Trends in Burn Severity
(MTBS) is used to acquire an accurate burn boundary polygon for the Dolan Fire [30].

Fire fuel data are acquired from the Anderson 13 Fire Behavior Fuel Models (FBFM13) [7].
The Anderson fuel models include the original 13 standard fuel models used in the 2020
LANDFIRE remap [36] of the contiguous United States at 30 m resolution. The fuel models
represent the distributions of fuel loading found among surface fuel components (live and
dead), size classes, and fuel types. The fuel models are described by the most common
fire-carrying fuel type in each pixel. Each fuel type has corresponding fuel metrics, which
account for dead fuel load, flame height, rate of spread, fuel bed depth, and moisture
of extinction (Table 3). The models of Table 3 were made based on the following testing
conditions: wind speeds of 2.24 m per second, dead fuel moisture content of 8%, and live
fuel moisture content of 100%. Of the 13 fuel types [7,36], 10 are present within the Dolan
Fire study area, and of those 10, 5 fuel types meet the criteria for pixel abundance, which
is set at >40,000 pixels within the region of interest (Table 4). The top five most abundant
and relevant fuel types in the study area account for 93.81% of the pixels (Figure 3).
The Anderson FBFM13 provides descriptions of the fire characteristics given by each
fuel type during testing. For example, Long Needle Timber Litter (FBFM9) and Mature
Timber (FBFM10) were more prone to high-severity burns than other fuels. These fuels are
highlighted for their fast-moving surface fires and high flame heights which often lead to
canopy fires, which are linked to high-severity burns [15].
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Table 3. Abbreviated names of fuel type names and their corresponding fuel metrics.

Fuel Type FBFM13 Dead Fuel Load (kg/m2) Flame Height (m) Spread Rate (m/h) Fuel Bed Depth (cm)
Grass with Timber/Shrub FBFM2 0.448 1.83 704 30.48
Young Brush FBFM5 0.224 1.22 362 60.96
Short Needle Timber Litter FBFM8 0.336 0.30 32 6.096
Long Needle Timber Litter FBFM9 0.650 0.79 151 6.096
Mature Timber FBFM10 0.672 1.46 159 30.48

Table 4. Anderson 13 fuel models attribute and behaviors.

FBFM13 Display Attribute, Fire Behavior 13 Fuel Model
FBFM2 Burns fine; herbaceous fuels; stand is curing or dead; may produce firebrands on oak or pine stands
FBFM5 Low-intensity fires; young, green shrubs with little dead material; fuels consist of Litter from understory

FBFM8 Slow, ground-burning fires; closed canopy stands with Short-Needle conifers or hardwoods; Litter consist mainly of
needles and leaves, with little undergrowth; occasional flares with concentrated fuels

FBFM9 Longer flames; quicker surface fires; closed canopy stands of long needles or hardwoods; rolling leaves in fall can cause
spotting; dead-down material can cause occasional crowning

FBFM10 Surface and ground fire more intense; dead-down fuels more abundant; frequent crowning and spotting causing fire
control to be more difficult
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2.6. Weather Data

Cli-MATE tools by the Midwestern Regional Climate Center of Purdue University
provided historical wind speed and direction, temperature, and precipitation data [44].
Wind data were acquired from the Monterrey Peninsula Airport weather station (36.58◦N,
121.85◦W). Wind data were collected from 18 August 2020 to 5 October 2020 for both
the wind rose plots and wind speed rasters used in analysis. The wind speed raster was
sourced from GridMET at daily 4 km resolution [31]. Wind rose plots were used to visualize
wind data hourly by displaying the average speed and direction the wind was coming
from as a function of frequency percentage during the chosen time period. Air temperature
and precipitation data were collected for one week leading up to the fire on 11 August
2020 to representative end of fire spread date on 5 October 2020. They came from the Big
Sur weather station located 15 km northwest of the study area in Big Sur, CA (36.27◦N,
121.81◦W). Note that the exact end of fire spread date is not known due to relatively low
temporal resolution between the pre-fire and post-fire images. The air temperature time
series at Big Sur for daily high, low, and mean temperatures during this period are shown
in Figure 4; precipitation is not displayed because it did not occur during this time.
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Drought data were acquired from the National Integrated Drought Information System
(NIDIS). NIDIS uses the Evaporative Demand Drought Index (EDDI) to offer early warning
of agricultural drought, hydrologic drought, and fire-weather risk in the United States. EDDI
examines how anomalous the atmospheric evaporative demand is for a location and across a
period of interest, the data were generated weekly throughout the year. The EDDI drought
categories in increasing order are D0, D1, D2, D3, and D4, which represent abnormally dry,
moderate, severe, extreme, and exceptional droughts. EDDI drought information is given for
the county where the Dolan Fire took place: Monterrey County, CA [46].

