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Abstract: Hyperspectral anomaly detection is an important unsupervised binary classification prob-
lem that aims to effectively distinguish between background and anomalies in hyperspectral images
(HSIs). In recent years, methods based on low-rank tensor representations have been proposed to
decompose HSIs into low-rank background and sparse anomaly tensors. However, current methods
neglect the low-rank information in the spatial dimension and rely heavily on the background infor-
mation contained in the dictionary. Furthermore, these algorithms show limited robustness when the
dictionary information is missing or corrupted by high level noise. To address these problems, we
propose a novel method called multi-dimensional low-rank (MDLR) for HSI anomaly detection. It
first reconstructs three background tensors separately from three directional slices of the background
tensor. Then, weighted schatten p-norm minimization is employed to enforce the low-rank constraint
on the background tensor, and Lr ;-norm regularization is used to describe the sparsity in the anomaly
tensor. Finally, a well-designed alternating direction method of multipliers (ADMM) is employed to
effectively solve the optimization problem. Extensive experiments on four real-world datasets show
that our approach outperforms existing anomaly detection methods in terms of accuracy.

Keywords: anomaly detection; multi-dimensional; low-rank

1. Introduction

Compared with conventional images such as RGB images, multispectral images, SAS
images [1], and delay-Doppler images [2], hyperspectral images (HSIs) offer the advantage
of capturing hundreds of contiguous spectral bands of the same scene. This unique
characteristic of HSI proves to be beneficial for target detection and finds wide applications
in various fields such as land cover classification [3-5], mineral survey [6-8], environmental
protection [9-11], and other applications [12-18]. In hyperspectral target detection, when
the target information is unknown, the unsupervised processing of the target detection is
called anomaly detection. However, in practical applications, it is often difficult to obtain
the prior information of the target, so hyperspectral anomaly detection is more suitable.
In essence, hyperspectral anomaly detection can be viewed as an unsupervised binary
classification problem that separates an image into background and anomalies, where
anomalies typically represent rare targets that occupy only a small number of pixels.

Over the past two decades, there has been a growing interest in hyperspectral anomaly
detection, leading to the development of numerous detection algorithms. The Reed-Xiaoli
(RX) algorithm [19] is a classical statistical modelling method for anomaly detection, assum-
ing that the background follows a multivariate Gaussian distribution. The main objective
of the RX algorithm is to compute the Mahalanobis distance between the measured pixel
and the background [20], which involves estimating the mean vector and the covariance
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matrix of the background. Two commonly studied extended versions of the RX algorithm
are the global RX (GRX) [21] and the local RX (LRX) [22], where the former calculates the
distance between the measured pixel and all background pixels, and the latter calculates
the distance between the measured pixel and the surrounding background pixels. However,
in hyperspectral applications, it is crude to describe the background with a single Gaussian
distribution, and the mean vector and covariance matrix of the background are susceptible
to the noisy pixels and anomalies.

In general, the HSI can be represented as a three-order tensor with two spatial di-
mensions and one spectral dimension. Taking into account the similarity between spectral
bands, the HSI can be transformed into a matrix along the spectral dimension, which
inspires the matrix-based anomaly detection methods. Anomalies are assumed to be ran-
domly distributed in the background and to have sparse properties. By formulating a
constrained convex optimization problem that incorporates the characteristics of both the
background and the anomalies, successful separation of the anomalies from the background
can be achieved. Consequently, the low-rank and sparse matrix decomposition (LRaSMD)
algorithms [23-25] have been used to separate the HSI data into low-rank background and
sparse anomalies and have demonstrated their effectiveness in previous studies [26-28].
According to the LRaSMD approach, the spectral response of a pixel y;(i € {1,...,N}) ind
bands of the HSI can be represented as a spectral vector y; € R? with the decomposition.

L s; =0, ify; is part of background,
yi =Xitsi { s; #0, if y; is part of anomalies, )

which can further be written in matrix form as:
Y=X+S, (2)

where X = [x1,%p,...,xy]T and S = [s1,s,...,8n]T € RN*¥ represent the background
and anomaly components of the HSI matrix Y = [y1,y2,...,yn]T € RN*9, where N
represents the number of pixels in the HSI, and d represents the number of spectral bands.
Furthermore, to address the attention imbalance between anomalies and the background
observed in LRaSMD, Zhang et al. [29] proposed the LRaSMD-based Mahalanobis
distance (LSMAD) method. Xu et al. [30] integrated cooperative representation and
Euclidean distance into the LRaSMD framework. Li et al. [31] investigated LRaSMD
under the assumption of a mixture-of-Gaussian (MoG) distribution and developed a global
detector based on the Manhattan distance. To further exploit the intrinsic information
of the background, low-rank representation (LRR) [32,33] was proposed, which maps
the HSI to multiple linear subspaces using a dictionary. Xu et al. [34] proposed a new
anomaly detection method called low-rank and sparse representation (LRASR), which
employed a dictionary construction strategy and a sparsity-inducing regularization term
to reconstruct the background matrix. To preserve the local geometric structure and
spatial relationships of the background, the graph and total variation regularized low-rank
representation (GTVLRR) [35] method was introduced for HSI anomaly detection. Fu et al. [36]
used convolutional neural network (CNN) denoisers [37] as priors for the coefficients of
the dictionary.

