
Citation: Zhang, G.; Zhou, R.; Zheng,

Y.; Li, B. Binary Noise Guidance

Learning for Remote Sensing

Image-to-Image Translation. Remote

Sens. 2024, 16, 65. https://doi.org/

10.3390/rs16010065

Academic Editor: Farid Melgani

Received: 27 September 2023

Revised: 17 December 2023

Accepted: 19 December 2023

Published: 23 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

Binary Noise Guidance Learning for Remote Sensing
Image-to-Image Translation
Guoqing Zhang 1,2 , Ruixin Zhou 1, Yuhui Zheng 3 and Baozhu Li 4,*

1 School of Computer Science, Nanjing University of Information Science and Technology,
Nanjing 210044, China; guoqingzhang@nuist.edu.cn (G.Z.); roseenjoe@gmail.com (R.Z.)

2 Jiangsu Key Laboratory of Image and Video Understanding for Social Safety, Nanjing University of Science
and Technology, Nanjing 210094, China

3 The State Key Laboratory of Tibetan Intelligent Information Processing and Application,
Qinghai Normal University, Xining 810008, China; zhengyh@vip.126.com

4 Internet of Things & Smart City Innovation Platform, Zhuhai Fudan Innovation Institute,
Zhuhai 519031, China

* Correspondence: baozhuli@fudan-zhuhai.org.cn

Abstract: Image-to-image translation (I2IT) is an important visual task that aims to learn a mapping
of images from one domain to another while preserving the representation of the content. The
phenomenon known as mode collapse makes this task challenging. Most existing methods usually
learn the relationship between the data and latent distributions to train more robust latent models.
However, these methods often ignore the structural information among latent variables, leading
to patterns in the data being obscured during the process. In addition, the inflexibility of data
modes caused by ignoring the latent mapping of two domains is also one of the factors affecting
the performance of existing methods. To make the data schema stable, this paper develops a novel
binary noise guidance learning (BnGLGAN) framework for image translation to solve these problems.
Specifically, to eliminate uncertainty of domain distribution, a noise prior inference learning (NPIL)
module is designed to infer an estimated distribution from a certain domain. In addition, to improve
the authenticity of reconstructed images, a distribution-guided noise reconstruction learning (DgNRL)
module is introduced to reconstruct the noise from the source domain, which can provide source
semantic information to guide the GAN’s generation. Extensive experiments fully prove the efficiency
of our proposed framework and its advantages over comparable methods.

Keywords: image-to-image translation; domain translation; remote sensing

1. Introduction

Image-to-image translation (I2IT) [1] is proposed to visually transform images of
one style into another and has attracted a great deal of attention due to its extensive
application in the fields of style transfer [2], image colorization [3], remote sensing [4–6],
target detection [7], data representation [8,9], underwater image restoration [10], medical
image processing [11,12], haze removal [13] and noise removal [14], etc. Following several
years of development, researchers have found that generative adversarial networks [15]
and their variant models are effective solutions for most image translation tasks and obtain
very impressive results in both supervised and unsupervised [16,17] settings.

One of the most authoritative and widely used GAN-based methods is pix2pix [1],
which pioneered training with paired datasets and achieves more stable results than
unpaired data methods in many I2IT translation tasks. It trains a generator G to translate
an input image x into an output image y conditioned on the target domain label c. In
addition, the discriminator D aims to differentiate a target real image y and the generated
image G(x). There are also many feature extraction methods based on GAN. For example,
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MBUNet [18] learned the robustness of a clothing change model by exploiting clothing-
independent cues, TCCL [19] proposed a novel camera contrast learning framework for
unsupervised image processing, GRACL [20] introduced a novel Global Relation-Aware
Contrast Learning framework to capture discriminative clues, and IER [21] proposed an
Illumination Estimation and Restoring framework to estimate the illumination scale of
testing images.

However, GAN-based methods still suffer from multiple problems. Firstly, they
typically produce translated images with randomly sampled latent code, which contains
uncertain domain distributions and often cause mode collapse. As a result, the generator
may not generate accurate target images. In addition, they adopt the cycle-consistency
constraint to force the translated image to maintain texture information similar to the
original image so as to result in the distortion of generated images, which limits the
flexibility of image translation. For example, in the task translating from day to night,
as shown in Figure 1, the cycle-consistency assumption in DualGAN [22] will cause the
generated image to retain too much texture information and lead to distortion of the
generated images.

Figure 1. Visual results of day → night translation. DualGAN is trained with cycle-consistency loss.
It can be seen that the proposed BnGLGAN successfully simulates night scenes while preserving
textures in the input, e.g., see differences over the light areas between results and ground truth (GT).
In contrast, the results of DualGAN contain less textures.

