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Abstract: High-quality geological remote sensing interpretation (GRSI) products play a vital role in a
wide range of fields, including the military, meteorology, agriculture, the environment, mapping, etc.
Due to the importance of GRSI products, this research aimed to improve their accuracy. Although
deep-learning (DL)-based GRSI has reduced dependence on manual interpretation, the limited
accuracy of multiple geological element interpretation still poses a challenge. This issue can be
attributed to small inter-class differences, the uneven distribution of geological elements, sensor
limitations, and the complexity of the environment. Therefore, this paper proposes a point–surface
data optimal fusion method (PSDOF) to improve the accuracy of GRSI products based on optimal
transport (OT) theory. PSDOF combines geological survey data (which has spatial location and
geological element information called point data) with a geological remote sensing DL interpretation
product (which has limited accuracy and is called surface data) to improve the quality of the resulting
output. The method performs several steps to enhance accuracy. First, it calculates the gray-scale
correlation feature information for the pixels adjacent to the geological survey points. Next, it
determines the distribution of the feature information for geological elements in the vicinity of
the point data. Finally, it incorporates complementary information from the survey points into
the geological elements’ interpretation boundary, as well as calculates the optimal energy loss for
point–surface fusion, thus resulting in an optimal boundary. The experiments conducted in this
study demonstrated the superiority of the proposed model in addressing the problem of the limited
accuracy of GRSI products.

Keywords: geological interpretation; optimal transport; multi-source fusion; remote sensing; data
alignment

1. Introduction

Over the past decade, exponential growth in remote sensing data generated by ground-
based sensors has been observed. These data have been widely utilized in geological remote
sensing interpretation (GRSI) [1]. In the context of regional lithological mapping at large
scales, GRSI refers to the process of identifying various geological features based on their
characteristics as remote sensing images [2–4]. It is an integral component of regional
lithological mapping, and it holds significant importance. Compared to traditional manual
geological surveys, GRSI offers the advantage of conducting large-scale geological inves-
tigations in a cost-effective manner. As such, it has the potential to serve various related
applications, such as geological mapping, urban and regional planning, environmental
protection, and disaster assessment. Hence, the procurement of high-quality GRSI products
is of utmost importance for conducting effective research in these fields.

To improve the accuracy of GRSI products, researchers have proposed various geo-
logical interpretation models. Early national and international geological remote sensing
practitioners developed interpretation models based on the spectral characteristics of rocks,
minerals, and geological tectonic features [5,6]. In Ref. [7], a novel band ratio image was
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generated by utilizing the desired band from the ASTER data and by effectively combining
it with geological field observations to accurately map lithological units in the Wadi Kid
region. Another approach to the use of spectral information is the spectral angle mapper
(SAM) [8]. However, these geological interpretation models are heavily reliant on manual
labor and have a low degree of automation. Moreover, the spectral response of the same
type of rock varies considerably, thus resulting in spectral uncertainty. This phenomenon is
referred to as spectral variability, which is widely observed in many scenarios where the
spectral characteristics of pure material substances vary in the acquired hyperspectral re-
mote sensing images. Spectral variability can be caused by illumination and environmental
factors, as well as by the inherent properties of the materials [9,10]. For example, variations
in the orientation, strike, and dip of a single rock can result in differences in how the rock
absorbs and reflects solar radiation, thus leading to distinct pieces of spectral information,
which are captured by remote sensing sensors. These issues constrain the development of
GRSI products.

In the last few years, there has been a shift toward the use of automated machine
learning (ML) methods to extract geological element features from remotely sensed imagery.
These methods address the limitations of manual interpretation models. The first common
type of ML method is dimensionality reduction, which includes independent component
analysis (ICA) [11], principal component analysis (PCA) [12], and the minimum noise
fraction (MNF) [13]. Another type of method is classification, such as the support vector
machines (SVMs) method [14]. For example, Ref. [15] utilized ASTER spectral data
and SVMs to classify the lithology on ASTER images. The results showed that the SVM
algorithm performed well. The classification maps obtained were consistent with both the
field survey and officially published geological maps. There are also a number of related
platforms, like the GoldenEye project. However, as the temporal, spatial, and spectral
resolution of remote sensing data continues to rise and as the information of remote sensing
data becomes more abundant [16], ML-based feature-extraction methods face challenges in
terms of feature representation.

Since 2012, a multitude of advanced deep learning (DL) methods have emerged
in the field of image processing. DL techniques can automatically model large-scale
and complex datasets [17], and they have shown exceptional performance in various
computer vision tasks. Among these, convolutional neural networks (CNNs) have gained
widespread attention in remote sensing due to their effectiveness in image processing [18].
For instance, Ref. [19] applied CNNs to map geological target features and to classify
Landsat images. Similarly, Ref. [20] employed both CNNs and traditional ML methods,
such as SVMs and multilayer perceptrons, to map lithological units in mineral-rich areas
of southeastern Iran. Ref. [21] proposed a high-resolution mapping approach using
unmanned aerial vehicles (UAVs) to obtain data and DL algorithms to extract target features.
Ref. [22] proposed a multistage self-guided separation network (MGSNet) that enhances the
discriminability of targets and backgrounds in remote sensing scenes through the utilization
of a target–background separation strategy, contrastive regularization, and self-guided
networks. Ref. [23] proposed a representation-enhanced status replay network (RSRNet).
This approach addresses representation bias, classifier bias, and insufficient information
interaction through the combined augmentation of feature representation, a status replay
strategy, and cross-modal interactive fusion. Ref. [24] proposed a structural optimization
transmission framework, namely a structural optimization transmission network (SOT-Net).
This method effectively utilizes the reflectance-specific information from HSIs, as well as
the detailed edge representations from multiple sources, to enhance feature extraction and
classification. Ref. [25] proposed a spatial–logical aggregation network (SLA-NET) which
leverages morphological transformations and trainable structuring elements to extract
fine-grained morphological structures from hyperspectral images. The method aims to
enhance the classification of tree species and has shown superior performance compared
to other state-of-the-art classifiers. Ref. [26] proposed an innovative method called Large
kernel Sparse ConvNet weighted by Multi-frequency Attention (LSCNet) to overcome the