2.7. Topography

Topography is sourced from a Digital Elevation Model (DEM) of the study area. These
data are 30 m resolution rasters sourced from the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) Global DEM, available via NASA EarthData [28].
DEMs are used to help visualize and understand how wildfire spread and burn severity are
affected by the surface topography. Heat rises due to the low density of warm air relative
to cool air; thus, fires in lower elevations warm the air that then rises to higher elevations.
Radiation that travels upward reaches unburnt vegetation ahead of the flames, further
reducing the moisture in the vegetation prior to first contact with the fire, making fire
fuels more likely to ignite and spread [47].To quantify the relationship between topography
and burn severity, the Dolan Fire area DEM is geoprocessed to create slope and aspect
rasters. Slope is given in the unit of degrees and aspect is the compass direction of the slope
face on the terrain (Figures A1–A3). Appendix A features additional visualizations of the
topographic factors.

3. Results
3.1. Burn Severity

The dNBR values for the Dolan Fire range from −0.37 to 0.95 with a mean value 0.292,
giving the Dolan Fire a generally low to moderate burn severity classification. The mean
dNBR value of 0.292 is consistent with the burn severity map which shows that a majority
of the land cover experienced a moderate (yellow) severity burn (Figure 5). Additionally,
Table 5 presents the percent land cover of each burn severity class. It shows that 54% of
the area within the Dolan Fire perimeter experienced moderate severity burns, which is
consistent with the mean dNBR value.

Table 5. The percentage land cover of each burn severity classification.

Burn Severity Classification Percent Cover (%)
Unburnt/Unchanged 10
Low Severity 31
Moderate Severity 54
High Severity 5
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Figure 5. Map of burn severity classification of the Dolan Fire. Burn severity classes: unburnt (dark
green), low burn severity (light green), moderate burn severity (yellow), high burn severity (red) for
5 October 2020, relative to the pre-fire conditions on 2 August 2020.

3.2. Burn Severity Progression

To model the spread of the Dolan Fire, we created a burn severity time series of
post-fire maps using 2 August as the pre-fire date. The first four maps of this time series
(18 August, 3 September, 19 September, and 5 October) are shown in Figure 6. When
analyzing the evolution of the area-averaged burn severity in this time series, we noticed
a decrease after 5 October. This decrease is most likely due to an inflection point caused
by vegetation regrowth that has occurred in areas of low burn severity that have not seen
active fire for over a month leading up to 5 October. For this reason, the associations of
burn severity with environmental factors will be based on the post-fire map of 5 October
shown in Figure 5.
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Figure 6. Burn severity progression of the Dolan fire between 18 August 2020 and 5 October 2020.
This time series maps show the progression of burn severity as time from the pre-fire image increased.
The red star indicates the reported ignition site location, unburnt vegetation (dark green), low burn
severity (light green), moderate burn severity (yellow), high burn severity (red).

3.3. Fire Fuels

Vegetation data within the Dolan Fire perimeter is given by The Anderson 13 Fire
Behavior Fuel Models (FBFM13) (Figure 3). The FBFM13 provides data on the fuel bed
depth, flame height, and rate of spread of each of the fuel types (Table 4). Data and fuel
type descriptions from each of the selected fuels are used to make connections between fuel
type and burn severity. The five selected fuel types are of the most abundance within the
study area, they are as follows: Young Brush (FBFM5), Grass with Timber/Shrub (FBFM2),
Short Needle Timber Litter (FBFM8), Long Needle Timber Litter (FBFM9), and Mature
Timber (FBFM10). Of the selected fuel types, Young Brush has the highest percentage of
cover with a total of 37.3% cover, more than twice as much as the next closest fuel type
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(Table 6). Other than Young Brush, the rest of the fuel types have a similar percentage of
cover of 11.3%, 11.6%, 16.9%, and 12.0%, respectively.