In addition, diffusion models (DMs) proposed in recent years have also achieved
advanced results in dealing with mode collapse. For example, MDGAN [23] combined
pattern regularization and diffusion steps to direct the network to produce high-quality
images. VEEGAN [24] applied reconstruction losses in latent domains rather than data
domains to reduce image quality degradation. MGGAN [25] induced a generator to learn
the complete pattern of data using a guidance network on the existing GAN architecture.
However, these methods still fail to consider the impact of the lack of distributional
information in the source domain.
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To resolve mode collapse while stabilizing the data modes, this work designs a binary
noise guidance learning method for image translation named BnGLGAN. Firstly, a Noise
Prior Inference Learning (NPIL) module is proposed to infer the estimated distribution from
target domain. Specifically, the VAE [26] encoder is used to extract latent variables from
the target images to infer the estimated distribution, which covers more target patterns
to solve the mode collapse. Then, a distribution-guided noise reconstruction learning
(DgNRL) module is proposed to acquire the reconstructed noise from the source domain,
which can provide source semantic information as a guide for network generation. Finally,
the proposed method treats these two latent distributions as conditions for the network
to generate synthetic images, and the encoder receiving noise tries to encode enough
distributional information to disambiguate the output.

The more modes the network generates in the latent space, the more stable the resulting
final mode will be. Different from traditional approaches to mode collapse, it is crucial
to forego finding the optimal solution during training and explicitly require the GAN to
capture more modes. As shown in Figure 2, BnGLGAN can make the probability density
function of the generated data (red curve) closer to the probability density function of
the training dataset (blue curve) than traditional GAN. It is hoped that these two lines
coincide as much as possible, resulting in multiple suboptimal solutions, which can result
in multiple generated data modes, avoiding mode collapse due to mode loss.

In general, our contributions will be as follows:

• This work proposes a binary-noise guidance learning (BnGLGAN) model to achieve
more reliable conditions for generating image dependencies and a more robust prior
distribution to restore images.

• This work designs a noise prior inference learning (NPIL) module to reduce the
uncertainty of the mapping relationships under the co-supervision of a generator and
an encoder so as to improve the robustness of image restoration.

• A distribution-guided noise reconstruction learning (DgNRL) module is designed to
reduce the distortion of generated images by reconstructing the noise in the source
domain with semantic information. Notably, as far as we know, this is the first I2IT
method that uses reconstruction noise as a network condition.

• Comparisons with some state-of-the-art I2IT methods to reveal the transcendence of
our method and ablation experiments are conducted to prove the efficiency of each
proposed module.

Figure 2. Example of a comparison between our model and a traditional network for solving the
mode collapse problem. (a) The generation mode of GAN, (b) the generation mode of ours, (c) local
optimal solution of GAN, (d) multiple suboptimal solutions of our model. The red curve represents
the probability density function of the generated data, and the blue curve represents the probability
density function of the training data.
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2. Related Work
2.1. Image-to-Image Translation

I2IT can convert the content of an image from one domain to another domain, which
can be seen as removing the attribute of the original image and giving it a new attribute.
It takes target labels or reference images as input and performs target-style image trans-
formation to convert them into specified target domain styles. For example, Isola et al. [1]
proposed pix2pix to ensure the quality of a translated image by applying a pixel-wise
regression loss between the translated image and the ground truth. Zhu et al. [27] pro-
posed CycleGAN to train two cross-domain transfer GANs with well-designed cycle loss.
Richardson et al. [28] proposed pSp to explore the powerful ability of StyleGAN to generate
high-resolution images in I2IT tasks.

The I2IT model can be divided into four groups: supervised I2IT (paired setting) [29],
unsupervised I2IT (non-paired setting), semi-supervised I2IT [30], and few-shot I2IT [31].
In early supervised I2IT works, researchers used many aligned image pairs to perform
translation tasks. Compared with supervised methods, semi-supervised I2IT methods [30]
use only the source images and source–target aligned images for training, which obtain
better translation results. In addition, in an unsupervised learning environment, the I2IT
method converts images between domains with non-paired data. DRIT++ [32] attempts
to provide different translations due to a combination of the style and content of different
images, and the translated images with the same content can present different styles.
Moreover, few-shot I2IT [31] does not see the actual target domain during training, which
means that the target images do not appear in the training process.

2.2. Supervised Image-to-Image Translation

Supervised I2IT aims to transform original images by using paired data as the training
samples. In the supervised settings, pix2pix [1] designed a unified framework based on con-
ditional GAN to solve a series of image conversion problems and support image conversion
tasks for multiple different datasets. As an improved version of pix2pix, pix2pixHD [33]
used a multi-scale generator to produce high-resolution images. DRPAN [34] used a bound-
ing box to find unclear areas in image conversion and then modified the contents of these
areas. AlBahar et al. [35] made a landmark contribution in addressing pix2pix-based
controllable or user-specific generation by respecting the constraints provided by user-
provided guidance images. Yan et al. [36] proposed an unsupervised domain-adaptive
learning method for image semantic segmentation, constructed triplet loss-driven adver-
sarial learning, achieved feature alignment between the source domain and the target
domain, and realized domain-adaptive learning for image semantic segmentation. Unlike
unsupervised I2IT, supervised I2IT can use validation error to make an unbiased estimation
for the test results, making the results more reliable.