Remote Sens. 2024, 16, 53 3 of 21

limitations of traditional CNNs in remote sensing scene understanding. Overall, DL-based
methods have shown remarkable potential in extracting semantic features of geological
elements, such as lithology [27], minerals [28], glaciers [29], soils [30], and geological
formations [31]. However, the accuracy of these interpretations is often inadequate due to
various factors. These factors can be summarized as follows:

1. Small inter-class differences: Certain geological elements have blurred boundaries
and similar imaging features due to various physical and chemical effects, such as
weathering, erosion, and biological activity. Distinguishing between these elements
in satellite imagery is difficult, as the color, shape, and structural features can be
challenging to classify accurately.

2. Unevenly distributed geological elements: The interpretation model is faced with
higher requirements due to the variety of geological elements and the different sizes
of the areas covered by these elements. It is noteworthy that those geological elements
with a wider area of coverage, such as soil and water bodies, are relatively easier to
identify.

3. Sensor limitations: Sensor aberrations, changes in the operating conditions, and the
movement of the Earth can cause image distortions. Natural phenomena, such as
clouds and fog, can also obscure the sensor’s view of the Earth’s surface, thus making
it difficult to obtain clear remote sensing images.

These factors pose significant challenges in improving the accuracy of GRSI data. The
limitations in the acquisition and processing of remote sensing data result in insufficient
information content in GRSI data. Therefore, relying solely on remote sensing data for
interpretation often fails to meet the high accuracy requirements. However, experts ob-
tain point data through geological surveys, which have higher precision. Therefore, it is
better to combine the complementary information from both point and surface data for
geological analysis. The fusion of point and surface data enables the acquisition of more-
comprehensive and -accurate interpretation results. However, due to the heterogeneity of
data from different sources, each with its own data domain, the fusion of point–surface
data often faces the challenge of data domain misalignment.

To address the issues of the limited accuracy of GRSI products caused by small inter-
class differences, the uneven distribution of geological elements, sensor limitations, and
the misalignment of data from multiple sources, this paper proposes a point–surface data
optimal fusion method (PSDOF), based on optimal transport (OT) theory, to improve the
accuracy of GRSI products. PSDOF combines geological survey point data (which have
spatial location and geological element information and are called point data) with a geo-
logical remote sensing DL interpretation product (which has limited accuracy and is called
surface data) to improve the quality of the resulting output, as well as to introduce OT
to facilitate heterogeneous data alignment. The method presented includes two primary
stages: (1) the extraction of high-precision location information from the point data and
(2) point–surface fusion, which is where the OT model incorporates point data information
into the accuracy-constrained GRSI products to achieve an information gain. To demon-
strate the effectiveness of the method, experiments were conducted with PSDOF using
GRSI products over the Pamir Plateau in the southern part of the Tianshan Mountains in
China. Our work made the following contributions:

1. A new fusion method, named PSDOF, in the field of GRSI that is designed to aid with
the fusion of heterogeneous geological survey point data and GRSI data.

2. By fusing the high-precision location information extracted from geological survey
point data, the PSDOF achieves information gains and effectively enhances the accu-
racy of GRSI products.

3. PSDOF employs the concept of OT to address the challenge of data misalignment
between geological survey point data and GRSI data, thus achieving a significant
improvement in accuracy.
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This paper is divided into six sections. Section 2 examines the related works. Section 3
defines the problem and objectives, and presents the data used in this study, while Section 4
explains the PSDOF method, including its principles and features. Next, Section 5 covers
the experimental setup and results. Finally, Section 6 summarizes the findings and future
research implications.

2. Related Work

This section has two parts and focuses on domain adaptation and optimal transport.

2.1. Domain Adaptation

Domain adaptation can be categorized into two groups: semi-supervised and unsuper-
vised techniques. The former utilizes labels in the target domain (TD), whereas the latter
does not.

In the field of semi-supervised domain adaptation, many methods have been proposed
by researchers. For instance, Ref. [32] used a linear conversion to map characteristics from
the TD onto the source domain (SD) to acquire representations. In terms of non-linear
transport learning across domains, Ref. [33] proposed a method to transfer object models
from one dataset to another. Ref. [34] proposed a technique that adjusts the object models
obtained in a specific visual domain to new imaging situations by training a transformation
that lessens the impact of the feature distribution changes induced by the domain. Ref. [35]
presented a kernel method, called the kernel method for manifold alignment (KEMA),
for aligning manifolds that can match any number of data sources without requiring
corresponding pairs. The approach only needs a few labeled examples in all domains.