The aforementioned matrix-based anomaly detection methods tend to destroy the
spatial structure of HSI and fail to effectively exploit the inherent spatial information [38,39].
In recent years, tensor-based methods have emerged as a promising approach to HSI
anomaly detection, allowing the decomposition of HSI data into low-rank and sparse
components. Sun et al. [23] used Tucker decomposition to obtain the low-rank back-
ground, using an unmixing method to extract the spectral features of the anomaly. Li et al. [40]
embedded priors into the dimensions of a tensor with different regularizations.
Song et al. [41] proposed a dictionary construction strategy based on Tucker decompo-
sition, which improved the inclusion of spectral segment information in the dictionary.
Shang et al. [42] found a new prior that describes the sparsity of the core tensor of a
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gradient map (GCS) under Tucker decomposition. However, Tucker decomposition has
inherent limitations in terms of rank. To address this issue, Wang et al. [43] extended the
concept of LRR from matrix to tensor, taking into account the three-dimensional structure
of HSI. Sun et al. [44] represented the background tensor as the product of a transformed
tensor and a low-rank matrix. However, these methods pay primary attention to the low-
rank of the spectral dimension of the tensor, neglecting the low-rank information in the
spatial dimensions. The dictionary, which maps the HSI into multiple linear subspaces,
plays a crucial role in the reconstruction of the background component. To achieve an
effective separation of background and anomalies, the dictionary should primarily contain
background information. Although some methods choose the original data themselves as
the dictionary, they may still contain anomalies that can adversely affect the background
reconstruction process.

To address these issues, we propose a multi-dimensional low-rank (MDLR) strategy
for HSI anomaly detection. Unlike the existing tensor-based methods that construct one
background tensor, our approach constructs three background tensors, two capturing the
spatial dimension and one representing the spectral dimension. Using the tensor singular
value decomposition (t-SVD) technique, we obtain the f-diagonal tensor S, characterizing
the background. To enforce low-rankness in the background tensor, we apply the weighted
Schatten p-norm minimization (WSNM) to the slices of S. Finally, the three background
tensors are merged into a single background tensor. In addition, anomalies in the HSI tend
to occur at consistent spatial locations across all spectral bands and exhibit a slight spectral
density. To capture this property, we impose a joint spectral-spatial sparsity on the anomaly
tensor using the Lr; norm. The main contributions of this work can be summarized
as follows:

1.  Low-rankness along three dimensions in the frequency domain is exploited. Through
the low-rank property analysis of the tensor along different dimensions, we found that
it is not sufficient to measure the low-rankness along only one dimension. Therefore,
multi-dimensional low-rankness is embedded into different tensors with t-SVD along
different slices. These tensors are then fused to form a background tensor that captures
the low-rank characteristics across all three dimensions and enables the MDLR method
to effectively explore more comprehensive background information.

2. To enforce low-rank in the background tensor, WSNM is applied to the frontal slices
of the f-diagonal tensor, which enhances the preservation of the low-rank structure in
the background tensor.

The rest of this paper is organized as follows. In Section 2, notations and preliminaries
are introduced. The proposed multidimensional low-rank model is presented in detail in
Section 3. The experimental results are demonstrated in Section 4. The conclusion is given
in Section 5.

2. Notations and Preliminaries

In this section, we introduce the notations and preliminaries used in this paper. The
column vectors are represented by lowercase letters, e.g., x. The matrix is represented by
bold capital letters, e.g., X. An HSI with w rows, h columns, and d spectral bands can be
naturally represented as a third-order tensor, ¥ € R¥*"*?_ The discrete Fourier transform
(DFT) of X along the spectral dimension can be written as X' = fft(X, [], 3). The inverse
DFT of X is written as X'= ifft(X, [], 3). X'* represents the conjugate transpose of X'. X' () is
the i-th frontal slice of X. The block circulant matrix beirc(N) of N € R?*"*4 is defined
as follows:

NO @D A A
NO N NG A
beire(N) =
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The block vectorization operation bvec(-) of A/ and its inverse operation bvfold(-) are
denoted as:

ND
N®@

bvec(N) = . , bvfold(bvec(N)) = N.
N@

Definition 1 (Tensor product). The product of three-order tensor N' € R™M*"2*"3 gn
M e R™2*Mx13 s A ¢ RM>"X"3 defined as follows:

A =N x M = bofold(bcirc(N) * bvec(M)). (3)

Definition 2 (Slices of Tensor). There are three types of slices in a tensor: that is, horizontal slices
Xj.., lateral slices X.j., and frontal slices X..y.

Definition 3 (Identity Tensor). The identity tensor Te R™*"2*"s js defined by
Z(:,:,1) =eye(ny,ny),Z(:,:,2: n3) =0, where eye (n1,ny) is an identity matrix (n; X ny).

Definition 4 (Conjugate Transpose). The conjugate transpose of a tensor X € R™M*"2>"3 s
denoted as X* with .
T (RN 21,2, ns. (4)

Definition 5 (Orthogonal Tensor). The orthogonal tensor D satisfies D* «+ D =D x D* = 1.