Unfortunately, when the structures of the two domains differ greatly, pix2pix [1]
and its improved variants are still unable to capture the complex relationships in the
scene’s structure with just a single translation network. SelectionGAN [37] was proposed
to solve the cross-view translation problem. It combines a multi-channel attention se-
lection module with GAN to solve the translation of source view images to target view
scenes with little or no overlapping of view fields. In addition, the traditional I2IT net-
work used by pix2pixHD [33] incurs a huge computational cost when operating with
high-resolution images. To solve this problem, Shaham et al. [38] proposed the more
lightweight and sufficiently efficient network ASAPNet for fast high-resolution I2IT. Fur-
thermore, Zhang et al. [39] proposed a paradigm-based I2IT method, CoCosNet, to trans-
late images by establishing tight semantic correspondence between cross-domain images.
Park et al. [40] proposed a SPADE framework to further improve the stability of training
process by using a spatially adaptive normalization layer.
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2.3. Variational Autoencoder

Existing autoregressive models utilize pixel RNN [41] and pixel CNN [42] to realize the
generation of high-resolution images. In general, conditional GANs improve the accuracy
of image generation at the cost of lack of multimodal generation. However, pixel-by-pixel
generation increases the time cost and instability of generating images, and there are certain
troubles when dealing with large data such as large images or videos.

Compared to conditional GANs, the output generated by a variational autoencoder
(VAE) in a latent space is more random, which makes the inference of VAE relatively
well-defined. For example, Liu et al. [43] proposed a method for coupled GANs to infer
information about the joint distribution from the marginal distributions. Bepler et al. [44]
proposed a spatial VAE for the explicit disentanglement of the rotation and translation of
the image from other unstructured latent factors. Zhang et al. [45] proposed a VAE-CoGAN
based on coupled GAN to restore a clear image from an input image. Kearney et al. [46]
proposed an attention-aware A-CycleGAN enhanced with VAE.

On the basis of an autoencoder, VAE makes the latent vector of image encoding obey
a Gaussian distribution to realize image generation and optimizes the lower bound of
data log likelihood. This theory is used to learn low-dimensional latent representations
of the output space. Specially, the proposed BnGLGAN simply samples latent variables,
maps them to different inferred trail sampled from the assumed distribution, and infers the
possible action space by adjusting the image to preserve the multimodal generation of the
images. In the process of adjusting images, an image inferred by enriching the complete
patterns of images has a higher probability of containing the target pattern.

3. Proposed Method

The purpose our model is to improve the quality of generated images while transfer-
ring style data from the source domain to the target domain. For example, given an image
x ∈ RH×W×C from the source domain X and an image y ∈ RH×W×C from the target do-
main Y, a generator G is trained to receive the image x ∈ X as input and produces images
G(x) in the style of y, while preserving the overall structure of original images.

3.1. Framework Overview

As shown in Figure 3, in contrast to previous image translation tasks (upper-left
portion), BnGLGAN proposes a binary noise framework, which is made up of two modules:
the noise prior inference learning (NPIL) module (Figure 3a) and the distribution-guided
noise reconstruction learning (DgNRL) module (Figure 3b). According to the principle of
VAE, NPIL aims to obtain the inferred distribution Q(z|xt) = Et(xt) by learning the prior
feature distribution of ground truth images xt, where Q(z|xt) contains the prior information
of target domain and z is the latent variable. Et(xt) means encode xt. On the other hand,
DgNRL generates target-style images xst from source images xs according to the conditional
GAN, where xst = Gs(xs) and G is a generator. Then, we take xst as the input of encoder
Es and map it into latent space of source, denoted as ẑs, where ẑs = Es (Gs(xs)). Finally, the
noise fusion output of the two modules is proposed to generate synthetic images.
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Figure 3. Overall architecture of BnGLGAN. (a) The latent variable zt is inferred from the target
domain image xt, the inferred variable zt is used to guide the generation of the conditional GAN,
(b) the randomly sampled noise zs is reconstructed to contain source distribution information, and zs

is also fed into the generator G. The blue, red, and irregular polyline arrows indicates the source data
flow, target data flow, and random sampling, respectively. The dashed lines indicate different kinds
of losses.

3.2. Noise Prior Inference Learning Module

In VAE, since it is difficult to obtain the posterior probability p(z|x), variational
inference adopts a roundabout strategy. Specifically, q(z|x) is designed to approximate
p(z|x), and KL(q, p) is used to measure the distance between q(z|x) and p(z|x), where all
p(z|x) are assumed to be close to the standard normal distribution N (0, 1). The structures
of VAE and conditional VAE are shown in Figure 4, and it can be seen that the conditional
VAE additionally inputs the condition c into the encoder to affect the final result. The
posterior distribution can be expressed as:

p(z) = ∑
x∈X

p(z|x)p(x) = ∑
x∈X

N (0, 1)p(x) = N (0, 1), (1)

where x follows the target distribution, and p(z|x) represents the posterior probability of
latent variables, which estimate the unknown vector z according to sample information x
using the Bayesian formula.