Table 6. Percent cover of each fuel type in the Dolan Fire perimeter.

Fuel Type Percent Cover (%)
Young Brush (FBFM5) 37.3
Grass w/Timber/Shrub (FBFM2) 11.3
Short Needle Timber Litter (FBFM8) 11.6
Long Needle Timber Litter (FBFM9) 16.9
Mature Timber (FBFM10) 12.0

In Figure 7, patterns in percent cover can be seen when comparing the burn severity
to each of the fuel models. For Figure 7, each of the four burn severity classes should
be treated as its own map or dataset showing only areas of its respective burn severity.
This means that the sum of the percent land cover of each of the five fuel types total 100%
for each of the four burn severity classes. For example, the percentages of land cover for
unburnt vegetation for each of the five fuel types are 21%, 58%, 15%, 3%, and 3%, totaling
100%. The Young Brush fuel type accounts for ~60% of all unburnt vegetation, and as burn
severity increases to low-, moderate-, and high-severity burns, the abundance of Young
Brush was ~40%, ~45%, and ~15%, respectively. Grass with Timber/Shrub remained the
most consistent of the fuel types, having no significant trends in the percent of land cover
as burn severity increases. It accounted for ~21%, ~12%, ~11%, and ~20% of land cover
of the four burn severity classes, respectively. Short Needle Timber Litter experienced a
decreasing trend in percent cover with burn severity increase. Additionally, Short Needle
Timber Litter was not prone to increased burn severity areas, as the fuel type had the lowest
percent cover for areas which experienced burns of moderate and high severity, having a
percent cover of ~10% and ~5%, respectively. Contrary to Young Brush, as burn severity
increases, Long Needle Timber Litter and Mature Timber fuel types experience a steady
increase in the percentage of land cover; combined, they account for over ~60% of fuels
that burned at high severity. The fuel type metrics presented in Table 4 are correlated with
the burn severity of 5 October; the dead fuel load had a significant positive correlation
coefficient(r) of 0.922 (p-value = 0.02) (Figure A5, Table A1).
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To quantify the relationship between burn severity and fuel type, we employed a
Kruskal–Wallis (KW) test. The null hypothesis that the medians of dNBR are equal across
all fuel types was rejected, meaning that medians were all different across all fuel types
(p < 0.01). To investigate which medians are statistically different, we conducted Dunn’s
post hoc multiple comparison test. The result of the post hoc test was that each group
combination was statistically different (p < 0.01). A boxplot of dNBR for each fuel type is
pictured in Figure A6. These results suggest that fuel type has a significant impact on the
burn severity, and there are statistically significant differences in burn severity across the
different fuel types. Appendix B features additional visualizations and statistics regarding
the relationship between fuel type and burn severity

3.4. Topography

The DEM displays the many variations in elevation from the central California coast to
the Santa Lucia Mountain range. The effects that topography has on burn severity are seen
in differences in slope (steepness angle) and aspect (azimuth or compass direction of terrain
surface). To quantify how topography may affect burn severity, geoprocessed rasters for
slope and aspect are generated using the DEM raster of the Dolan Fire study area. The
Dolan study area aspect directions are separated into five classes: flat terrain and the four
cardinal directions by azimuth, namely north (315–45◦), east (45–135◦), south (135–225◦),
and west (225–315◦). The resulting average dNBR values for each aspect class are 0.287,
0.304, 0.310, 0.285, and 0.282, respectively, for the 5 October post-fire date (Figure 8). The
aspect direction with the highest average dNBR values was east and the lowest was west.
North (east) facing slopes resulted in having higher average burn severity values than south
(west) facing slopes. The burn severities of the south and west directions were similar to the
flat terrain. A KW analysis of variance was conducted for the burn severity and aspect class
variables. 5000 random samples were selected as the subset, this resulted in the removal of
the relatively small number of aspect pixels that are in the “flat” direction. The result of the
KW test proved to be statistically significant (p < 0.01). Dunns post hoc multiple comparison
tests were conducted to see exactly which group medians were different; p values > 0.05
mean the test failed to reject the null hypothesis. The test found all comparisons to be
statistically different except for east-north (p = 0.08) and west-south (p = 0.24). These results
are consistent with the boxplot in Figure A4.
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Figure 8. Average burn severity for each aspect class.