Definition 6 (t-SVD). The singular value decomposition of a tensor X € RY>*"*4 can be decom-
posed into the product of three three-order tensors.

X =UxSxV*¥ ®)

where U € RV*W>4 gnd v € R*"<d gre orthogonal tensors and S € RY*"*4 is an f-diagonal
tensor. The procedure of t-SVD is described in Algorithm 1.

Definition 7 (Tensor Tubal Rank). For a tensor X € R™>*"2%X"3 wijth t-SVD X = U x S x V¥,
its tubal rank is the number of non-zero tubes of S:

rank;(X') = #{k : S(k,k,:) # 0}. (6)

Definition 8 (Tensor Nuclear Norm(TNN)). The TNN of a tensor X € R"*"2>"3 s the sum of
singular values of all front slices of X , that is,

ns R
1= Y 18G). )
k=1

3. Proposed Method

An illustration of the proposed model is shown in Figure 1. Figure 1a illustrates the
different dimension low-rank property of the HSI in the frequency domain. To exploit the
low-rankness along different dimensions, we combine these three different dimensional
tensors to form the background tensor and apply tensor low-rank and sparse decomposition
to extract the sparse anomaly object from the low-rank background. Final detection map M

can be obtained via the sparse S by computing \/Y4_, |S(i, j, k) |2. We will introduce each

part in detail in the following subsections.
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Figure 1. Illustration of the proposed model for HSI anomaly detection. (a) Multi-dimensional
low-rank in frequency domain. (b) Tensor low-rank and sparse decomposition. (c¢) Detection map.

3.1. Tensor Low-Rank Linear Representation

LRR uses a dictionary to explore low-rank linear representations of HSI, but the matrix-
based approach breaks the tensor structure inherent in HSI. To overcome this limitation,
tensor LRR is proposed, which incorporates the t-product to preserve the spatial structure
of the tensor. Given a tensor )) € R¥*"*4 it can be decomposed using the tensor LRR
formulation as follows:

V=AxX+S, (8)

where X is the low-rank background tensor, S is the sparse anomaly tensor, and A is the
dictionary. Equation (8) aims to construct the low-rank and sparse components exactly and
efficiently by dictionary A from HSI data.

I}}ig rank;(X) + Asparse(S)

/!

st YV=AxX+S, )

where rank; (") denotes the tensor tubal rank function [45], A is a regularization parameter
of the S, sparse(S) is the sparse norm.

3.2. Weighted Schatten p-Norm Minimization

The problem of determining the rank;(&X’) is known to be NP-hard. To approximate
the rank of a matrix, a commonly used method is nuclear norm minimization (NNM),
which calculates the sum of the singular values of the matrix X'. NNM is typically solved
using a singular value thresholding algorithm. However, to obtain a more accurate low-
rank approximation, other methods [46-48] have been developed. These methods treat
different singular values individually rather than uniformly as in NNM, resulting in
improved performance. In WSNM, each singular value is assigned a specific weight,
and the optimization problem aims to minimize the weighted Schatten p-norm of the
matrix X € R,

X

min{n,m} p
w,Sy = ( Z wpf) ’ (10)
i=1
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where 0; is the i-th singular value of X, w; is the weight of 0;, w=[w1,. .., W (4m)] i @
non-negative vector to constrain the single value of X. The weighted Schatten p norm
minimization problem can be effectively solved by the generalized soft thresholds. Given p
and w;, the specific threshold can be obtained by:

-

1 r—

GST(wi, p) = (2wi(1 = p))*7 +wip(2w;(1 —p))*7. (11)

The main procedures of this approach are shown in Algorithm 1. In this work, the
low-rank problem of HSI is solved in tensor form and the nuclear norm of the matrix is
converted to the tensor nuclear norm (TNN). The WSNM is applied to the forward slices
of S.

3.3. Mutil-Dimensional Tensor Low-Rank Norm

According to the tensor LRR, tensor X" can be expressed as the linear combination of
the tensor dictionary A. The choice of the dictionary plays a crucial role in the background
tensor reconstruction. Conventional dictionary construction methods are often sensitive
to noise and require separate construction for different datasets, making the anomaly
detection process complicated. When the dictionary is an identity tensor, the tensor LRR
is converted to tensor robust principal component analysis (TRPCA) [49]. By combining
WSNM and TRPCA, we have the following:

w,Sp +)‘||S

i X
min [ X] F1

st. Y=X+8. (12)

In the field of HSI unmixing, a latent low-rank representation theory (LatLRR) has
been proposed [50]. LatLRR treats itself as a dictionary and learns its own rows and
columns separately to obtain two different background representations while incorporating
low-rank constraints. Motivated by this concept, we aim to explore the background tensor
and reorganize it from different directions of slices. To achieve this, we introduce three
background tensors: Xy, ), Xy € RY xhxd We run WSNM separately on these three
tensors along different dimensional frontal slices. The proposed tensor-based method,
called multi-dimensional low-rank (MDLR), can be expressed as follows:

HXHW!SP,* = .MWHXWHW,SP + ﬂhH‘XhHw,Sp + VdHXd| w,Spr (13)

where 0 <y, <1,0 <y, <1,and py =1 — py — yj, balance the contributions of Xy, X),
and A&;. We call the reconstruction of the background tensor &, the reconstruction of the
background from the w dimension, A}, the reconstruction of the background from the &
dimension, X; the reconstruction of the background from the d dimension. Finally, our
model formulation can be written as:

i X AllS
r}yl}? || Hmsp,*+ “ ”F,l

st. Y=X+S. (14)

3.4. Optimization Procedure

By introducing auxiliary Xy, &}, X, Equation (12) can be written as the following
equivalent problem:

i gl ollas, + 0l X s, + Hall Xils, + NS e,

SEX =Xy, X=X, X=X, Y =X +8. (15)
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The Lagrange multipliers £, Q; 3 are introduced and we use the ADMM to solve the
augmented Lagrange function. The optimization problem above is written as follows:

Xw,g%{g{g#wIIXwI w,5, T Wl Xnllw,s, + Hall Xallw,s, + AIS|Ea
FEIX = ot SR+ 5K - X+ 22
- ar Lty -x-s+ L (16)
(1) Update ¥
X :arg;ning||2(—)(w+Q;|%:+;||X-Xh—|— %H]z:
+%\|X—Xd+%ll%+g“y—X—S-i-%H}z:- (17)

The closed-form solution of & can be obtained by taking the derivative of the above
objective function and setting it to zero, as follows:

£ 2. Q;
X:(y—S—i-;"f'Xw"i-Xh'f'Xd_z%)/él (18)
i=1
(2) Update X},
B , o Q1,2
Xw—argrr;(m Hw||Xw|w,sp+§HX—Xw+7”F (19)

(3) Update &),

. M Q3
Ay = argmin || A, wsy T —||X =&+ 7”12'? (20)
Xh 2 a
(4) Update &}
_ « Q
Xy =argmin gl Xglluos, + 511X — X+ = |13, 1)
D 2 &

The subproblem &, ; ; can be solved using generalized soft-thresholding as shown in
Algorithm 1. Before applying the Algorithm 1, X, should be converted to X;, € R¥*"*®,
and then it must be reshaped again as &, € RY*"*4 after Algorithm 1. Similarly, A},
should be converted to Xy, € R¥*?*! before Algorithm 1 and back to Aj, € RW*/*d
after Algorithm 1.

(5) UpdateS
. o &
8:argn’gnAHSHRl+§||y—X—S+EH%. (22)
Then, we have the following closed solution:

M,k
MG M, k), A< [IMCs 0)lr
S(k) =4 0, otherwise

7

(23)

where/\/l:yf)(+§.

(6) Update Lagrange multiplier £ and Q;,3
E=E+ax(Y—-X-38)
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legl+‘x*(X_Xw)
D =D +ax(X -4
Q3 = Qs +ax (X —A). (24)

The overall process of the proposed method is concluded in Algorithm 2. When the
optimization process is complete, the anomaly detection map M of HSI data can obtain by
the sparse anomaly tensor S as follows:

d

M(i, j) = | Y IS, j, k)2 (25)

k=1

Due to the WSNM regularization, the solution process of the problem in Equations (19)-(21)
is actually not a convex optimization problem. Nevertheless, Xie et al. [51] prove that
WSNM is not convex, and if the weights satisfy 0 < w; < wy < ...w;, at least one
accumulation point satisfies (26). A convergence analysis can be found in Theorem 3
of WSNM.

lim [ Xy — lF + | Sk1 — Skl (26)
k—o0

Algorithm 1 WSNM based on t-SVD.
Input: X,Q,p,a, T
LP=X+2
2: P = fft(P, [], )
3:fori=0,1,.. ,[d

1]

4 U(0),8(,41), V(5 0)] = SVD(P(,41));

5. S= S( ,0);

6: forj=1 size(diag(g))

7wy =TV2((H)Vwh)/ (diag(S(j)P +17);
get t by calculating Equation (11);

8: if |diag(S(j))| < t, then

9: diag(8(j)) =0;

10: else

11: k=0, = |diag(S(j))]

12: fork=0,1,. ]do

13 i1 = |diag($(7)| — w;p(u)P

14: k=k+1;

15: end

16 diag(8(j)) =sgn(diag(S(j) i

17: Snew(:, 1, 1) =diag(S(f));

18: end

19: end

20: end

21: fori = [Zf] +1,..z

22: Z](, ;1) = conj(U(:,:,z —i+2))

23: ‘? ew( bl ) = COD]( new( ))

24 V(i) = conj(V(;, : z+2))

25: U = ifft(U1, [],3), Spew = iftt(S‘mw, (,3),V =ifft(V,[],3)

26: end

Output: Z = U * Syeyp *x V*;
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Algorithm 2 MDLR for HSI anomaly detection.