In fact, due to the difficulty in acquiring TD labels, unsupervised domain adaptation
methods have received more attention. For example, Ref. [36] suggested a dimensionality
reduction approach to achieve domain adaptation by decreasing the inter-domain distance.
Ref. [37] proposed a neural-network-based model that learns transferable features by jointly
learning from the unlabeled data in the TD and the labeled data in the SD. Ref. [38] mapped
multiple pieces of data to a reduced dimensionality while preserving the neighborhood
relationships in each dataset, and this approach represented a new stream-alignment
technique. Ref. [39] described a method through which to learn the projection of the data
in a low-dimensional space. The empirical distribution distance between the source and
target data was kept to a minimum during the projection, and it was a domain-invariant
type of projection.

2.2. Optimal Transport

OT has demonstrated effectiveness as a domain-adaptation technique in both unsuper-
vised and semi-supervised modes. For instance, a regularized unsupervised OT model was
proposed by [40] to pair the probability distributions of the two domains while keeping
samples of the same category in the SD closest in distance during transmission. To detect
flood hazards, Ref. [41] employed an OT model to fuse different types of remote sensing
and social media data. Building on this work, Ref. [42] proposed a geo-optimal transport
model (GOT) that addressed the problem of the geographical bias of social media tweets
during OT. Ref. [43] proposed an optimal transmission method that incorporates regu-
larization in multimodal 2-dimensional and 3-dimensional facial expression recognition
(FER) (which was unsupervised). In Ref. [44], OT was utilized to achieve a semi-supervised
adaptation in heterogeneous domains. It ensured that samples belonging to the same class
were constrained to exhibit similar distributions during the transfer process from the SD to
the TD.

3. Problem Definition

Consult Table 1 for the primary symbols utilized in this research. PSDOF is described
as follows: input a set of Landsat 8 images of size {r × c × W} (r and c denote the quantity
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of pixels along the rows and columns of the image, respectively, and W equals the quantity
of channels in the image) with the surface data and the point data Q.

Table 1. Explanation of the primary symbols used in this paper.

Symbols Definition

r The number of pixels on the rows of the image
c The number of pixels on the columns of the image

Xn Characteristic point set for n pixels
Ym Characteristic surface for m pixels
Ds Source domain for the Xn set
Dt Target domain for the Ym set
C Cost matrix for the OT plan
d The step distance for a gray-level co-occurrence matrix
θ The angle for a gray-level co-occurrence matrix

CorQ ∈ {Cor1, Cor 2, · · · , Corr×c} (1)

where CorQ represents the gray-scale correlation feature value of the Landsat 8 image pixel
corresponding to the point data. We aimed to use Corr×c to reflect the information about
the geological elements of each pixel of the image. After calculation and expert screening
(A = 0.05), it was determined that pixels with feature values in the range CorQ ± A have
similar geological elements and that these pixels are called similar feature pixels.

Source Ds : {X1, · · · , Xn} (2)

Target Dt : {Y1, · · · , Ym} (3)

where the SD Ds is the finite set of all similar feature pixels Xn of the point data in the
remote sensing image. The TD Dt is the set of pixels Ym within the geological element
boundaries (i.e., the boundaries obtained by fitting similar pixel curves) in the vicinity of
the observation point of the decoded product. The inter-domain transport scheme Tp can
be written as follows:

Tp : P(Xn, Ym) ∈ {P1, · · · , P∞} (4)

In the OT model, the SD samples and TD samples are the input, and the OT cost of
the sample domain is calculated to output the fused optimal bound. The OT plan can be
written as follows:

OT : arg min W(Xn, Ym) (5)

Finally, the GRSI products are updated according to the optimal bounds needed to
obtain a higher-quality interpretation product. In summary, our proposed method can
effectively fuse two sample domains in the information space D at a minimal cost, thus
making it suitable for multimodal remote sensing data fusion. Our approach extracts
complementary information from the point data through the calculation of gray-scale
correlation features, as well as leverages lithological and positional information from the
geological survey point data to fuse them into boundary-ambiguous GRSI products, thus
resulting in higher accuracy.

Materials

The study area selected for this experiment is situated on the Pamir Plateau in the
southern region of the Tianshan Mountains in China. The area has a highland mountain
climate characterized by cold weather and numerous rock glaciers:
1. Remote sensing data: These are a critical component of this study. Landsat 8 is a

multispectral satellite that covers a total of 11 bands, thus making it an ideal data
source for this study. To better distinguish the spectral characteristics of the geological
elements, this work utilized the three RGB bands of Landsat 8 to synthesize color
images, as shown in Figure 1.
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2. GRSI data: These were derived from the DL interpretation products obtained from
Landsat 8 satellite imagery in the study area when using a multi-species semantic
segmentation model. Separately, they were FCN [45], DeepLabV3 [46], DANet [47],
OCNet [48], PSPNet [49], and AdvSemi-OCGNet [50]. The geological elements ex-
tracted are characterized by nine categories: glacier, granitic rock, lakes, carbonate
rocks, slates, sandstone, volcanic debris, schist, and soil bodies. Table 2 shows the
accuracy of the AdvSemi-OCGNet interpretation products, and through that infor-
mation, we can conclude the following: the classification accuracy of glaciers (Acc:
89.6%), lakes (Acc: 95%), and soil bodies (Acc: 89.9%) ranked in the top three of the
nine geological elements for the best classification accuracy. Meanwhile, the three
geological elements with the worst classification accuracy were as follows: granitic
rocks, sandstone, and volcanic debris. To assess the efficacy of our model, three of
these localized areas (i.e., where geological survey data existed) were selected for
experimentation.