Inspired by the principle above, a variant of VAE named noise prior inference learning
(NPIL) is proposed to infer the prior distribution of the target feature from latent space. As
shown in Figure 4b, the encoder Et is used to directly map the ground truth xt to latent code
zt inferred from Y. According to the theory of variance inference, the proposed BnGLGAN
can assign feature information of ground truth xt to latent code zt. So, suppose Q(zt|xt) = zt,
where Q(zt|xt) is the approximate distribution of ground truth xt. Q(zt|xt) then needs
to maximize the optimal approximation of posterior distribution. This optimization is
performed using the Kullback–Leibler divergence:

DKL(P||Q) = ∑
Z

Q(z) log
Q(z)

P(z|D)
, (2)

where Q is the approximate probability used to infer the posterior distribution P of image x,
P(z|D) is the posterior distribution of the parameters and latent variables (or unobservable
variables) z = z1, . . . , zn, and D represents the relative entropy between P and Q, which
can be expressed as:

DKL(p||q) =
n

∑
i=1

p(xi) log
p(xi)

q(xi)
, (3)
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where p(x) and q(x) represent the probability density functions corresponding to P and Q,
respectively.

Figure 4. Structure of (a) variational autoencoder and (b) conditional variational autoencoder.

The Gaussian hypothesis is used to encourage the approximate probability
Q(zt|xt) = Et(xt) to conform to the standard normal distribution and maintain the robust-
ness of noise in a certain time range, thus ensuring that the model has a stable generation
ability. To make these two distributions be as close as possible, KL loss is used and can be
written as:

LKL(E) = Ezt∼p(xt)(DKL(Et, (xt)||p(xt))) (4)

where zt ∼ p(xt) means that zt is assumed to obey the posterior distribution p(xt).

3.3. Distribution-Guided Noise Reconstruction Learning Module

In conditional GAN, the generator treats random noise as a condition to perform the
task. Since the random variables are uncertain, the data representation may be biased,
resulting in unrealistic images. Therefore, a distribution-guided based learning (DgNRL)
module is developed for noise reconstruction to extract the latent distribution from the
original images as one of the constraints of the generator. The entire generation process is
guided by the distribution of source images, as shown in Figure 3.

The pix2pix [1] model, which has achieved high-quality results in the I2IT field, is the
basic model for image generation. In order to monitor the generator so that it produces the
desired results, pix2pix uses conditional GAN as the generative network, which aims to
transform source images xs to target domain Y by using random noise zs as a condition,
like G, {xs, zs} → xst, where xst is the generated target-style image. In other words, the
conditional GAN models the distribution of real images with a given random noise, which
can be denoted as:

LcGAN(G, D) = min
G

max
D

V(D, G)

= Ex∼X [log D(x|y)] +Ez∼P(z)[log(1 − D(z|y))],
(5)

where y represents the constraints corresponding to each noise z.
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Unlike conditional GAN, not only the discriminator D is used to distinguish real
images from generated images, but the encoder Es is also used to extract the latent code
ẑs from the generated images xst. In addition, BnGLGAN also uses ẑs=Es(G(xs, zs)) to
recover the random-extracted latent code zs at the beginning, thus forcing generator G to
reconstruct the random noise zs. Its purpose is to make unpredictable random variables
close to the semantic distribution of the source domain, thereby generating stable images.
To encourage the output and input of generator G to match each other, L1 distance is used
to reduce ambiguity and the noise reconstruction loss in source domain can be written as:

Lrec
1 (G, E) = Exs∼X,zs∼p(zs)||Es(G(xs, zs))− ẑs||1, (6)

where ẑs represents the reconstructed variable inferred from latent space obtained by
randomly collecting samples.

Both discriminator loss LcGAN(G, D) and encoder loss Lrec
1 are used to monitor noise

generation. The complete loss can be written as:

G∗ = arg min
G

max
D

LcGAN(G, D) + λrecLrec
1 (G, E), (7)

where λrec is the hyperparameter that controls the relative importance of this reconstruction term.
Finally, the reconstructed noise ẑs generated by DgNRL module and the latent code

zt generated by NPIL module are used as input conditions of the generator to generate a
synthetic image x̂t. Specifically, the noises zs and zt obtained from the two modules are
concatenated in the latent space, and the obtained noise is put into GS→T as a condition to
generate the final image x̂t with the target style. The GAN loss in the synthetic image x̂t
can be written as:

LS→T
GAN(GS→T , D, xs, xt) = Exs∼Xs [log(1 − D(xs))]

+Ezs∼Pz ,zt∼Pz log D(G(xs, zs©zt)),
(8)

where zs ∼ Pz and zt ∼ Pz mean that zs and zt follow the standard normal distribution
Pz, © represents tensor concatenation.

The GAN loss includes two aspects: the discriminator loss LcGAN that monitors the
network to generate results and the generator loss LS→T

GAN that supervises the translation from
source to target in the noise fusion stage. Furthermore, LKL brings the distribution of latent
codes close to the standard normal distribution. The complete loss can be expressed as:

G∗, E∗ = arg min
G,E

max
D

LcGAN(G, D) + λrecLrec
1 (G, E)

+ LS→T
GAN(GS→T , D, xs, xt) + λKLLKL(E),

(9)

where G, D, and E are optimized simultaneously to supervise image generation.

4. Experiment

Extensive experiments are measured and carried out on diverse I2IT tasks and carry
out a variety of comparative experiments. The experimental setup and corresponding
results are described below.