Input: HSI tensor Y, py 4, A &
Initializtion: X, S, Xw,h,d =0, Q1’2’3,5 =0,i=0.
If i<maxiter or satisfy Equation (11).
Update & by Equation (18);
Update Xy, 4 by algorithm (2);
Update S by Equation (23);
Update £ and Q1 3 by Equation (24);
End
compute the anomaly detection map M by Equation (25);
Output: anomaly detection map M.

3.5. Computational Complexity

Given a tensor X € RY*"*4 the computational complexity of our model mainly
consists of the following two parts: (1) solving the subproblem of Equations (19)-(21)
depends on the t-SVD, and the complexity is approximately O(h3d + d*h + h*w); (2) for
Equation (22), O(wh?d + h(w + h)dlog(d) is required. Therefore, the total main cost of
the proposed model is O(h3d + d*h + h®w + wh?d + h(w + d)dlog(d)). The computational
complexity is studied by comparing their running time on San Diego data as shown
in Table 1.

Table 1. Running time of all compared algorithms on San Diego.

HSI Data

RX

LSMAD LRASR GTVLRR DeCNN-AD PTA PCA-TLRSR MDLR

San Diego

2.054

38.46 56.394 214.343 256.589 34.344 8.312 132.46

4. Experimental Results

In this section, we verify the effectiveness of our method on an extensive dataset
compared with the SOTA methods. Standard metrics, such as the 2D receiver operating
characteristic (ROC) curve [52] and the area under the curve (AUC) metric [53], are used to
quantify the results quantitatively. The ROC curve plots the probability of detection (PD)
against the false alarm rate (FAR) for all possible thresholds. The AUC is calculated by
integrating the area under the ROC curve. To effectively evaluate the detection performance,
3D ROCs [54] generated from 2D ROC and separability maps are also used for quantitative
comparison. All the experimental algorithms are performed in MATLAB 2020a on a
computer with Core i9-11900KF 3.50GHz CPU and 32-GB of RAM in Windows 11.

4.1. HSI Datasets

San Diego: The dataset is part of a collection captured by the AVIRIS sensor [55],
which measures 100 x 100 x 189 and consists mainly of roofs, shadows, and grass, of
which aircrafts are considered anomalies to be detected.

HYDICE-Urban: The dataset is collected by a hyperspectral digital imagery collection
experiment (HYDICE) sensor [56] for an urban area, including one vegetation area, one
built-up area, and several built-up areas of roads and some vehicles. Its spatial resolution is
1 meter. The size of the crop plus the water vapor removal is 80 x 100 x 175. The 21 pixels
occupied by vehicles and roofs of different sizes are used as anomalies.

Airport 1-4: The dataset consists of four images of 100 by 100 pixels in 205 bands taken
by the airborne visible/infrared imaging spectrometer (AVIRIS) sensor [57]. As above, they
include surface vegetation, roads, and buildings as background. Aircraft flying at different
altitudes are treated as anomalies.

Urban 1-4: This dataset of four urban scenes is obtained from a class of sensors as
with the airport dataset, with pixels of 100 x 100 and a band number between 190 and 210.
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4.2. Compared Methods and Parameter Setting

In this section, we briefly introduce the compared anomaly detection methods and their
parameter settings. The parameter values of the compared methods in our experiments are
tuned according to the corresponding references.

¢ RX[19]: The classical anomaly detection algorithm calculates the Mahalanobis dis-
tance between the pixel under test and the background pixels. The parameter A of RX
is set to 1/min(w,h).

¢ LSMAD [29]: A method based on low-rank sparse matrix decomposition (LRaSAM)
with Mahalanobis distance. We set r =3, k = 0.8.

e LRASR [34]: Learn low-rank linear representation (LRR) of backgrounds by con-
structing dictionaries. The parameters A and § of LRASR are set to 0.1 and 0.1
in LRASR.

*  GTVLRR [35]: Adding total variation (TV) and graph regularization to the restructur-
ing of the background in the LRR-based method, we set A = 0.5, 8 = 0.2, and w = 0.05
according to the GTVLRR.

e  PTA [40]: According to the properties of the spatial and spectral dimensions of the
HSI, PTA adds TV into spatial dimensions and low-rank into spectral dimensions. The
parameters a, T, of PTA are set to 1, 1, and 0.01 separately.

*  DeCNN-AD [36]: Using convolutional neural network (CNN)-based denoisers as the
prior for the dictionary representation coefficients, the cluster number of DeCNN-AD
is set to 8 and A, B are set to 0.01.

e PCA-TLRSR [43]: The first method extends LRR to tensor LRR for HSI anomaly
detection. The reduced dimensions of PCA are tuned according to PCA-TLRSR and
parameter A is set to 0.4.