3. Geological survey data: In this study, these mainly consisted of point data. These
points were selected by geologists within the study area through manual effort, thus
resulting in a sparse dataset with precise spatial location and lithological information.
After careful screening and confirmation, only point data within the interpretation
boundary were used. The distribution of the selected point data is illustrated in
Figure 2. To improve the interpretation accuracy, these point data were fused with the
GRSI products to provide complementary information.

4. Ground truth data: These are essential in assessing the precision of the GRSI model.
In this study, the GRSI products were obtained from Landsat 8 satellite imagery, and
they were manually labeled by experts with geographic alignment and cropping. The
ground truth data represent the distribution of the geological elements in the study
area, and they were used as a reference to evaluate the performance of the GRSI model.
The annotated map in Figure 3 shows the nine categories of the geological elements
included in the ground truth data, which are spatially consistent with the Landsat 8
satellite imagery.

Figure 1. Remote sensing data: Landsat 8 image. The locations of the three study areas are marked in
red boxes on the map.
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Table 2. AdvSemi-OCGNet product accuracy.

Class No. IOU (%) Acc (%)

Glacier 0 78.461 89.628
Granitic rock 1 53.162 67.310

Lakes 2 90.610 95.076
Carbonate rocks 3 59.681 71.612

Slate 4 70.996 85.678
Sandstone 5 43.650 57.188

Volcanic debris 6 55.917 69.794
Schist 7 58.392 71.108

Soil bodies 8 78.319 89.905

Figure 2. The spatial distribution of the observation points in the study area, where the red boxes
indicate the area covered by the observation points. These points are associated with three distinct
local areas that correspond to certain geological elements, such as sandstone, volcanic debris, and
granitic rock.

Figure 3. A map of the study area with labeled features.

4. Methodology

This section introduces the PSDOF method for the fusion of the point data and surface
data. Figure 4 shows a diagrammatical flowchart of PSDOF for the fusion of surface data
and point data.
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Figure 4. Diagrammatical flowchart of PSDOF for the fusion of surface data and point data.

4.1. Information Extraction

Geological survey point data are sparse, which raises an additional problem: a lack
of samples and labels. To address this problem, PSDOF uses Landsat 8 images and a
gray-level co-occurrence matrix (GLCM) to generate point samples and labels.

The GLCM is defined as follows [51]. Suppose our image (e.g., Landsat 8 images and
GRSI products) is square, with c representing the columns and r the rows. The gray values
of each pixel are quantized into different levels Ng, G ∈

{
0, 1, · · · , Ng − 1

}
, thus creating a

set of weighted gray values. The image can be depicted as a function that allocates a gray
value G to couple Lr × Lc coordinates. p(a, b) is the co-occurrence frequency matrix of the
two gray values a and b, which are detached by the step distance d in the image. Moreover,
it is a function of the distance and angle relationship between neighboring pixels, which,
thus, reveals information about the texture of the image [52].

For d and angle θ, the normalized frequency is defined by the following equation:

p(a, b | d, θ) =

{
(r, c) | f (r, c) = a, f (∆r + r, ∆c + c) = b

r, c = 0, 1, · · · , N − 1

}
d =

√
d2

r + d2
c ;

∆r = r + dr;

∆c = c + dc;

θ ∈ (0◦, 45◦, 90◦, 135◦).

(6)

where N, represents the size of the image. Define p(a, b) as the value of the (a, b)-th entry
in the normalized GLCM. The averages of the rows and columns—as denoted by µr and
µc, respectively—as well as their corresponding standard deviations can be described as
follows:

µr = ∑
a

∑
b

a · p(a, b), µc = ∑
a

∑
b

b · p(a, b)

σr = ∑
a

∑
b
(a − µr)

2 · p(a, b)

σc = ∑
a

∑
b
(b − µc)

2 · p(a, b)

(7)
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For different texture features, which represent different meanings, this study used
only the gray-scale correlation features. These features are calculated as follows:

Cor(r, c) = ∑a ∑b(ab)p(a, b)− µrµc

σrσc
(8)

where a, b ∈ {0, · · · , 255} corresponds to the number of gray values in the image pixels and
r, c ∈ {0, · · · , 223} corresponds to the number of ranks of the pixels. Cor(r, c) represents
the linear correlation of the gray-scale value of each pixel of the image; the higher the value,
the stronger the correlation is [53].

The setting of the parameters d and θ is particularly important according to Equation 6.
Fine textures require relatively small distance values, and ensuring this will produce more
texture information than would be the case otherwise, as it is difficult to represent them if
the distance values are too large. θ is relatively less important in co-occurrence matrices.
Many authors have used the average [54]. After extensive experimental analysis, we chose
the best parameters of d and θ for the surface data, where the step distance was d = 2. Each
texture feature was rotated by 0◦, 45◦, 90◦, and 135◦, and the average feature value of the
four angles was taken.

Pixels with similar Cor(r, c) values around the geological survey points were selected
as a set of point samples Xn for n ∈ {1, · · · , r × c}, and the experiment showed that the
distribution of the point sets matched well with the distribution of the geological elements
in the ground truth data.

The GLCM method utilizes the correlation of neighboring pixels’ gray-scale values in
an image to represent its texture features. It is useful in addressing the issue of inadequate
point samples in the application of the PSDOF method.