4.1. Experiment Setup
4.1.1. Training Details

For all datasets, our experiment adjusts the image to the same 512 × 512 or 1024 × 1024
resolution to train our network and keep the same settings as pix2pix [1] during training.
All experiments are implemented using Python and conducted on a single GeForce RTX
3090Ti GPU. To optimize our network, Adam Solver [47] is used with a learning rate of
2 × 10−4, which alternates between a gradient descent step on D and a step on G, and the
latent dimension |z| = 8 in all datasets.
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4.1.2. Datasets

To demonstrate the superiority of the proposed method, all experiments are trained
and tested on seven benchmark datasets, namely Cityscapes [48], CMP Facades, face →
comics, google map → satellite, night → day, edge → shoes, and edge → handbag datasets.
Images in the Cityscapes dataset are recorded in street scenes with pixel-level annotations.
Examples of the Cityscapes dataset are shown in Figure 5. The CMP Facades dataset
contains cities and different architectural styles from all over the world. The face → comics
dataset has two versions, v1 is mostly dark tones (10k images), and v2 is dark red tones
(20k images). This dataset contains European- and American-style comics, and can be used
to train pix2pix or similar networks. The Google Maps dataset contains about 2200 maps
and their corresponding satellite images. The night → day dataset mainly contains day and
night images of natural landscapes. The edge → photo dataset contains 2000 edge images
and object images. The experiment performs the tasks of translation from semantic masks
to real images, from map to satellite imagery, from daytime images to nighttime images,
and from edge images to real images on six datasets. Details of these datasets are provided
in Table 1.

Figure 5. Some annotated legends of the Cityscapes dataset are presented.

Table 1. Details of datasets and settings used in the experiment.

Cityscapes Face2comics CMP Facades Google Maps Night2day Shoes Handbag

# total images (image pairs) 3475 20,000 506 2194 20,110 50,025 138,767
# training images (image pairs) 2975 15,000 400 1096 17,823 49,825 13,8567
# testing images (image pairs) 500 5000 106 1098 2287 200 200
image crop size 1024 × 1024 512 × 512 256 × 256 600 × 600 256 × 256 256 × 256 256 × 256
# training epochs 300 400 400 400 200 60 60

4.1.3. Evaluation Metrics

To demonstrate the efficiency of this method for mode collapse resolution, it is common
to use the following common quantitative performance metrics that can represent image
quality to compare with advanced methods:

• Fréchet inception distance (FID): FID is adopted to evaluate the realism and variation
of synthesized images by pretraining Inception-v3, and a lower FID value means that the
distribution of the synthetic data is closer to the distribution of the real data.
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FID measures the distinction between the produced model and the original data
distribution by computing Fréchet distance between the two distributions, where Fréchet
distance evaluates the space between two distributions that takes into account the two
distributions’ mean and covariance matrices to better describe the differences between the
two distributions. The specific calculation is as follows:

d2((m, C), (mw, Cw)) = ||m − mw||22 + Tr(C + Cw − 2(CCw)
1/2), (10)

where m and mw represent the mean vectors of the real data distribution and the generated
model, respectively; C and Cw represent the covariance matrices of the real data distribution
and the generated model, respectively; and Tr represents the trace of the matrix.

• Learned perceptual image patch similarity (LPIPS distance): To calculate the L2
distance between two images, the LPIPS distance is used in our experiment. The smaller
the LPIPS distance, the better the effect.

LPIPS is the measurement of the distinction between two images, also known as
perceptual loss. This metric enables the generator to acquire the inverse mapping of the
origin image from the fake image to learn the inverse mapping of the fake image to the
ground truth, which benefits from the perceptual similarity between them. The lower
the LPIPS value, the more comparable the two images are and the larger the distinction
between them. The specific calculation is as follows:

d(x, x0)= ∑
l

1
HlWl

∑
h,w

||wl · (yl
hw − yl

0hw)||
2
2, (11)

where d(x, x0) represents the distance between x and x0, Hl and Wl indicate the height and
width of the channel, and ŷl

hw and ŷl
0hw represent two values that are normalized after the

output of different layers is activated.
• Image quality assessment (IQA) metrics: The peak signal-to-noise ratio (PSNR) and

structural similarity index (SSIM) are used to measure the similarity between the synthetic
image and the ground truth. The higher the PSNR and SSIM value, the better the quality.

PSNR is used to compute the ratio between the distortion noise power and the max-
imum possible signal power that affects its display quality. Unlike compression codecs,
PSNR is an approximate estimate of the quality of the reconstruction as perceived by human
eyes. The specific calculations is as follows:

PSNR = 10 ∗ log10(
MAX2

I
MSE

), (12)

where MAX2
I represents the maximum pixel value of the image, and MSE represents the

mean square error.
Structural Similarity (SSIM) is an index that estimates the resemblance of two images.

One is the undistorted, uncompressed image and the other is the distorted image of the
two images used in SSIM. The specific calculation is as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (13)

where the mean µ represents the estimate of lightness, the standard deviation σ represents
the estimate of contrast, and the covariance C represents the evaluation of the degree of
structural correspondence.