The Dolan Fire study area slope values are separated into five classes of degree angle:
0◦–5◦, 5◦–15◦, 15◦–25◦, 25◦–35◦, and >35◦. To quantify the effect that slope had on burn
severity, we calculated the average burn severity for the post-fire date of 5 October 2020 at
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each slope class. The result was an average burn severity of 0.210, 0.297, 0.311, 0.308, and
0.284, respectively (Figure 9). The general trend shows an increase in burn severity with an
increased slope angle, where the highest average dNBR values occur between slope angles
of 15–35◦. This indicates that 15–35◦ degrees was the optimal range of slope angles for
increased fire burn severity for the Dolan wildfire. To further investigate this relationship,
we calculate the average burn severity for low-, moderate-, and high-severity burns. Low-
severity burns saw a gradual increase in dNBR as slope angle increased. Moderate-severity
burns showed their highest occurred between 5 and 25◦, then a gradual decrease in dNBR as
the slope angle increased >25◦. High-severity burns displayed a similar trend to that of the
average combined burn severity, with a general increase and larger average dNBR at angles
15–35◦. A Pearson correlation coefficient (r) measures the strength and direction of the
linear relationship between burn severity and slope. It ranges from −1 to 1; in our case, the
r is approximately 0.111, indicating a weak positive linear relationship. The p-value, in our
case, is very close to zero (p < 0.01), which is far below the common significance threshold
of 0.05. While there is a statistically significant positive linear relationship between burn
severity and slope, the strength of this relationship is weak.
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3.5. Effect of Wind on Burn Severity and Dolan Fire Spread

Wind rose plots provide valuable hourly data and visualization of wind over a period
of time. For this study, we analyze the wind rose data recorded from the Monterey Peninsula
airport weather station between the dates of wildfire spread seen in Figure 6, 18 August
2020, to 5 October 2020. The spikes of a wind rose plot align with their corresponding
compass direction labeled on the outside of the circle to show which direction the wind is
coming from. The length of each spike gives the frequency percentage to show how often
wind blew from this direction. Within each spike are sub-classes that detail the frequency
that the wind blew at a certain range of wind speeds. These sub-classes are as follows:
1.5–1.8 m/s, 1.8–3.6 m/s, and 3.6–5.85 m/s. The calm winds threshold is set at 1.5 m/s, so
values below this threshold are not included in the analysis. Looking at the wind rose plot
in Figure 10, it can be seen that the vast majority of the winds are blown in from between
the W, WNW, NW, NNW, and N (azimuth 270–360). Roughly 60% of the above threshold
winds during this time blew in from these directions. The FBFM13 fuel type rate of spread
data is based on winds with a speed of at least 2.24 m/s. Upon further investigation of
the tabular data, winds coming from the directions between west and north are bolded
because these are the only winds to register an average speed greater than the FBFM13
rate of fire spread requirements (Table 7). Daily wind speed data from the Gridded Surface
Meteorological (GridMET) Dataset is collected in raster format at 4 km resolution during
the same period as the wind rose data in Figure 10. The wind speed data at a height of
10 m was correlated with burn severity (decimated from the 30 m Landsat resolution to
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the 4 km resolution of the wind), but the correlation between these two variables was not
significant. We note, however, that the quality of high-resolution winds like GridMET may
be questionable because of insufficient data for validation. In addition, the interconnected
nature of the many environmental factors that also influence burn severity may complicate
such an analysis. An analysis of the relationship between winds and fire propagation and
the direct impact of winds on burn severity is beyond this study’s scope.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 10. Wind rose plot during the Dolan Fire spread. 