4.2. Sample Selection

How to map the complementary information of heterogeneous data into fusion space
is a challenge. Specifically, we need to find an effective set of characteristic data and a
mapping method that represents these data. This section introduces our data-processing
method:

Characteristic point: This study selected pixel points in the neighboring area of the
geological elements, which are represented by the geological survey data that have a
consistent gray-scale correlation with the geological survey point data, as point samples.
The point samples’ set Xn was determined by the texture features of the geological elements.
Since the geological survey point data had high-precision location information, all of the
point samples could be generated with labels (with both location and geological element
information). Regardless of the heterogeneity and origin of the point data, after information
extraction, the point samples can all be converted into labels.

Characteristic surface: In the experiment, the characteristic surface was obtained
by combining the textural features of the geological elements. We denote the Cor(r, c)
pixel distribution surface (using curve fitting) of the geological elements as P and the
classification boundary of the surface data as K. The characteristic surface was Ym = P ∪ K
for m ∈ {1, · · · , r × c}.

In principle, PSDOF requires a mapping of n labels among L modalities. Suppose
there exist L different modalities of heterogeneous data (e.g., geological survey point and
GRSI data), which are denoted as the mapping fL with their own domain Dl and with the
ranges V l , respectively:

fL : Dl → V l . (9)

where Dl is a measurable probability space of the l types of multimodal data (including
point data and surface data), and V l can have values taken in the field of real numbers R,
complex values C, integers Z, etc. In our experiments, different geological survey point data
represent different mappings fL, thus revealing the types and spatial location information
of the geological elements.
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The goal of PSDOF is to homogenize the domains of the data of different modalities
into the common space D = {x1, · · · , xn} with xi ∈ R2 for i ∈ {1, · · · , n}:

ϕl : Dl → D, (10)

where the mapping ϕl is a non-linear many-to-one relationship and is metrizable. In the
study, the remote sensing data were associated with 15 × 15 m2 grid cells, wherein one can
consider those cells as elements in D. Thus, ϕl serves as a mapping from the positions of
point samples to their nearest unit centers. This mapping relationship, when taken, allows
for heterogeneous domains to be aligned and fused into a common domain:

ϕ = arg min ϕl (11)

The fusion of multi-source heterogeneous information requires solving the alignment
problem of the data domain. The domain adaptation technique provides a feasible solution:
the source samples (characteristic point set Xn) and the target samples (characteristic surface
Ym) are correlated in a unified information space D. Furthermore, the data deviations
between the domains can be addressed by solving the correlation mapping ϕ.

4.3. Data Fusion

To obtain the optimal mapping ϕ of the data domain, the PSDOF method introduces
OT theory.

In the domain adaptation research area, OT provides a scheme for transferring SD
distributions to the TD. Specifically, OT aims to estimate transport plans that minimize
transport costs [55]. This fusion model considers only a finite domain D = {x1, · · · , xn}
with xi ∈ R2. The source and target distributions can be expressed as Ds =

{
xs

1, · · · , xs
n,
}

(e.g., geological survey point data) and Dt =
{

yt
1, · · · , yt

mt

}
(e.g., GRSI products), where ns

and mt are the count of units in Ds and Dt, respectively. Then, the expected distribution of
the two domains Ps and Pt can be written as follows:

Ps = ∑
xi∈D

ωs
i δ(xi)

, Pt = ∑
xi∈D

ωt
i δ(yi)

(12)

where δ(xi)
and δ(yi)

are the Dirac function at xi and yi, respectively, and ωs
i and ωt

i are the
factors of the unit simplex, with ∑n

i=1 ωs
i = 1 and ∑n

i=1 ωt
i = 1.

In the case of discrete OT, the empirical distributions P̂s and P̂t are estimates of Ps and
Pt for the discrete data points in Ds and Dt, respectively. As such, we have

P̂s =
ns

∑
i=1

ω̂s
i δ(xs

i )
, P̂t =

nt

∑
i=1

ω̂t
i δ(yt

i )
. (13)

where ω̂s
i and ω̂t

i are the probability masses of the unit simplex δ(xs
i )

and δ(yt
i )

, respectively,

with ∑n
i=1 ω̂s

i = 1 and ∑n
i=1 ω̂t

i = 1. The best-matching π∗ between P̂s and P̂t is calculated
by Kantorovich’s formula [56] as follows:

π∗ = arg min
π∈β

⟨π, C⟩F (14)

where C is the matrix of the cost, C(i, j) = c
(

xs
i , yt

j

)
indicates the cost of transporting the

probability mass from xs
i to yt

j, and ⟨·, ·⟩F is the Frobenius inner product. β is the set of

associative discrete couplings between P̂s and P̂t, such that

β =
{

π ∈
(
R+

)ns×nt | π1nt = P̂s, πT1ns = P̂t

}
(15)

where 1n represents a vector of ones with length n.
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The probability density of each position in the target distribution should be determined
based on the geological element distribution, which is unknown and more difficult to obtain.
This work assumed that the probability density of each position of the target distribution
follows a uniform distribution—in other words, the probability density of xs

i and yt
j is 1/ns

and 1/nt, respectively. The function TOT can then be stated as follows:

TOT(xs
i ) =

ni

∑
j=1

nsπ∗(i, j)yt
j (16)

The corrected empirical distribution can be stated as

P̃c =
ns

∑
i=1

1
ns

δT(x∗i )
(17)

Brenier [57] proved that the Kantorovich formula can be solved by a system of linear
partial differential equations when the cost function is quadratic and the domain of def-
inition D is a Euclidean space. This further optimizes < π, C >F, and P̃c, which can be
approximated as

P̃c = arg min W
(

P̂s, P̂t
)

(18)

where W(·) is the Wasserstein distance. The approach can be viewed as a local second-order
approximation, which can be used to minimize the Wasserstein distance < π, C >F at{

xs
i
}ns

i=1.
In a given geometric space, Xn and Ym can be regarded as the SD and TD, respectively.