• Mean intersection over union (mIoU) and class accuracy [49] (cls-Acc) : For Cityscapes
(label → image), it is necessary to measure the relationship between the output segmenta-
tion map and its ground truth map. To use the same structure as pix2pix, our method adopt
the pretrained semantic segmentation network FCN-8 for segmentation and calculate two
indicators: MIoU and class accuracy to evaluate the translation performance.

MIoU is the mean intersection over union, also known as the average IoU. It is a
commonly used evaluation indicator to measure the similarity between the predicted
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results and the true labels in semantic segmentation tasks. The specific calculation is
as follows:

MIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
, (14)

where i indicates the real value, j indicates the predicted value, and pij indicates the number
of pixels that predict i as j.

4.2. Qualitative Evaluation

Our proposed BnGLGAN is compared with a series of advanced methods and paired
examples of corresponding results in two adjacent rows of each dataset are shown in
Figure 6.

Figure 6. Visual results comparison with several state-of-the-art methods on three benchmark datasets.
In the edge-to-shoes and edge-to-handbag translation tasks, this paper uses bidirectional translation
for comparison.

It can be seen from the first two lines of Figure 6, pix2pix [1], DRIT++ [32], and
LSCA [50] all have the problem of mode collapse and generate fuzzy output on Cityscapes
dataset, while MSPC [51] and Qs-Attn [52] sometimes generate artifacts in a certain class
of predicted images. In contrast, UVCGAN [53] and the proposed BnGLGAN achieve
excellent performance, of which the images generated by our BnGLGAN and SISM are
closer to real urban images from a visual perspective. The KL loss LKL in Equation (4) helps
solve the problem of artifacts being generated to encourage the network denoising.

For the shoes and handbag datasets, the images generated by the proposed BnGLGAN
show the exact appearance of the leather bag closest to the realistic leather luster. However,
the images generated by other methods still have areas with incomplete shading, and
cannot present realistic luster in the fake images, as shown in Figure 6 (lower-left part).

Figure 7 shows the facial-style transfer results on face2comics. It can be observed that
BnGLGAN provides higher visual quality of translation results on test data compared to
other models. One possible reason is that the model flexibly translates images according to
multiple data patterns instead of training the model to perform a fixed translation pattern,
which is prone to overfitting. This enables our model to learn comprehensive features that
generally cover multiple domains with images of different styles. Furthermore, the contour
accuracy of the results generated by pix2pix [1] and Qs-Attn [52] is too low, DRIT++ [32]
generates wrong hair color, and the results generated by other methods are insufficient in
character accuracy and light.
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Figure 7. Visual comparison of results of several state-of-the-art methods on facial datasets.

For the CMP Facades dataset shown in Figure 8, it can be intuitively observed that
the building images generated by BnGLGAN are closest to the ground truth, while the
building images generated by pix2pix [1], Qs-Attn [52], and SISM [54] have partial artifacts
on the roof. This shows that our method mitigates mode collapse by reducing artifacts. In
addition, as shown in the yellow box, the balconies in images generated by MSPC [51] and
UVCGAN [53] have duplicate pixels.

Figure 8. Qualitative comparison of results with other image translation methods. The yellow box
shows details of the images recovered by each method. it can be seen that the details generated by
BnGLGAN are the most accurate.

For the night2day dataset shown in Figure 9, BnGLGAN conducts a bidirectional
translation on one group of day and night images. From the results, it can be seen that in
the translation task from day to night, the images generated by Qs-Attn [52], SISM [54], and
MSPC [51] present excessively high illumination, which still has a certain distance from
night illumination. In contrast, the images produced by our BnGLGAN are clear and the
brightness is consistent with the night illumination. There are no issues with inaccurate
illumination in the task of night-to-day translation. In addition, the last two lines of the
images in Figure 9 show the translation results on other different images, where LSCA [50]
and BnGLGAN present high-resolution images.
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Figure 9. Image translation of each method on the night2day dataset. The first two lines show
bidirectional image translation, and the last two lines show image translation of other styles of
images.

In the Google Maps dataset shown in Figure 10, our BnGLGAN and MSPC [51] can
generate clear satellite images (such as urban buildings and green vegetation, as well as the
boundary between green vegetation). In contrast, the images generated by other methods
are not distinct enough.

Figure 10. Results of various methods in Maps → Satellite translation task on Google Maps dataset.

4.3. Quantitative Evaluation

The proposed BnGLGAN is quantitatively evaluated through comparison with state-
of-the-art methods. To ensure fairness, the methods that belong to the same category are
used for comparison, and all of them are implemented according to the official code.

Semantic label → photo: In Table 2, the results of the proposed BnGLGAN at different
resolutions (512 × 512 and 1024 × 1024) are clearly presented. It can be seen that large
resolution helps improve performance. Although BnGLGAN cannot achieve the best effect
on PSNR, it works best on SSIM. In other words, the images generated by our method
achieve the highest structure perception similarity. BnGLGAN also uses FCN-8s model to
perform semantic segmentation on our output results and provide quantitative comparison
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experiment results on the Cityscapes dataset. BnGLGAN can also achieve significant
segmentation performance (class accuracy and MIoU) for images in different shooting
environments of the same scene.