Table 7. Tabular wind rose data. Bolded values indicate wind speeds above the Anderson 13 fuel 
models testing conditions. 

Range 
(m/s) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW 

NN
W Total 

1.5–1.8 1.6 0.9 0.9 0.9 3.1 2.1 1 0.4 0.1 0.5 1 1.1 0.7 1 1.2 2.4 19 
1.8–3.6 3.1 0.9 0.4 0.2 1.1 3 1.4 0.3 0.1 0.6 1.3 2.4 5.6 4.5 3.8 5.3 33.8 
3.6–5.85 0.4 0 0.2 0 0 0 0.2 0 0 0.1 0.2 1.1 5.6 3.1 4.2 1.7 16.7 

5.85–8.55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0.2 
Total (%) 5.1 1.8 1.5 1.1 4.2 5.1 2.6 0.7 0.2 1.3 2.4 4.6 11.8 8.6 9.3 9.4 69.7 

Calm 
(<1.5) 

                30.3 

Ave. 
Speed 2.3 2 1.9 1.7 1.7 2 2.2 1.8 1.8 2.2 2.1 2.8 3.4 3 3.3 2.5 1.9 

4. Discussion 
Previous studies of the Dolan wildfire have been centered around the hydrologic re-

sponse to rainfall in the scarred area [48,49]. To date, a study of the burn severity of the 
Dolan Fire has not been published; however, a recent study highlighting wildfire on the 
northern coast of California has studied associations between burn severity and environ-
mental factors [11]. 

We used a set of remote sensing data to calculate burn severity using the Difference 
Normalized Burn Ratio (dNBR) index over a series of time steps. The burn severity time 
series maps were able to capture the general pattern of fire spread and the evolution of 
burn severity. Burn severity classification does not have a standard for assigning value 
range thresholds. Different studies use different thresholds based on factors such as the 
sensor being used, findings of field investigations of burn severity, and the analyst’s ex-
perience working with burn severity. Thus, burn severity classification thresholds can be 
subjective, which is the reason there are many different styles. Studies have used machine 
learning to mitigate human subjectivity; however, these methods are not without fault 
considering that parameter selection is subjective as well. For this study, we used a com-
bination of recommendations for dNBR thresholds for Landsat data (USGS) and the Jenks 
natural breaks method [40]. USGS states that dNBR values can vary from case to case, and 
so, if possible, interpretation in specific instances should also be carried out through field 
assessment in order to obtain the best results. Landsat recommendations and the Jenks 

Figure 10. Wind rose plot during the Dolan Fire spread.

Table 7. Tabular wind rose data. Bolded values indicate wind speeds above the Anderson 13 fuel
models testing conditions.

Range (m/s) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW Total

1.5–1.8 1.6 0.9 0.9 0.9 3.1 2.1 1 0.4 0.1 0.5 1 1.1 0.7 1 1.2 2.4 19
1.8–3.6 3.1 0.9 0.4 0.2 1.1 3 1.4 0.3 0.1 0.6 1.3 2.4 5.6 4.5 3.8 5.3 33.8
3.6–5.85 0.4 0 0.2 0 0 0 0.2 0 0 0.1 0.2 1.1 5.6 3.1 4.2 1.7 16.7

5.85–8.55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0.2
Total (%) 5.1 1.8 1.5 1.1 4.2 5.1 2.6 0.7 0.2 1.3 2.4 4.6 11.8 8.6 9.3 9.4 69.7

Calm (<1.5) 30.3
Ave. Speed 2.3 2 1.9 1.7 1.7 2 2.2 1.8 1.8 2.2 2.1 2.8 3.4 3 3.3 2.5 1.9

4. Discussion

Previous studies of the Dolan wildfire have been centered around the hydrologic
response to rainfall in the scarred area [48,49]. To date, a study of the burn severity of
the Dolan Fire has not been published; however, a recent study highlighting wildfire
on the northern coast of California has studied associations between burn severity and
environmental factors [11].