The optimal coupling can be calculated from Equation (14), where the cost matrix C(Xn, Ym)
is the Euclidean distance of the uniformly discrete feature pixels in the sample space Xn
and Ym:

C(Xn, Ym) =
∥∥xs

n − yt
m
∥∥2

2 (19)

The transport costs of the OT model can be seen in solving for the two-Wasserstein
distance:

P̃ = arg minW2

(
P̂xs

n , P̂yt
m

)
(20)

To address the issue of data domain misalignment during the fusion of heterogeneous
data from multiple sources, the data fusion module introduces the OT method. The
experiment demonstrated the superiority of PSDOF in the fusion process of geological
survey point data and GRSI products.

5. Experimentation

This section describes the experimental methodology and results of the study. This
includes the experimental setting and parameters, the evaluation metrics employed, an
analysis of the experimental results, and a comparison of the outcomes obtained with
different GRSI models.

5.1. Experimental Setting and Parameters

In this experiment, we aligned Landsat 8 image and ground truth data, as well as
cropped them into 1200 images of a 224 × 224 px in size. The training and testing data were
divided into an 80%:20% ratio. We used six semantic segmentation models for geological
remote sensing interpretation: FCN, DeeplabV3, OCNet, DANet, PSPNet, and AdvSemi-
OCGNet. To ensure fairness in the experiment, all of these models were trained using
ResNet50 as the backbone network, as well as by utilizing the official pre-trained models
provided by PyTorch. In the comparative experiments, the geological remote sensing
interpretation models were initialized with a learning rate of 2.5 × 10−4 and were trained
for a total of 10,000 iterations with a batch size of 24. The optimizer was set to SGD. All of
the experiments were conducted on a workstation equipped with an Intel i7 11700k CPU,
an NVIDIA RTX 3090 GPU, and code methods that were utilized in Python.
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Then, we analyzed the experimental parameters of the PSDOF method based on the
interpretation results of the AdvSemi-OCGNet method:

1. Table 3 shows the grading of the characteristic points X i
n and characteristic surface

Y i
m for the three study areas. After our analysis of the data from the different study

areas, the levels were divided into 11 classes, where i ∈ {1, 2 · · · , 11}. The number of
feature pixel points corresponding to each level of the feature surface showed a linear
distribution, thereby reflecting the distribution of the 11 geological elements.

2. X i
n and Y i

m are understood as discrete samples, where i ∈ {1, 2 · · · , 11}. The minimum
cost of transport of the OT model after performing domain fusion is shown in Table 4.
For the transport costs, Table 4 yields the following conclusions: When the costs
corresponding to level 2 in Area 1 and level 7 in Areas 2 and 3 are the respective
optimal transport costs, the minimum transport costs are 0.4409× 10−6, 0.2180× 10−6,
and 0.4092 × 10−6, respectively. In addition, we could update the GRSI products
according to the optimal transport rates for each of the three areas.

Table 3. Characteristic surface division.

Level (A) Points

Area 1 Area 2 Area 3

1. Cor ± 0.001 13 18 5
2. Cor ± 0.050 52 84 14
3. Cor ± 0.010 121 179 25
4. Cor ± 0.015 185 267 32
5. Cor ± 0.020 254 358 42
6. Cor ± 0.025 349 444 52
7. Cor ± 0.030 410 538 64
8. Cor ± 0.035 487 634 75
9. Cor ± 0.040 552 711 -

10. Cor ± 0.045 614 796 -
11. Cor ± 0.050 704 873 -

Table 4. Transport costs.

Level Cost

Area 1 Area 2 Area 3

1 1.2230 × 10−6 2.2230 × 10−6 1.9357 × 10−6

2 0.4409 × 10−6 0.8954 × 10−6 0.0096 × 10−6

3 0.6152 × 10−6 0.4241 × 10−6 0.7318 × 10−6

4 1.0146 × 10−6 70.2747 × 10−6 0.7429 × 10−6

5 0.9241 × 10−6 0.2277 × 10−6 0.7186 × 10−6

6 1.5249 × 10−6 0.2209 × 10−6 0.5095 × 10−6

7 1.5358 × 10−6 0.2180 × 10−6 0.4092 × 10−6

8 2.2975 × 10−6 0.3129 × 10−6 0.4552 × 10−6

9 2.4674 × 10−6 0.2982 × 10−6 -
10 2.6349 × 10−6 0.3071 × 10−6 -
11 1.7774 × 10−6 0.2985 × 10−6 -

5.2. Evaluation Indicators

In this section, the evaluation metrics used to quantitatively assess the accuracy of
our model are presented, followed by a discussion of the important parameter settings
for the experimental area used in this research. Finally, a presentation and analysis of the
experimental results is provided.