4.3. Detection Performance
4.3.1. San Diego

The false-color image, ground-truth map, and detection maps of all compared methods
are shown in Figure 2. In the San Diego detection maps, methods such as RX, LSMAD,
and LRASR fail to accurately detect the three aircrafts in the upper right corner of the
HSI data. DeCNN-AD and GTVLRR have difficulty clearly identifying the outline of the
aircrafts. PTA can observe the aircrafts, but it contains some background information, such
as road buildings. PCA-TLRSR obtains a relatively good performance by recovering the
outline of the aircrafts with less background information. In addition, our method can
also capture more detailed features of the aircrafts. Figure 3 shows the anomaly detection
evaluation metrics of different anomaly detectors for the San Diego dataset, including
3D ROC curves, 2D ROC curves, and separability maps. The proposed method has a
slightly higher detection probability than PCA-TLRSR in 3D and 2D ROC curves. The
gap between the background box and the anomaly box shows the degree of separation
between background and anomaly on the separability maps. The separability maps on
the San Diego dataset are shown in Figure 3. The proposed MDLR obtains a larger gap
between the background and the anomaly box over all the other methods compared, which
indicates that it has a better ability to separate the background and anomaly. The AUC
values in the second row of Table 2 provide further evidence that our method achieves the
highest performance on the San Diego dataset.

4.3.2. HYDICE-Ubran

The false-color image, ground-truth map, and detection maps of the competitive
methods are visually shown in Figure 4. In the detection maps of all compared methods
on the HYDICE-Urban dataset, RX and LSMAD have difficulty in clearly recovering the
anomaly information. PTA and PCA-TLRSR can observe the anomaly information, but they
also contain a significant amount of background information, such as roads. DeCNN-AD,
LRASR, GTVLRR, and our proposed method can clearly identify the anomaly information.
However, both LRASR and GTVLRR struggle to detect the anomaly in the lower left corner
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of the image. Our proposed method shows an improvement in terms of visual quality and
achieves a higher AUC value compared to other methods, as shown in Table 2.

Table 2. AUC values of all compared algorithms on different datasets.

HSI Datasets RX LSMAD LRASR GTVLRR DeCNN-AD PTA PCA-TLRSR MDLR
San Diego 0.8885 0.9773 0.9853 0.9795 0.9901 0.9946 0.9957 0.9976
HYDICE-Urban 0.9856 0.9901 0.9918 0.9856 0.9935 0.9953 0.9941 0.9975
Airport-1 0.8220 0.8334 0.7854 0.9013 0.8503 0.9207 0.9478 0.9538
Airport-2 0.8403 0.9189 0.8657 0.8695 0.9204 0.9428 0.9697 0.9738
Airport-3 0.9228 0.9401 0.9408 0.9295 0.9434 0.9355 0.9574 0.9590
Airport-4 0.9526 0.9862 0.9723 0.9875 0.9897 0.9875 0.9943 0.9953
Urban-1 0.9907 0.9829 0.9797 0.9605 0.9820 0.9826 0.9902 0.9835
Urban-2 0.9946 0.9836 0.9628 0.8539 0.9973 0.9970 0.9941 0.9980
Urban-3 0.9513 0.9636 0.9415 0.9385 0.9394 0.9578 0.9833 0.9812
Urban-4 0.9887 0.9809 0.9575 0.9205 0.9868 0.9907 0.9869 0.9966

() © h) 0 )

Figure 2. Detection maps obtained by all compared methods on San Diego dataset. (a) HSI. (b) RX.
(c) LSMAD. (d) LRASR. (e) GTVLRR. (f) Ground-truth. (g) DeCNN-AD. (h) PTA. (i) PCA-TLRSR.

(j) Ours.
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Figure 3. Anomaly detection evaluation metrics obtained by different methods on the San Diego
dataset. (a) Three-dimensional (3D) ROC curves, (b) 2D ROC curves, (c) separability map.

4.3.3. Airport 1-4

The AUC values of four airport datasets are provided in Table 2. Our method has
achieved the highest values. The false-color images, ground-truth maps, and detection
maps of four airport dates are demonstrated in Figure 5. In the detection maps of Airport-1,
RX, LSMAD, LRASR, and DeCNN-AD datasets, it is difficult to distinguish the aircrafts.
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HSI

Ground-truth

GTVLRR, PTA, PCA-TLRSR, and ours can distinguish the aircraft in the middle, but they
contain a lot of roof information and the aircraft in the upper left corner is not visible.
In the detection maps of Airport-2, our method can clearly observe the middle plane of
the figure with less background information compared to other methods, but does not
fully preserve its edge information due to the effect of some mixed pixels. Compared to
the ground truth of Airport-3, the detection maps of all comparison methods can barely
detect the outline of an aircraft. This indicates that the existing methods are not sensitive to
detecting dense small targets and are easily contaminated by background information. In
the detection maps of the Airport-4 dataset, our detection result shows a clear outline of
the aircraft compared to other methods. There is no interference from road information
compared to LSMAD, LRASR, DeCNN-AD, GTVLRR, PTA, and PCA-TLRSR. The first
row of Figures 6 and 7 show the 2D and 3D ROC curves of different anomaly detectors for
Airport 1-4. They demonstrate that our method produces detection maps with relatively
little interference from background information. The separability maps on the Airport
dataset are shown in the first row of Figure 8. The compared methods fail to effectively
separate the background boxes and anomaly boxes, while the proposed MDLR achieves a

bigger gap.

Figure 4. Detection maps on HYDICE-Urban dataset obtained by all compared methods. (a) HSI.
(b) RX. (c) LSMAD. (d) LRASR. (e) GTVLRR. (f) Ground-truth. (g) DeCNN-AD. (h) PTA. (i) PCA-
TLRSR. (j) Ours.