We used a set of remote sensing data to calculate burn severity using the Difference
Normalized Burn Ratio (dNBR) index over a series of time steps. The burn severity time
series maps were able to capture the general pattern of fire spread and the evolution of burn
severity. Burn severity classification does not have a standard for assigning value range
thresholds. Different studies use different thresholds based on factors such as the sensor
being used, findings of field investigations of burn severity, and the analyst’s experience
working with burn severity. Thus, burn severity classification thresholds can be subjective,
which is the reason there are many different styles. Studies have used machine learning
to mitigate human subjectivity; however, these methods are not without fault considering
that parameter selection is subjective as well. For this study, we used a combination of
recommendations for dNBR thresholds for Landsat data (USGS) and the Jenks natural
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breaks method [40]. USGS states that dNBR values can vary from case to case, and so,
if possible, interpretation in specific instances should also be carried out through field
assessment in order to obtain the best results. Landsat recommendations and the Jenks
methods had nearly identical threshold ranges; however, the largest discrepancy was with
the high severity class where the value ranges for dNBR were >0.48 and >0.66, respectively.
The Landsat-recommended high severity range of >0.66 displayed little to no high severity
areas, which was inconsistent with other burn severity maps of the Dolan Fire by MTBS.
So, based on this low amount of high-severity burn that was proven to have occurred, we
used >0.50 as the high-severity value range. This offered results most similar to those seen
in other assessments of burn severity using dNBR for the Dolan Fire.

We investigated the relationship between environmental risk factors for wildfire and
burn severity for the Dolan Fire of central coastal California. We quantified the relative
association of fuel type and elements of topography in determining burn severity over
the region’s diverse landscape. Overall, fuel type and topography (slope and aspect)
influenced burn severity in the Dolan Fire. More Timber and Timber Litter burned at
high severity compared to the other fuels, while Young Brush was most of the unburnt
vegetation. Steeper slopes were more favorable to higher severity burns, and north- and
east-facing slopes were more susceptible to increased burn severity. Furthermore, we found
that topography’s influence on burn severity may also be explained by the effect that slope
may have on the type of vegetation that populates at slope classes that saw increased burn
severity. Figure 11 highlights Long Needle Timber Litter and Mature Timber for their
increasing percent land cover as slope increases, especially at intermediate slopes between
15◦ and 35◦.
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4.1. Fuel Models

Fuel type in conjunction with the other environmental metrics, despite a decrease
in overall temperature, may have also been a catalyst for the fire spread seen between
timestamps of burn severity maps from 18 August to 3 September 2020 (Figure 6). FBFM9
and FBFM10 were in greater density in this area of the map (Figure 3). Fire fuel metrics
of the Anderson FBFM13, such as dead fuel loading, were an important variable in the
resulting burn severity for the Dolan Fire. Burn severity correlation statistics for dead fuel
load gave a correlation (r) of 0.922 and a p-value of 0.02, signifying a strong correlation
between the variables. However, there was no evidence of a correlation between mean
burn severity and the fire fuel metrics of flame height, spread rate, and bed depth. Mature
Timber and Long Needle Timber Litter experienced more high severity burns by a large
margin, partly due to high values of dead fuel tons per acre. However, not every fuel
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metric, such as flame height and rate of spread, showed a strong correlation. This may
be due to several other risk factors affecting wildfire burn severity, such as temperature,
topography, and wind speed and direction, similar to caveats found in studies of northern
California wildfires by Huang et al. [11].

4.2. Topography

The effects of topography, slope, and aspect in the Dolan Fire region on the coast of the
Santa Lucia Mountains were investigated in this study. A correlation between burn severity
and slope found that while there is a statistically significant positive linear relationship
between the variables, the strength of this relationship is weak (r = 0.111, p < 0.01). We
quantified the relationship between burn severity and aspect and found that north- and
east-facing slopes had the highest burn severity with an average dNBR of 0.304 and 0.310,
respectively. This is similar to the findings of Carmo et al. [19] in the mountainous regions
of northern Portugal. This finding is consistent with the fact that the fire originated in the
northwestern area of the fire perimeter and winds drove the fire progression in the southeast
direction. Additionally, the presence of intermediate slopes and types of vegetation which
populate these locations played a role in the resulting burn severity values.