Table 2. Quantitative performance in image-to-image translation tasks on Cityscapes. The lower the
FID and LPIPS, the better the effect.

Method FID ↓ Per-Class Acc. MIoU PSNR SSIM LPIPS ↓

pix2pix [1] 61.2 25.5 8.41 15.193 0.279 0.379
DRIT++ [32] 57.4 25.7 11.60 15.230 0.287 0.384
LSCA [50] 45.5 29.1 27.33 15.565 0.369 0.325
MSPC [51] 39.1 29.6 33.67 15.831 0.425 0.397
Qs-Attn [52] 48.8 32.6 37.45 16.235 0.401 0.334
UVCGAN [53] 54.7 33.0 40.16 16.333 0.524 0.351
PTQ [55] 37.6 34.2 41.47 16.739 0.532 0.322

BnGLGAN (512 × 512) 35.9 35.6 42.60 16.839 0.547 0.319
BnGLGAN (1024 × 1024) 36.3 35.6 44.30 16.843 0.550 0.321

In addition, our method is compared with other methods in terms of processing speed.
The calculation times for 512 × 512 and 1024 × 1024 resolution images were tested, and
the results are shown in Table 3. It can be seen that the processing consumption of the
proposed BnGLGAN is better than other methods at different resolutions.

Table 3. Comparison of the time consumption (in seconds) of different models at different resolutions
(512 × 512, 1024 × 1024). Each result is the average of 50 tests.

Method 512 × 512 1024 × 1024 MOS B

cycleGAN 0.325 0.562 2.295 1.6 GB
pix2pix 0.293 0.485 2.331 1.6 GB
DRIT++ 0.336 0.512 2.372 1.6 GB
LSCA 0.301 0.499 2.462 1.8 GB
BnGLGAN 0.287 0.431 2.657 1.6 GB

Edge → photo: As shown in Table 4, BnGLGAN achieves the best PSNR value in all
tasks, which proves that the edge images produced by BnGLGAN can restore more pixels
of edge, and the images also show more realistic details (such as the texture and color of
the cortex) than others. This comparison is consistent with the example shown in Figure 6.

Table 4. Quantitative performance in image-to-image translation task on three edge datasets. The
lower the FID and LPIPS, the better the effect.

Method Face2comics Edges2shoes Edges2handbag
FID ↓ SSIM LPIPS ↓ FID ↓ SSIM LPIPS ↓ FID ↓ SSIM LPIPS ↓

pix2pix [1] 49.96 0.298 0.282 66.69 0.625 0.598 43.02 0.736 0.286
DRIT++ [32] 28.87 0.287 0.285 53.37 0.692 0.498 43.67 0.688 0.411
Qs-Attn [52] 31.28 0.283 0.247 47.10 - 0.244 37.30 0.682 -
MSPC [51] - 0.360 - 34.60 0.682 0.240 - 0.741 -

SoloGAN [56] - 0.450 - 37.94 0.691 0.234 33.20 0.771 0.265
UVCGAN [53] 32.40 0.536 0.217 - 0.684 0.246 35.94 - 0.244

PTQ [55] 30.94 0.584 0.210 25.36 0.732 0.231 29.67 0.801 0.254

BnGLGAN (Ours) 27.39 0.586 0.205 21.07 0.782 0.228 28.35 0.793 0.182

Label → building photo: As shown in Table 5, our BnGLGAN achieves the best
performance in PSNR, SSIM, and LPIPS distance among all indicators. The building photo
generated from the labeled photo with our model can not only retain the accurate building
outline, but can also restore the complex details of building, as shown in the yellow box
in Figure 6.
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Table 5. Quantitative performance in various image-to-image translation tasks. The lower the FID
and LPIPS, the better the effect.

Method Facades Google Maps Night2day
FID ↓ SSIM LPIPS ↓ FID ↓ SSIM LPIPS ↓ FID ↓ SSIM LPIPS ↓

pix2pix [1] 96.1 0.365 0.438 140.1 0.177 0.321 121.2 0.441 0.433
CHAN [57] 93.7 0.387 0.422 131.5 0.187 0.287 117.9 0.558 0.303
Qs-Attn [52] 90.2 0.417 0.399 129.7 0.191 0.309 99.9 - 0.287

SISM [54] 91.7 0.422 0.401 110.4 0.196 0.294 - 0.668 -
MSPC [51] 87.3 0.501 0.384 104.3 0.203 0.311 91.2 0.654 0.246
LSCA [50] 88.0 0.434 0.359 99.8 0.212 0.283 - 0.659 -

UVCGAN [53] 85.3 0.459 0.344 101.1 0.216 0.297 89.8 0.701 0.223

BnGLGAN (Ours) 81.2 0.488 0.335 91.2 0.233 0.298 85.5 0.670 0.214

Map → satellite: According to the results in Table 5, except for LPIPS distance, the
performances of our BnGLGAN are the best.