RX LSMAD LRASR GTVLRR DeCNN-AD PTA PCA-TLRSR Ours

Figure 5. Detection maps obtained by all compared methods on Airport-1 (first line), Airport-2
(second line), Airport-3 (third line), and Airport-4 (forth line) datasets.
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Figure 6. Two-dimensional (2D) ROC curves obtained by all compared methods. (a) Airport-1,
(b) Airport-2, (c) Airport-3, (d) Airport-4, (e) Urban-1, (f) Urban-2, (g) Urban-3, (h) Urban-4.
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Figure 7. Three-dimensional (3D) ROC curves obtained by all compared methods. (a) Airport-1,
(b) Airport-2, (c) Airport-3, (d) Airport-4, (e) Urban-1, (f) Urban-2, (g) Urban-3, (h) Urban-4.

4.3.4. Urban 1-4

The AUC values in Table 2 are optimal for all datasets except Urban-1 and Urban-3.
For the Urban-1 dataset, from the detection maps shown in Figure 9 we can observe clear
lines running through the maps in LSMAD, LRASR, GTVLRR, DeCNN-AD, PTA, and our
method. However, the detection map of PCA-TLRSR is difficult to interpret. PCA-TLRSR
uses PCA for dimensionality reduction, which aims to reduce noise in the image. The
presence of noise in a particular image may have hindered the achievement of optimal
results. In the false-color image of Urban-3, there are many large and obvious targets in
the background. In the third row of Figure 9, the detection maps of RX and LSMAD barely
show the anomaly targets. Other detection algorithms can detect the anomaly targets but
retain most of the background contour information. In the detection maps of Urban-2
and Urban-4, compared to the detection maps obtained by other algorithms and the ROC
curves in the second row of Figures 6 and 7 obtained by other methods, our method obtains
a clearer and more accurate observation of the anomalies. In the separability maps of
the Urban dataset in Figure 8, it can be seen that the background boxes and the anomaly
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boxes of proposed MDLR are obviously separated, which also proves that our method can
achieve effective separation of background and anomaly.

Gl had

(e) ® (€] (b

Figure 8. Separability maps obtained by all compared methods. (a) Airport-1, (b) Airport-2,
(c) Airport-3, (d) Airport-4, (e) Urban-1, (f) Urban-2, (g) Urban-3, (h) Urban-4.

HSI Ground-truth RX LSMAD LRASR GTVLRR DeCNN-AD PTA PCA-TLRSR Ours

A

Figure 9. Detection maps obtained by all compared methods on Urban-1 (first line), Urban-2 (second
line), Urban-3 (third line), and Urban-4 (forth line) datasets.

4.4. Discussion of Multi-Dimensional Low-Rank

In this section, we analyze the necessity of reconstructing the background with multi-
dimensional low-rank.

The discussion on single-dimensional and three-dimensional low-rank: The results
presented in Table 3 show that reconstructing the background along a multi-dimensional
(w, h, d dimension) gives significantly higher AUC values compared to reconstructing
along a single-dimensional (d dimension). This improvement is evident across all datasets,
with notable increases in AUC values for the HYDICE-Urban and Airport-1 HSI datasets.
Specifically, the AUC values for anomaly detection increased by 4 percent and 6 percent
for HYDICE-Urban and Airport-1 datasets, respectively, compared to the one-dimensional
reconstruction. These improvements demonstrate the benefit of using multi-dimensional
information to effectively separate the background from anomalies in the HSI data. By
considering the data from multiple dimensions simultaneously, the proposed method is
able to capture more comprehensive and discriminative information about the background,
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leading to an improved detection performance. This highlights that multi-dimensional has
an advantage over single-dimensional in separating background and anomaly.

Table 3. AUC values of single-dimensional and multi-dimensional low-rank.

HSI dataset San Diego Airport-1 Airport-2 Airport-3 Airport-4
S-dimensional 0.9966 0.8957 0.9655 0.9345 0.9921
M-dimensional 0.9976 0.9538 0.9738 0.9590 0.9953

HSI dataset HYDIE-Urban Urban-1 Urban-2 Urban-3 Urban-4
S-dimensional 0.9546 0.9619 0.9928 0.9527 0.9966
M-dimensional 0.9975 0.9835 0.9980 0.9812 0.9966

The discussion on two-dimensional and three-dimensional low-rank: From the
results shown in Figure 10, it can be seen that the AUC values obtained by reconstructing
the background with different combinations of two dimensions are different. In the case
of Airport-1 in Figure 10ab, reconstructing the background with X; and &% achieves
higher AUC values compared to reconstructing with A;; and &j,. On the other hand, for
Airport-3 in Figure 10c,d, reconstructing the background with A}, and &}, yields higher
AUC values compared to reconstructing with &; and &j,. These results indicate that there
is no fixed combination of two dimensions that consistently gives the best performance for
background tensor reconstruction. The optimal combination may vary depending on the
specific dataset and the characteristics of the HSI data. Therefore, it is important to explore
and analyze the relationship between different dimensional background tensors to achieve
the best reconstruction results.
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Figure 10. AUC value bars obtained from coefficients y via the reconstruction of the background
with two different dimensions. (a) Airport-1: py and py, (b) Airport-1: uy and py, () Airport-3:
Hw and py, (d) Airport-3: py, and .