To evaluate the accuracy improvement of the GRSI product in our model, the evalua-
tion metric used was the intersection over union [58], which can be derived by calculating
the confusion matrix.
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Intersection over Union (IOU): The IOU of nine geological elements is computed by
the model as the ratio of the intersection and union of the anticipated and actual pixels
within a group:

IOU =
k

∑
i=0

pij

∑k
j=0 pij + ∑k

j=0 pij − pii
(21)

MIOU =
1

k + 1
IOU (22)

where k indicates the category of the geological elements, pii denotes the total number of
true pixels of class i that are correctly predicted as i, and pij denotes the total number of true
pixels of class i that are incorrectly predicted as j. The accuracy of the model is determined
by the IOU. The larger the IOU, the greater the overlap between the predicted pixels and
the ground truth labels is, thus indicating a more-accurate model.

5.3. Effectiveness Assessment

We used the AdvSemi-OCGNet PSDOF model for the geological interpretation of
the remote sensing data to evaluate the effect of PSDOF on the accuracy improvement
of the geological interpretation product. As shown in Figure 5, the geological element
of the observation point was sandstone, and the classification result of the interpretation
model in Area 1 was soil. The IOU accuracy of the sandstone was only 8.1%, and the
interpretation accuracy was poor. Our PSDOF combines the geological element information
around the observation point (red rectangular boxed area) into the interpretation of the
product. It utilizes this information to update the optimal interpretation boundary based
on the minimum transport cost, thus resulting in a more-accurate GRSI product. Based
on the accuracy assessment data in Table 5, the IOU of the updated interpreted product
metamorphic sandstone in Area 1 improved by 53%. Moreover, as can be seen in Table 6,
there was an overall improvement of 19% in the MIOU of its nine geological elements.

In Area 2, the geological element of the observation site (the red rectangular boxed area)
was volcanic debris, and the GRSI product identified only a small amount of volcanic debris
within this area (with the remainder being classified as extensive glaciation). According
to Table 5, the IOU accuracy for volcanic debris in the area was 68.4% (which improved
to 73.4% after our PSDOF model), and the classification accuracy of the volcanic debris
improved by 5.6%. According to Table 6, the overall MIOU of the nine geological elements
improved by 2%.

The information gathered from the observation points (within the red rectangular
boxed area) in Area 3 suggests a significant presence of granite. Although the geological
interpretation products yielded a relatively clear granite–soil boundary, we estimated that
it can still be optimized. Table 5 displays the outcomes, where the granite IOU within the
observation site improved from 71.1% to 73.2% (with an improvement in the classification
accuracy by 21.1%). According to Table 6, the MIOU of the nine geological elements in Area
3 improved by 1%. The results demonstrated the correctness of our optimization scheme in
Area 3.
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Figure 5. Results obtained by AdvSemi-OCGNet and PSDOF.

Table 5. IOU quantitative assessment.

Area IOU (%)

AdvSemi-OCGNet PSDOF

1 8.11 61.18
2 68.42 73.39
3 71.11 73.22

Table 6. MIOU quantitative assessment.

Area IOU (%)

AdvSemi-OCGNet PSDOF

1 59.93 78.78
2 66.45 68.66
3 81.02 82.03

5.4. Comparative Experiments

To verify the accuracy improvement effect of PSDOF for different DL-based GRSI
products, GRSI was carried out under the following classical and representative semantic
segmentation models: FCN, DeepLabV3, DANet, OCNet, and PSPNet. Our PSDOF model
was added for comparison experiments in three study areas, and the visual effects are
shown in Figures 6–8:

1. FCN and PSDOF: As shown in Figure 6, the processed Landsat 8 satellite images
were fed into an FCN interpretation model to classify the nine geological elements
at the pixel level in order to obtain the interpretation products. As can be seen from
Figure 6, the interpretation accuracy for all three geological elements was unsatisfac-
tory. The sandstone and volcanic debris in the red boxes in the figure were located,
but with inaccurate boundaries (the specific IOU accuracy can be seen in Table 7). The
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distribution of what was originally thought to be granite was determined as slate
instead, which was completely inconsistent with the observations (and the annotated
diagram also fully supports this view). The PSDOF method resulted in the correct
repositioning of the three lithologies in the vicinity of the observation point, as evident
from the visual effect. It fully combined the high-precision spatial information of the
observation point data and achieved a higher positional accuracy.

2. DeepLabv3 and PSDOF: Figure 6 shows the interpretation products obtained from the
DeepLabv3 semantic segmentation model for the remote sensing images of the three
study areas. Unlike the classical FCN model, the Deeplabv3 model uses an improved
atrous spatial pyramid pooling (ASPP) approach. It demonstrated better performance
in pixel-level classifications; thus, it outperformed the FCN model overall. However,
as can be seen from Figure 7, the results were no better than the FCN model for the
boundary localization of sandstone, granite, and volcanic debris, and the accuracy
needs to be improved. Our experimental results demonstrated that PSDOF effectively
improves the accuracy of the GRSI products generated by the Deeplabv3 model.
Within the observation point range, correct boundary relocations were obtained for
the three lithologies.

3. DANet and PSDOF: The dual-attention network (DANet) has a location attention
module to capture spatial information. DANet introduces a channel attention module
that is used to integrate the relevant features between all channel mappings, and it
overall outperformed the FCN network. The performance of DANet was poor in the
extraction of the following three lithological features: sandstone, granite, and volcanic
debris. As shown in Figure 7, where the metamorphic sandstone and volcanic debris
in the red boxes of the interpretation results were located, granite was incorrectly
located, and the segmentation accuracy of all of the three geological elements was
not high. After applying PSDOF, the accuracy of the three geological elements in the
product improved.