Day → night: As shown in Table 5, except for SSIM, BnGLGAN achieves the best
value in other metrics. The generated results of MSPC [51] are clear, but the brightness of
these images is far from the ground truth. It can be safely concluded that our BnGLGAN
has a significant advantage over the other methods.

4.4. Ablation Study

To evaluate the effectiveness of the modules in our proposed BnGLGAN framework,
this subsection conducts an ablation study on the Shoes dataset, choosing condition GAN
as our baseline, which is the original network that pix2pix depends on. The DgNRL module
correspondingly infers the relevant information of source domain distribution, and the
NPIL module includes a prior distribution information of the target domain. Compared
with the baseline, our framework improves FID and SSIM from 39.0 and 0.478 to 36.9 and
0.549 on the Cityscapes dataset and reduces the LPIPS distance by 0.017. Some comparisons
are shown in Table 6, and it can observe intuitively that, compared with the random
sampling distribution of the conditional GAN model, using the information distribution of
the source and target domain as the condition of GAN is more conducive to the removal of
artifacts and improvement in the fidelity of the generated image.

Table 6. Ablation study on the modules of our proposed method on Cityscapes dataset.

Method FID ↓ SSIM LPIPS ↓

Baseline 39.0 0.478 0.336
Baseline + NPIL 37.6 0.514 0.329

Baseline + DgNRL 37.1 0.523 0.324
Baseline + NPIL + DgNRL (Ours) 36.3 0.550 0.321

4.5. Activation Map Visualization

In this part, this paper processes the last layer feature map of generator G via Grad-
cam and visualizes it into various I2IT tasks on AID dataset. As shown in Figure 11, larger
semantic contribution values are represented by warmer colors (such as red or yellow),
which means that the reconstruction-based DgNRL module has excellent performance in
providing detailed semantic information and spatial information.
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Figure 11. Visualization of different I2IT translation tasks using learned attention maps. Each example
shows a ground truth image (left) and the corresponding attention map (right).

4.5.1. Higher Intra-Class Variation

In the AID dataset, the high spatial resolution makes the geometric configurations of
the scenes more obvious and presents more confrontations for image classification. Due
to the differences in equipment and angles of aerial photography, the same object in the
same scene may be presented in different directions and sizes. Therefore, to improve the
universality and applicability of aerial image classification algorithms, datasets with a
high degree of intra-class diversity are required. In the AID dataset, collecting multi-class
sample images enables us to collect images of different objects in different scenes, along
with distinctive angles, dimensions, and lighting conditions, which can enlarge the intra-
class diversity of the dataset. Figure 12a shows two cases of a similar setting and angle with
distinctive dimensions. Figure 12b shows cases of a similar scene with various building
styles, since the exterior condition of the similar scene varies particularly due to cultural
dissimilarity in different regions. In Figure 12c, the trees change from green to white with
the seasons, and the shadows of buildings change from west to north at different times.

Figure 12. Large intra-class diversity: (a), images of the same setting in multiple dimensions;
(b), different styles of buildings in the same setting; (c), diverse imaging conditions of the same setting.
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4.5.2. Smaller Inter-Class Dissimilarity

In the actual case of aerial image applications, the difference between categories in
diverse settings are usually small. The image selection of AID takes this into account well,
which adds different scene classes. As shown in Figure 13, AID contains scenes with similar
buildings, e.g., both sports fields and playgrounds have similar structures (see Figure 13a),
but the significant difference is whether the surrounding environment is the same.

Figure 13. Small inter-class distance: (a), similar objects between different scenes; (b), similar grain
between different settings; (c), similar structural distributions between different settings.

The bare desert is similar in color to the earth, and the grain is fine (see Figure 13b),
but the bare land usually shows many signs of construction. Some scenes have similar
surroundings, such as resorts and parks (see Figure 13c), which may contain some trees
and a lake, etc. The method uses many classes of facilities with little difference between the
classes, which makes it closer to the real-world, mission-specific imagery of aerial imagery.

In Figure 11, it can be observed that high contributions (warm colors) mainly appear in
uninterrupted patches of easily identifiable types. For the AID dataset, the high contribution
values mainly appear in the target regions with complicated construction. The observations
suggest that our network not only recognizes large class regions, but also covers some more
complex structures with spatial information.

5. Conclusions

In this paper, an I2IT framework based on noise reconstruction learning is proposed.
To solve the problem of mode collapse in image translation, a distribution-guided noise
reconstruction learning (DgNRL) module and noise prior inference learning (NPIL) module
are studied. The former uses the distribution extracted from the source images as a
condition to constrain the network to generate synthetic images, while the latter uses a noise
prior to infer a posterior distribution information, which makes a nearly stable distribution
to maintain the robustness of the noise. Our results under five diverse datasets demonstrate
the effectiveness and robustness of our proposed BnGLGAN. In essence, studying the
applicability of different feature distributions to the model may be an interesting research
direction in the future.

Limitations. BnGLGAN combines the advantages of distribution containing domain
semantic information with the role of inferred distribution in VAE. However, since our
model relies on a baseline that only focuses on global features, inaccurately translated
instances may arise in complex scenes with multiple instances. For future extension, it is
necessary to add modules focusing on local information to the translation network.
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