In the analysis of the reconstruction of the background along two different dimensions
of the HSI, the focus is on investigating the relationship between these dimensions. For this
purpose, the experimental datasets Airport-1 and Airport-3 are selected. Two dimensions
of the data are chosen to reconstruct the background, resulting in four different comparison
experiments: (a) Reconstruction using &; and &), from Airport-1; (b) Reconstruction
using Xy and A&y from Airport-1; (c) Reconstruction using &X; and &}, from Airport-3;
(d) Reconstruction using &}, and A&}, from Airport-3. The aim of these experiments is to
investigate the performance and effectiveness of background reconstruction when using
different combinations of two dimensions.

Effects of coefficient  in two reconstructed background tensors: This study in-
vestigates the relationship between the reconstructed background tensors from different
dimensions, which aims to better understand their impact on anomaly detection per-
formance. The coefficients between two dimensions are varied in the range [0:0. 1:1] so
that the results can be observed when each dimension acts alone and when two dimen-
sions work together. The AUC values of the comparison experiments are visualized in
Figure 10. In Figure 10a, the individual reconstruction of &} in Airport-1 achieves an accu-
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racy of 0.8922, while the individual reconstruction of &}, only achieves an accuracy of 0.8602.
However, when &; and &), are combined in the reconstruction, they achieve a maximum
AUC value of 0.8947. Similarly, in Figure 10b, the individual reconstruction of & in Airport-
1 gives an AUC of 0.8922, while the individual reconstruction of &y, gives an AUC of 0.9487.
However, their combination leads to a maximum AUC value of 0.9518. The same trend
can be seen in Figure 10c,d for Airport-3. From Figure 10a,c, it is clear that both Airport-1
and Airport-3 benefit from the background reconstruction using X; and A},. Interestingly,
the coefficients of the reconstructed background from the same dimensions differ between
the two datasets, indicating that the relationship between the reconstructed background
tensors can vary for different datasets. The final AUC values in Table 2 also support the
effectiveness of reconstructing the background along multiple dimensions. Although the
AUC values of Airport-1 and Airport-3 in Figure 10 are slightly lower, they still demonstrate
the validity of the multi-dimensional reconstruction approach in improving the anomaly
detection performance.

4.5. Parameter Tuning

In this section, we focus on analyzing the effect of the values of A and p on the
AUC results.

(1) Effects of parameter A: The influence of parameter A on model performance was
analysed on four HSI datasets. The parameter A was selected from the set [0.001, 0.005,
0.01, 0.05, 0.1, 1, 2] while keeping the other parameters fixed. AUC value curves with
respect to A on four datasets are shown in Figure 11a. The AUC values of the San Diego,
HYIDE-Urban and Airport-4 datasets reach their maximum value when A is equal to 1.
Airport-1 and Airport-2 datasets both reach their maximum value when A is 2. Airport-3
has a downward trend when A is 1. For the experiment as a whole, when A is 0.1 or 1, the
AUC values are relatively stable. So for San Diego, HYDICE-Urban, and Airport-4 datasets,
Aissetto 1. Ais set to 0.1 on Airport 1-3.

(2) Effects of parameter p: The AUC value curves for the parameter p are shown
in Figure 11b. The parameter p has been chosen in the range [0.1, 1]. As the value of p
increases, the AUC values on different HSI datasets start to improve. The growing trend of
the AUC values for San Diego, HYDICE-Urban, Airport-2, Airport-3, and Airport-4 datasets
tends to level off when p reaches 0.6. However, the AUC value of Airport-1 continues to
increase as p increases. Based on the AUC value curves, the following choices of p are
made. For the San Diego, HYDICE-Urban, Airport-1, and Airport-4 datasets, p is set to 1.
For the Airport-2 dataset, p is set to 0.9. For the Airport-3 dataset, p is set to 0.6.
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Figure 11. The effect of parameter tuning on AUC values. (a) AUC value curves with respect to A on
four datasets; (b) AUC value curves with respect to p on three datasets.

5. Conclusions

In this paper, a novel multi-dimensional low-rank (MDLR) method is proposed for HSI
anomaly detection. The MDLR method exploits the low-rank properties of HSI from three
dimensions, namely the spatial and spectral dimensions. Multi-dimensional background
tensors are reconstructed. Weighted Schatten p-norm minimization is used to enforce the
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low-rank constraints. In addition, the Lr ; norm is used to penalize the anomaly tensor to
promote joint spectral-spatial sparsity. The optimization problem is solved using ADMM.
Experimental results on real HSI datasets demonstrate its effectiveness compared with
SOTA in terms of anomaly detection. However, one of the major limitations of MDLR is the
computational complexity introduced by the t-SVD operation, especially when dealing with
large spectral bands. In future work, we would like to try to incorporate dimensionality
reduction preprocessing techniques, which is a promising direction to take in order to
address this computational challenge.
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