4. OCNet and PSDOF: The neural network model OCNet is a target semantic network
for scene parsing in the form of semantic aggregation, where instead of pixel-by-pixel
prediction, similar pixel points are aggregated and, then, semantically segmented.
The experimental results in the three study areas showed that the classification of
sandstone, granite, and volcanic debris, as shown in Figure 7, was poor. The three
geological elements of the scene showed a fragmented and scattered distribution after
classification, as well as blurred geological element boundaries. In contrast, after
incorporating the complementary observation point information, PSDOF was able
to incorporate it into the interpretation product and relocate the boundaries of the
geological elements at a local scale. The experimental results also showed that PSDOF
can perform well for geological elements with poor accuracy.

5. PSPNet and PSDOF: PSPNet is a scenario-analysis network built using the pyramid
pooling module; furthermore, it outperforms traditional FCNs, and its overall perfor-
mance was relatively good in this experiment. The PSPNet model in the study area
had a good feature extraction capability for sandstone, as shown in Figure 8, and it
ranked high in overall performance for the classification of granite and metamorphic
sandstone. However, there was a large error in the boundary positioning of the three
geological elements at the observation point range, but our PSDOF successfully han-
dled and corrected this error. Moreover, the resulting interpretation products after
processing also validated the good performance of PSDOF.

To more-accurately represent the enhancement effect of the different geological inter-
pretation models with the addition of PSDOF, the IOU accuracy of the individual geological
elements were ascertained in each of the three study areas, as is presented in Tables 7–11. It
can be observed that the five DL interpretation frameworks had different performances
for different geological elements. However, it was found that it was more difficult to learn
the features of granite, sandstone, and volcanic debris. The main reason for this is that
granite and volcanic clasts are both magmatic rocks with similar morphological structures
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in the image. It is difficult to distinguish between sandstone, metamorphosed granite, and
fine-grained granite, as they are similar. In a comparison of the three study area ranges, the
PSPNet model was the most accurate in classifying sandstone with an IOU of 72%, and the
OCNet model performed the worst with an accuracy of 0%. In terms of extracting volcanic
debris features, the DANet model had the best IOU accuracy of 65%, while the OCNet
model was less effective in classification. In terms of extracting features from granite, all
five models had an IOU accuracy of around 30%, and none of them showed satisfactory
performance.

Figure 6. Results obtained by FCN, DeepLabv3, and PSDOF.

Figure 7. Results obtained by DANet, OCNet, and PSDOF.
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Figure 8. Results obtained by PSPNet and PSDOF.

Table 7. IOU quantitative assessment: FCN and PSDOF.

Area IOU (%)

FCN PSDOF

1 33.89 63.99
2 64.66 67.94
3 34.24 42.78

Table 8. IOU quantitative assessment: DeepLabv3 and PSDOF.

Area IOU (%)

DeepLabv3 PSDOF

1 33.86 76.44
2 56.10 62.51
3 36.69 45.18

Table 9. IOU quantitative assessment: DANet and PSDOF.

Area IOU (%)

DANet PSDOF

1 16.58 54.37
2 65.06 69.77
3 32.42 40.96
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Table 10. IOU quantitative assessment: OCNet and PSDOF.

Area IOU (%)

OCNet PSDOF

1 0.00 57.98
2 0.00 10.26
3 34.37 36.69

Table 11. IOU quantitative assessment: PSPNet and PSDOF.

Area IOU (%)

PSPNet PSDOF

1 72.33 78.09
2 59.31 64.67
3 35.62 44.15

Our experimental analysis of the different geological interpretation models showed
that different models had different feature-extraction performances for the same geolog-
ical elements, as well as that the same models had different feature-learning abilities for
different geological elements. After adding our PSDOF to the interpretation products, the
interpretation accuracy of all of the models for different geological elements improved. The
accuracy of the metamorphic sandstone improved the most with a 60% improvement in
the IOU accuracy in the local range. The local IOU accuracy of the other two lithologies
was also improved. The experimental results showed that PSDOF had an excellent effect
on the improvement of the accuracy of the selected geological interpretation products.

6. Conclusions and Outlook

In this paper, we proposed the use of additional point data for the data enhancement
of GRSI products so as to address the problem of their limited accuracy. A multimodal
data-fusion framework base for an optimal transport model that is capable of fusing
heterogeneous data with minimal cost was presented. The GRSI product for a local area of
the Pamir Plateau is an example of a solution to the problem of fusing geological footprint
data with interpretation data. The model uses gray-scale correlation features in the fusion
task. The experiments showed that our fusion framework successfully fused point data
geospatial location information and lithological information with GRSI products, thereby
resulting in a higher quality.

The PSDOF method still showed certain limitations in the experiment. Due to the
sparse distribution of geological survey data and the limited amount of data, the experimen-
tal study area was confined to a local region. Moreover, the fusion effect was constrained by
the sample size of the point data. While the PSDOF method had a low computational cost
in local regions, increasing the number of parameters will lead to a higher computational
cost.

In future research, we will consider using a greater amount of multimodal remote
sensing data, such as big social media and statistical data, to take full advantage of the
information from different data sources in order to obtain a higher-quality GRSI product. In
addition, our model was only examined experimentally on its capacity for geological remote
sensing mapping; as such, in the future, we will consider more application scenarios, such
as in agriculture, water bodies, wetlands, and cities, in order to combine the characteristics
of different geographical elements and improve the generalization capability of the model.
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