According to the Unites States Department of Agriculture’s Area Terrain Ruggedness
Index, the Dolan Fire region is classified in highest class named “Extremely rugged” [50]. In
an area of such abnormal terrain, we begin to question its effect on the results of this study.
The wide variation in elevation, coupled with its resulting effects on other environmental
factors, may play a bigger role in burn severity and wildfire spread, perhaps a bigger role
than what can be drawn out in statistics of currently available data.

4.3. Weather and Climate

The dry, warm summers found in Mediterranean climates have been a catalyst for
wildfire throughout the history of California. The Dolan Fire was an anthropogenically
ignited fire, thus limiting the impact of temperature data for fire ignition risk purposes.
However, based on previous studies performed by Gutierrez et al. [9] and Crockett and
Westerling, [51], changes in temperature can strongly influence the occurrence and spread
of wildfire. The temperature changes seen in Figure 4 indicate a remarkable increase in
temperature. Over the week leading up to the fire ignition on 18 August 2020, daily mean
temperatures rose by 15 ◦C, reaching a daily maximum temperature of 40 ◦C (104 ◦F) on
the day of ignition. There was a remarkable increase in the area burned and dNBR between
the timestamps of 3 September to 19 September 2020. At the 16-day temporal resolution of
Landsat, it is difficult to be conclusive about when rate of spread increased; however, we
can use the evidence available to create plausible implications on what may have driven
such a change in wildfire spread. During the week from 1 September to 8 September
2020, daily mean temperatures increased by 18 ◦C, reaching a blistering maximum daily
temperature of 45 ◦C (113 ◦F) on 8 September. Based on the previous studies by Gutierrez
et al. [9] and massive increases in temperate seen in the data, we have come to believe that
temperature played a key role in fire spread rates and burn severity.

With the fire being ignited anthropogenically, we cannot say that drought had an
impact on fire ignition. Furthermore, drought is not believed to have had any impact on
fire spread and burn severity considering that the Dolan Fire region did not experience
any level of drought from 14 April 2020 to 24 November 2020. Even when there was a
recordable drought event in the study area, the EDDI rarely exceeded the abnormally dry
(D0) category. Although there was very little precipitation, less than 1 cm, from August
to October 2020, the drought index remains in a state of no drought. This may be due to
water storage from previous months of precipitation and/or proximity to the coastline.
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Wind speed and direction data seen in Figure 10 were consistent with the general direc-
tion of spread seen in the burn severity time series maps (Figure 6). The Anderson FBFM13
test conditions for the flame height and rate of spread were met; all five compass directions
(including flat) between the north and west (azimuth 270 to 360) had average wind speeds
greater than 2.24 m/s. However, previous studies in northern coastal California by Huang
et al. [11] showed that wind speed is of great importance in wet climates relative to other
climate conditions, such as warm, cool, and dry. With that said, while the wind speed and
direction are important to wildfire spread, we do not have conclusive evidence to suggest
it is of great importance in the determination of burn severity for the dry climate found
during the time of the Dolan Fire. Additionally, correlation analysis was unsuccessful in
determining a significant correlation between wind speed and burn severity.

4.4. Broader Impacts

Carbon emissions caused by wildfires experienced a sharp increase in 2020. The
impact that such fires have on global warming sustained by the resulting increase in carbon
dioxide emissions cannot be ignored [52]. Carbon emission models in California estimate
that 106.7 million metric tons of carbon dioxide was emitted into the atmosphere solely
due to wildfire in 2020. This was by far the most carbon emitted by wildfire on record for
the state and more than a 2200% increase from the year prior [53]. The CARB emissions
model uses GIS format data on fire perimeters, alarm and containment dates, natural
vegetation fuel type (fuel component size class), fuel loads (tons/acre), fuel moisture,
and burn severity. Burn severity is a key factor in estimating carbon emissions due to
wildfire. A study of the Black Dragon Fire in the Boreal Forest of China estimated that
nearly 1.3 million hectares burned and 52% of that area burned with high severity. The
emitted carbon dioxide equivalents (CO2e), accounted for approximately 10% of the total
fossil fuel emissions from China in 1987 and released 160% of China’s annual CO2e [54].
Upon further calculation of the data acquired from this study, it was found that fuels that
resulted in high-severity burns released over 150% more carbon per acre than fuels that
burned at moderate severity. More accurate and available wildfire emissions models can
be used to improve future climate models and increase the understanding of global climate
change. These estimates further stress the importance of burn severity classifications in
carbon emission estimations.

The undeniable situation of global warming and the increase in extreme weather events
has left many areas of the world facing the challenge of wildfires. They are dangerous
in several ways to plants, animals, humans, and the environment they live in. For these
reasons, wildfire burn severity mitigation strategies, management, and adaptation are
imperative to help local communities reduce the negative impact that wildfires have on
their lives. This study can help communities identify areas that are at risk of increased
burn severity and aid in the development of mitigation strategies and policies to reduce
the effect of future wildland fire events. Furthermore, the predictive capabilities that burn
severity data could add to fuel models may be used in a simulated environment similar to
the one used in Sakellariou et al. [55] to improve model accuracy. This study highlighted
that weather, topographic, and fuel conditions have an association with burn severity and
wildfire spread patterns. For instance, construction planners could avoid placing structures
uphill from vegetation prone to high dead fuel load or utilize important proactive measures
such as fuel breaks to impede the progress of fire in areas with increased risk of high fire
severity [56].

5. Conclusions

Burn severity can be mapped over time to provide valuable insight into risk factors
leading to wildfire spread. However, the limited temporal resolution of the Landsat satellite
imagery used in this study (16 days) does not allow making accurate conclusions. Ideally,
we would have liked to count with twice daily or better resolution dNBR data to better
analyze the spread patterns of wildfire and how different environmental factors impact fire
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progression. Nevertheless, wind rose plots show that the general wind speed and direction
in the region were consistent with the general direction of fire spread. While the date of
5 October 2020 has the highest average dNBR of all the dates available with a value of 0.323,
it may not necessarily be an inflection point. Instead, it may be the time in which the burn
severity has reached an equilibrium, where the fire is no longer spreading and beginning
to calm down after it has been two months since ignition. Unfortunately, a lack in the
literature on this subject does not allow for confirmation or rejection of these suspicions.

We found that intermediate slopes (15–35◦) were more prone to high-severity burns.
We believe the cause for this may be the preheating of fire fuels at higher elevations on a
slope and the population of fire-prone fuel types in these intermediate slope areas. Burn
severity was higher on the north- and east-facing slopes while being lower on south- and
west-facing slopes. With at least twice-daily temporal resolution, spread patterns could be
analyzed to show in which direction the fire is progressing at different times, giving more
explanation as to why certain aspects burned at higher severity than others.

This study provides useful information that can be used to create mitigation strategies
related to environmental factors to reduce wildfire risk, spread, and burn severity. Factors
such as temperature, topography, and others influence not only burn severity but also
flame height and spread rate. The Anderson system appears to define the flame height
and spread rate without considering these variables, indicating a notable weakness in the
system. The findings of this study could serve to add value to the Anderson FBFM13 and
similar models, such as the Scott and Burgan 40 Fire Behavior Fuel Models, by being used
as a metric to analyze post-fire characteristics for different fuel types [57]. In conclusion,
the interconnected factors (wind speed, fuel type, slope, aspect, and others not investigated
in this study) would need to be considered together rather than individually to better
understand their effects on burn severity. Future studies can utilize this method along
with higher temporal resolution imagery (e.g., Sentinel-2 has 10-day resolution) in similar
Mediterranean coastal mountain regions to better understand the mechanisms driving
burn severity. Additionally, future work could investigate burn severity in areas of different
ruggedness index scores to see how wildfire characteristics are affected by terrain variability.
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Table A1. Pearson correlation coefficients (r) and corresponding p-values for each fuel model metric
within the Dolan Fire region, indicating their correlation with burn severity values.

Fuel Metric Correlation Coefficient (r) p-Value

Dead Fuel Load 0.922 0.03

Flame Height 0.407 0.49

Spread rate −0.047 0.93

Bed Depth −0.132 0.83
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